summaryrefslogtreecommitdiffstats
path: root/Source/WTF/wtf/dtoa.cpp
blob: 823b161b3adfc95b41d65646231697d2a892e547 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
/****************************************************************
 *
 * The author of this software is David M. Gay.
 *
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012, 2015 Apple Inc. All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose without fee is hereby granted, provided that this entire notice
 * is included in all copies of any software which is or includes a copy
 * or modification of this software and in all copies of the supporting
 * documentation for such software.
 *
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 *
 ***************************************************************/

/* Please send bug reports to David M. Gay (dmg at acm dot org,
 * with " at " changed at "@" and " dot " changed to ".").    */

/* On a machine with IEEE extended-precision registers, it is
 * necessary to specify double-precision (53-bit) rounding precision
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
 * of) Intel 80x87 arithmetic, the call
 *    _control87(PC_53, MCW_PC);
 * does this with many compilers.  Whether this or another call is
 * appropriate depends on the compiler; for this to work, it may be
 * necessary to #include "float.h" or another system-dependent header
 * file.
 */

#include "config.h"
#include "dtoa.h"

#include <stdio.h>
#include <wtf/Lock.h>
#include <wtf/MathExtras.h>
#include <wtf/Threading.h>
#include <wtf/Vector.h>

#if COMPILER(MSVC)
#pragma warning(disable: 4244)
#pragma warning(disable: 4245)
#pragma warning(disable: 4554)
#endif

#if CPU(PPC64) || CPU(X86_64) || CPU(ARM64)
// FIXME: should we enable this on all 64-bit CPUs?
// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
#define USE_LONG_LONG
#endif

namespace WTF {

static StaticLock s_dtoaP5Mutex;

typedef union {
    double d;
    uint32_t L[2];
} U;

#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
#define word0(x) (x)->L[0]
#define word1(x) (x)->L[1]
#else
#define word0(x) (x)->L[1]
#define word1(x) (x)->L[0]
#endif
#define dval(x) (x)->d

#ifndef USE_LONG_LONG
/* The following definition of Storeinc is appropriate for MIPS processors.
 * An alternative that might be better on some machines is
 *  *p++ = high << 16 | low & 0xffff;
 */
static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
{
    uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
#if CPU(BIG_ENDIAN)
    p16[0] = high;
    p16[1] = low;
#else
    p16[1] = high;
    p16[0] = low;
#endif
    return p + 1;
}

#endif // USE_LONG_LONG

#define Exp_shift  20
#define Exp_shift1 20
#define Exp_msk1    0x100000
#define Exp_msk11   0x100000
#define Exp_mask  0x7ff00000
#define P 53
#define Bias 1023
#define Emin (-1022)
#define Exp_1  0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask  0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask  0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14

#define rounded_product(a, b) a *= b
#define rounded_quotient(a, b) a /= b

#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
#define Big1 0xffffffff

struct BigInt {
    BigInt() : sign(0) { }
    int sign;

    void clear()
    {
        sign = 0;
        m_words.clear();
    }

    size_t size() const
    {
        return m_words.size();
    }

    void resize(size_t s)
    {
        m_words.resize(s);
    }

    uint32_t* words()
    {
        return m_words.data();
    }

    const uint32_t* words() const
    {
        return m_words.data();
    }

    void append(uint32_t w)
    