summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/assembler/AbstractMacroAssembler.h
blob: cbea00e3036c35d27a440a6cb57c1b15ccb205f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
/*
 * Copyright (C) 2008, 2012, 2014-2016 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef AbstractMacroAssembler_h
#define AbstractMacroAssembler_h

#include "AbortReason.h"
#include "AssemblerBuffer.h"
#include "CodeLocation.h"
#include "MacroAssemblerCodeRef.h"
#include "Options.h"
#include <wtf/CryptographicallyRandomNumber.h>
#include <wtf/Noncopyable.h>
#include <wtf/SharedTask.h>
#include <wtf/WeakRandom.h>

#if ENABLE(ASSEMBLER)

namespace JSC {

inline bool isARMv7IDIVSupported()
{
#if HAVE(ARM_IDIV_INSTRUCTIONS)
    return true;
#else
    return false;
#endif
}

inline bool isARM64()
{
#if CPU(ARM64)
    return true;
#else
    return false;
#endif
}

inline bool isMIPS()
{
#if CPU(MIPS)
    return true;
#else
    return false;
#endif
}

inline bool isX86()
{
#if CPU(X86_64) || CPU(X86)
    return true;
#else
    return false;
#endif
}

inline bool isX86_64()
{
#if CPU(X86_64)
    return true;
#else
    return false;
#endif
}

inline bool optimizeForARMv7IDIVSupported()
{
    return isARMv7IDIVSupported() && Options::useArchitectureSpecificOptimizations();
}

inline bool optimizeForARM64()
{
    return isARM64() && Options::useArchitectureSpecificOptimizations();
}

inline bool optimizeForMIPS()
{
    return isMIPS() && Options::useArchitectureSpecificOptimizations();
}

inline bool optimizeForX86()
{
    return isX86() && Options::useArchitectureSpecificOptimizations();
}

inline bool optimizeForX86_64()
{
    return isX86_64() && Options::useArchitectureSpecificOptimizations();
}

class AllowMacroScratchRegisterUsage;
class DisallowMacroScratchRegisterUsage;
class LinkBuffer;
class Watchpoint;
namespace DFG {
struct OSRExit;
}

template <class AssemblerType, class MacroAssemblerType>
class AbstractMacroAssembler {
public:
    friend class JITWriteBarrierBase;
    typedef AbstractMacroAssembler<AssemblerType, MacroAssemblerType> AbstractMacroAssemblerType;
    typedef AssemblerType AssemblerType_T;

    typedef MacroAssemblerCodePtr CodePtr;
    typedef MacroAssemblerCodeRef CodeRef;

    class Jump;

    typedef typename AssemblerType::RegisterID RegisterID;
    typedef typename AssemblerType::FPRegisterID FPRegisterID;
    
    static constexpr RegisterID firstRegister() { return AssemblerType::firstRegister(); }
    static constexpr RegisterID lastRegister() { return AssemblerType::lastRegister(); }

    static constexpr FPRegisterID firstFPRegister() { return AssemblerType::firstFPRegister(); }
    static constexpr FPRegisterID lastFPRegister() { return AssemblerType::lastFPRegister(); }

    // Section 1: MacroAssembler operand types
    //
    // The following types are used as operands to MacroAssembler operations,
    // describing immediate  and memory operands to the instructions to be planted.

    enum Scale {
        TimesOne,
        TimesTwo,
        TimesFour,
        TimesEight,
    };
    
    static Scale timesPtr()
    {
        if (sizeof(void*) == 4)
            return TimesFour;
        return TimesEight;
    }

    // Address:
    //
    // Describes a simple base-offset address.
    struct Address {
        explicit Address(RegisterID base, int32_t offset = 0)
            : base(base)
            , offset(offset)
        {
        }
        
        Address withOffset(int32_t additionalOffset)
        {
            return Address(base, offset + additionalOffset);
        }
        
        RegisterID base;
        int32_t offset;
    };

    struct ExtendedAddress {
        explicit ExtendedAddress(RegisterID base, intptr_t offset = 0)
            : base(base)
            , offset(offset)
        {
        }
        
        RegisterID base;
        intptr_t offset;
    };

    // ImplicitAddress:
    //
    // This class is used for explicit 'load' and 'store' operations
    // (as opposed to situations in which a memory operand is provided
    // to a generic operation, such as an integer arithmetic instruction).
    //
    // In the case of a load (or store) operation we want to permit
    // addresses to be implicitly constructed, e.g. the two calls:
    //
    //     load32(Address(addrReg), destReg);
    //     load32(addrReg, destReg);
    //
    // Are equivalent, and the explicit wrapping of the Address in the former
    // is unnecessary.
    struct ImplicitAddress {
        ImplicitAddress(RegisterID base)
            : base(base)
            , offset(0)
        {
        }

        ImplicitAddress(Address address)
            : base(address.base)
            , offset(address.offset)
        {
        }

        RegisterID base;
        int32_t offset;
    };

    // BaseIndex:
    //
    // Describes a complex addressing mode.
    struct BaseIndex {
        BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0)
            : base(base)
            , index(index)
            , scale(scale)
            , offset(offset)
        {
        }

        RegisterID base;
        RegisterID index;
        Scale scale;
        int32_t offset;
        
        BaseIndex withOffset(int32_t additionalOffset)
        {
            return BaseIndex(base, index, scale, offset + additionalOffset);
        }
    };

    // AbsoluteAddress:
    //
    // Describes an memory operand given by a pointer.  For regular load & store
    // operations an unwrapped void* will be used, rather than using this.
    struct AbsoluteAddress {
        explicit AbsoluteAddress(const void* ptr)
            : m_ptr(ptr)
        {
        }

        const void* m_ptr;
    };

    // TrustedImmPtr:
    //
    // A pointer sized immediate operand to an instruction - this is wrapped
    // in a class requiring explicit construction in order to differentiate
    // from pointers used as absolute addresses to memory operations
    struct TrustedImmPtr {
        TrustedImmPtr() { }
        
        explicit TrustedImmPtr(const void* value)
            : m_value(value)
        {
        }
        
        // This is only here so that TrustedImmPtr(0) does not confuse the C++
        // overload handling rules.
        explicit TrustedImmPtr(int value)
            : m_value(0)
        {
            ASSERT_UNUSED(value, !value);
        }

        explicit TrustedImmPtr(size_t value)
            : m_value(reinterpret_cast<void*>(value))
        {
        }

        intptr_t asIntptr()
        {
            return reinterpret_cast<intptr_t>(m_value);
        }

        const void* m_value;
    };

    struct ImmPtr : private TrustedImmPtr
    {
        explicit ImmPtr(const void* value)
            : TrustedImmPtr(value)
        {
        }

        TrustedImmPtr asTrustedImmPtr() { return *this; }
    };

    // TrustedImm32:
    //
    // A 32bit immediate operand to an instruction - this is wrapped in a
    // class requiring explicit construction in order to prevent RegisterIDs
    // (which are implemented as an enum) from accidentally being passed as
    // immediate values.
    struct TrustedImm32 {
        TrustedImm32() { }
        
        explicit TrustedImm32(int32_t value)
            : m_value(value)
        {
        }

#if !CPU(X86_64)
        explicit TrustedImm32(TrustedImmPtr ptr)
            : m_value(ptr.asIntptr())
        {
        }
#endif

        int32_t m_value;
    };


    struct Imm32 : private TrustedImm32 {
        explicit Imm32(int32_t value)
            : TrustedImm32(value)
        {
        }
#if !CPU(X86_64)
        explicit Imm32(TrustedImmPtr ptr)
            : TrustedImm32(ptr)
        {
        }
#endif
        const TrustedImm32& asTrustedImm32() const { return *this; }

    };
    
    // TrustedImm64:
    //
    // A 64bit immediate operand to an instruction - this is wrapped in a
    // class requiring explicit construction in order to prevent RegisterIDs
    // (which are implemented as an enum) from accidentally being passed as
    // immediate values.
    struct TrustedImm64 {
        TrustedImm64() { }
        
        explicit TrustedImm64(int64_t value)
            : m_value(value)
        {
        }

#if CPU(X86_64) || CPU(ARM64)
        explicit TrustedImm64(TrustedImmPtr ptr)
            : m_value(ptr.asIntptr())
        {
        }
#endif

        int64_t m_value;
    };

    struct Imm64 : private TrustedImm64
    {
        explicit Imm64(int64_t value)
            : TrustedImm64(value)
        {
        }
#if CPU(X86_64) || CPU(ARM64)
        explicit Imm64(TrustedImmPtr ptr)
            : TrustedImm64(ptr)
        {
        }
#endif
        const TrustedImm64& asTrustedImm64() const { return *this; }
    };
    
    // Section 2: MacroAssembler code buffer handles
    //
    // The following types are used to reference items in the code buffer
    // during JIT code generation.  For example, the type Jump is used to
    // track the location of a jump instruction so that it may later be
    // linked to a label marking its destination.


    // Label:
    //
    // A Label records a point in the generated instruction stream, typically such that
    // it may be used as a destination for a jump.
    class Label {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;
        friend struct DFG::OSRExit;
        friend class Jump;
        friend class MacroAssemblerCodeRef;
        friend class LinkBuffer;
        friend class Watchpoint;

    public:
        Label()
        {
        }

        Label(AbstractMacroAssemblerType* masm)
            : m_label(masm->m_assembler.label())
        {
            masm->invalidateAllTempRegisters();
        }

        bool operator==(const Label& other) const { return m_label == other.m_label; }

        bool isSet() const { return m_label.isSet(); }
    private:
        AssemblerLabel m_label;
    };
    
    // ConvertibleLoadLabel:
    //
    // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr
    // so that:
    //
    // loadPtr(Address(a, i), b)
    //
    // becomes:
    //
    // addPtr(TrustedImmPtr(i), a, b)
    class ConvertibleLoadLabel {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
        
    public:
        ConvertibleLoadLabel()
        {
        }
        
        ConvertibleLoadLabel(AbstractMacroAssemblerType* masm)
            : m_label(masm->m_assembler.labelIgnoringWatchpoints())
        {
        }
        
        bool isSet() const { return m_label.isSet(); }
    private:
        AssemblerLabel m_label;
    };

    // DataLabelPtr:
    //
    // A DataLabelPtr is used to refer to a location in the code containing a pointer to be
    // patched after the code has been generated.
    class DataLabelPtr {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
    public:
        DataLabelPtr()
        {
        }

        DataLabelPtr(AbstractMacroAssemblerType* masm)
            : m_label(masm->m_assembler.label())
        {
        }

        bool isSet() const { return m_label.isSet(); }
        
    private:
        AssemblerLabel m_label;
    };

    // DataLabel32:
    //
    // A DataLabel32 is used to refer to a location in the code containing a 32-bit constant to be
    // patched after the code has been generated.
    class DataLabel32 {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
    public:
        DataLabel32()
        {
        }

        DataLabel32(AbstractMacroAssemblerType* masm)
            : m_label(masm->m_assembler.label())
        {
        }

        AssemblerLabel label() const { return m_label; }

    private:
        AssemblerLabel m_label;
    };

    // DataLabelCompact:
    //
    // A DataLabelCompact is used to refer to a location in the code containing a
    // compact immediate to be patched after the code has been generated.
    class DataLabelCompact {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
    public:
        DataLabelCompact()
        {
        }
        
        DataLabelCompact(AbstractMacroAssemblerType* masm)
            : m_label(masm->m_assembler.label())
        {
        }

        DataLabelCompact(AssemblerLabel label)
            : m_label(label)
        {
        }

        AssemblerLabel label() const { return m_label; }

    private:
        AssemblerLabel m_label;
    };

    // Call:
    //
    // A Call object is a reference to a call instruction that has been planted
    // into the code buffer - it is typically used to link the call, setting the
    // relative offset such that when executed it will call to the desired
    // destination.
    class Call {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;

    public:
        enum Flags {
            None = 0x0,
            Linkable = 0x1,
            Near = 0x2,
            Tail = 0x4,
            LinkableNear = 0x3,
            LinkableNearTail = 0x7,
        };

        Call()
            : m_flags(None)
        {
        }
        
        Call(AssemblerLabel jmp, Flags flags)
            : m_label(jmp)
            , m_flags(flags)
        {
        }

        bool isFlagSet(Flags flag)
        {
            return m_flags & flag;
        }

        static Call fromTailJump(Jump jump)
        {
            return Call(jump.m_label, Linkable);
        }

        AssemblerLabel m_label;
    private:
        Flags m_flags;
    };

    // Jump:
    //
    // A jump object is a reference to a jump instruction that has been planted
    // into the code buffer - it is typically used to link the jump, setting the
    // relative offset such that when executed it will jump to the desired
    // destination.
    class Jump {
        template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
        friend class AbstractMacroAssembler;
        friend class Call;
        friend struct DFG::OSRExit;
        friend class LinkBuffer;
    public:
        Jump()
        {
        }
        
#if CPU(ARM_THUMB2)
        // Fixme: this information should be stored in the instruction stream, not in the Jump object.
        Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid)
            : m_label(jmp)
            , m_type(type)
            , m_condition(condition)
        {
        }
#elif CPU(ARM64)
        Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid)
            : m_label(jmp)
            , m_type(type)
            , m_condition(condition)
        {
        }

        Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister)
            : m_label(jmp)
            , m_type(type)
            , m_condition(condition)
            , m_is64Bit(is64Bit)
            , m_compareRegister(compareRegister)
        {
            ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize));
        }

        Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister)
            : m_label(jmp)
            , m_type(type)
            , m_condition(condition)
            , m_bitNumber(bitNumber)
            , m_compareRegister(compareRegister)
        {
            ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize));
        }
#elif CPU(SH4)
        Jump(AssemblerLabel jmp, SH4Assembler::JumpType type = SH4Assembler::JumpFar)
            : m_label(jmp)
            , m_type(type)
        {
        }
#else
        Jump(AssemblerLabel jmp)    
            : m_label(jmp)
        {
        }
#endif
        
        Label label() const
        {
            Label result;
            result.m_label = m_label;
            return result;
        }

        void link(AbstractMacroAssemblerType* masm) const
        {
            masm->invalidateAllTempRegisters();

#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
            masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset());
#endif

#if CPU(ARM_THUMB2)
            masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition);
#elif CPU(ARM64)
            if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize))
                masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister);
            else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize))
                masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister);
            else
                masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition);
#elif CPU(SH4)
            masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type);
#else
            masm->m_assembler.linkJump(m_label, masm->m_assembler.label());
#endif
        }
        
        void linkTo(Label label, AbstractMacroAssemblerType* masm) const
        {
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
            masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset);
#endif

#if CPU(ARM_THUMB2)
            masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition);
#elif CPU(ARM64)
            if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize))
                masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister);
            else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize))
                masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister);
            else
                masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition);
#else
            masm->m_assembler.linkJump(m_label, label.m_label);
#endif
        }

        bool isSet() const { return m_label.isSet(); }

    private:
        AssemblerLabel m_label;
#if CPU(ARM_THUMB2)
        ARMv7Assembler::JumpType m_type;
        ARMv7Assembler::Condition m_condition;
#elif CPU(ARM64)
        ARM64Assembler::JumpType m_type;
        ARM64Assembler::Condition m_condition;
        bool m_is64Bit;
        unsigned m_bitNumber;
        ARM64Assembler::RegisterID m_compareRegister;
#endif
#if CPU(SH4)
        SH4Assembler::JumpType m_type;
#endif
    };

    struct PatchableJump {
        PatchableJump()
        {
        }

        explicit PatchableJump(Jump jump)
            : m_jump(jump)
        {
        }

        operator Jump&() { return m_jump; }

        Jump m_jump;
    };

    // JumpList:
    //
    // A JumpList is a set of Jump objects.
    // All jumps in the set will be linked to the same destination.
    class JumpList {
        friend class LinkBuffer;

    public:
        typedef Vector<Jump, 2> JumpVector;
        
        JumpList() { }
        
        JumpList(Jump jump)
        {
            if (jump.isSet())
                append(jump);
        }

        void link(AbstractMacroAssemblerType* masm)
        {
            size_t size = m_jumps.size();
            for (size_t i = 0; i < size; ++i)
                m_jumps[i].link(masm);
            m_jumps.clear();
        }
        
        void linkTo(Label label, AbstractMacroAssemblerType* masm)
        {
            size_t size = m_jumps.size();
            for (size_t i = 0; i < size; ++i)
                m_jumps[i].linkTo(label, masm);
            m_jumps.clear();
        }
        
        void append(Jump jump)
        {
            m_jumps.append(jump);
        }
        
        void append(const JumpList& other)
        {
            m_jumps.append(other.m_jumps.begin(), other.m_jumps.size());
        }

        bool empty()
        {
            return !m_jumps.size();
        }
        
        void clear()
        {
            m_jumps.clear();
        }
        
        const JumpVector& jumps() const { return m_jumps; }

    private:
        JumpVector m_jumps;
    };


    // Section 3: Misc admin methods
#if ENABLE(DFG_JIT)
    Label labelIgnoringWatchpoints()
    {
        Label result;
        result.m_label = m_assembler.labelIgnoringWatchpoints();
        return result;
    }
#else
    Label labelIgnoringWatchpoints()
    {
        return label();
    }
#endif
    
    Label label()
    {
        return Label(this);
    }
    
    void padBeforePatch()
    {
        // Rely on the fact that asking for a label already does the padding.
        (void)label();
    }
    
    Label watchpointLabel()
    {
        Label result;
        result.m_label = m_assembler.labelForWatchpoint();
        return result;
    }
    
    Label align()
    {
        m_assembler.align(16);
        return Label(this);
    }

#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
    class RegisterAllocationOffset {
    public:
        RegisterAllocationOffset(unsigned offset)
            : m_offset(offset)
        {
        }

        void checkOffsets(unsigned low, unsigned high)
        {
            RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u", m_offset, low, high);
        }

    private:
        unsigned m_offset;
    };

    void addRegisterAllocationAtOffset(unsigned offset)
    {
        m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset));
    }

    void clearRegisterAllocationOffsets()
    {
        m_registerAllocationForOffsets.clear();
    }

    void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2)
    {
        if (offset1 > offset2)
            std::swap(offset1, offset2);

        size_t size = m_registerAllocationForOffsets.size();
        for (size_t i = 0; i < size; ++i)
            m_registerAllocationForOffsets[i].checkOffsets(offset1, offset2);
    }
#endif

    template<typename T, typename U>
    static ptrdiff_t differenceBetween(T from, U to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
    }

    static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b)
    {
        return reinterpret_cast<ptrdiff_t>(b.executableAddress()) - reinterpret_cast<ptrdiff_t>(a.executableAddress());
    }

    unsigned debugOffset() { return m_assembler.debugOffset(); }

    ALWAYS_INLINE static void cacheFlush(void* code, size_t size)
    {
        AssemblerType::cacheFlush(code, size);
    }

#if ENABLE(MASM_PROBE)

    struct CPUState {
        #define DECLARE_REGISTER(_type, _regName) \
            _type _regName;
        FOR_EACH_CPU_REGISTER(DECLARE_REGISTER)
        #undef DECLARE_REGISTER

        static const char* gprName(RegisterID regID)
        {
            switch (regID) {
                #define DECLARE_REGISTER(_type, _regName) \
                case RegisterID::_regName: \
                    return #_regName;
                FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER)
                #undef DECLARE_REGISTER
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }
        }

        static const char* fprName(FPRegisterID regID)
        {
            switch (regID) {
                #define DECLARE_REGISTER(_type, _regName) \
                case FPRegisterID::_regName: \
                    return #_regName;
                FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER)
                #undef DECLARE_REGISTER
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }
        }

        void*& gpr(RegisterID regID)
        {
            switch (regID) {
                #define DECLARE_REGISTER(_type, _regName) \
                case RegisterID::_regName: \
                    return _regName;
                FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER)
                #undef DECLARE_REGISTER
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }
        }

        double& fpr(FPRegisterID regID)
        {
            switch (regID) {
                #define DECLARE_REGISTER(_type, _regName) \
                case FPRegisterID::_regName: \
                    return _regName;
                FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER)
                #undef DECLARE_REGISTER
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }
        }
    };

    struct ProbeContext;
    typedef void (*ProbeFunction)(struct ProbeContext*);

    struct ProbeContext {
        ProbeFunction probeFunction;
        void* arg1;
        void* arg2;
        CPUState cpu;

        // Convenience methods:
        void*& gpr(RegisterID regID) { return cpu.gpr(regID); }
        double& fpr(FPRegisterID regID) { return cpu.fpr(regID); }
        const char* gprName(RegisterID regID) { return cpu.gprName(regID); }
        const char* fprName(FPRegisterID regID) { return cpu.fprName(regID); }
    };

    // This function emits code to preserve the CPUState (e.g. registers),
    // call a user supplied probe function, and restore the CPUState before
    // continuing with other JIT generated code.
    //
    // The user supplied probe function will be called with a single pointer to
    // a ProbeContext struct (defined above) which contains, among other things,
    // the preserved CPUState. This allows the user probe function to inspect
    // the CPUState at that point in the JIT generated code.
    //
    // If the user probe function alters the register values in the ProbeContext,
    // the altered values will be loaded into the CPU registers when the probe
    // returns.
    //
    // The ProbeContext is stack allocated and is only valid for the duration
    // of the call to the user probe function.
    //
    // Note: probe() should be implemented by the target specific MacroAssembler.
    // This prototype is only provided here to document the interface.

    void probe(ProbeFunction, void* arg1, void* arg2);

#endif // ENABLE(MASM_PROBE)

    AssemblerType m_assembler;
    
    static void linkJump(void* code, Jump jump, CodeLocationLabel target)
    {
        AssemblerType::linkJump(code, jump.m_label, target.dataLocation());
    }

    static void linkPointer(void* code, AssemblerLabel label, void* value)
    {
        AssemblerType::linkPointer(code, label, value);
    }

    static void* getLinkerAddress(void* code, AssemblerLabel label)
    {
        return AssemblerType::getRelocatedAddress(code, label);
    }

    static unsigned getLinkerCallReturnOffset(Call call)
    {
        return AssemblerType::getCallReturnOffset(call.m_label);
    }

    static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination)
    {
        AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation());
    }

    static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination)
    {
        switch (nearCall.callMode()) {
        case NearCallMode::Tail:
            AssemblerType::relinkJump(nearCall.dataLocation(), destination.dataLocation());
            return;
        case NearCallMode::Regular:
            AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress());
            return;
        }
        RELEASE_ASSERT_NOT_REACHED();
    }

    static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value)
    {
        AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value);
    }
    
    static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value)
    {
        AssemblerType::repatchInt32(dataLabel32.dataLocation(), value);
    }

    static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value)
    {
        AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value);
    }
    
    static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr)
    {
        return AssemblerType::readPointer(dataLabelPtr.dataLocation());
    }
    
    static void replaceWithLoad(CodeLocationConvertibleLoad label)
    {
        AssemblerType::replaceWithLoad(label.dataLocation());
    }
    
    static void replaceWithAddressComputation(CodeLocationConvertibleLoad label)
    {
        AssemblerType::replaceWithAddressComputation(label.dataLocation());
    }

    template<typename Functor>
    void addLinkTask(const Functor& functor)
    {
        m_linkTasks.append(createSharedTask<void(LinkBuffer&)>(functor));
    }

protected:
    AbstractMacroAssembler()
        : m_randomSource(cryptographicallyRandomNumber())
    {
        invalidateAllTempRegisters();
    }

    uint32_t random()
    {
        return m_randomSource.getUint32();
    }

    WeakRandom m_randomSource;

#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
    Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets;
#endif

    static bool haveScratchRegisterForBlinding()
    {
        return false;
    }
    static RegisterID scratchRegisterForBlinding()
    {
        UNREACHABLE_FOR_PLATFORM();
        return firstRegister();
    }
    static bool canBlind() { return false; }
    static bool shouldBlindForSpecificArch(uint32_t) { return false; }
    static bool shouldBlindForSpecificArch(uint64_t) { return false; }

    class CachedTempRegister {
        friend class DataLabelPtr;
        friend class DataLabel32;
        friend class DataLabelCompact;
        friend class Jump;
        friend class Label;

    public:
        CachedTempRegister(AbstractMacroAssemblerType* masm, RegisterID registerID)
            : m_masm(masm)
            , m_registerID(registerID)
            , m_value(0)
            , m_validBit(1 << static_cast<unsigned>(registerID))
        {
            ASSERT(static_cast<unsigned>(registerID) < (sizeof(unsigned) * 8));
        }

        ALWAYS_INLINE RegisterID registerIDInvalidate() { invalidate(); return m_registerID; }

        ALWAYS_INLINE RegisterID registerIDNoInvalidate() { return m_registerID; }

        bool value(intptr_t& value)
        {
            value = m_value;
            return m_masm->isTempRegisterValid(m_validBit);
        }

        void setValue(intptr_t value)
        {
            m_value = value;
            m_masm->setTempRegisterValid(m_validBit);
        }

        ALWAYS_INLINE void invalidate() { m_masm->clearTempRegisterValid(m_validBit); }

    private:
        AbstractMacroAssemblerType* m_masm;
        RegisterID m_registerID;
        intptr_t m_value;
        unsigned m_validBit;
    };

    ALWAYS_INLINE void invalidateAllTempRegisters()
    {
        m_tempRegistersValidBits = 0;
    }

    ALWAYS_INLINE bool isTempRegisterValid(unsigned registerMask)
    {
        return (m_tempRegistersValidBits & registerMask);
    }

    ALWAYS_INLINE void clearTempRegisterValid(unsigned registerMask)
    {
        m_tempRegistersValidBits &=  ~registerMask;
    }

    ALWAYS_INLINE void setTempRegisterValid(unsigned registerMask)
    {
        m_tempRegistersValidBits |= registerMask;
    }

    friend class AllowMacroScratchRegisterUsage;
    friend class DisallowMacroScratchRegisterUsage;
    unsigned m_tempRegistersValidBits;
    bool m_allowScratchRegister { true };

    Vector<RefPtr<SharedTask<void(LinkBuffer&)>>> m_linkTasks;

    friend class LinkBuffer;
}; // class AbstractMacroAssembler

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // AbstractMacroAssembler_h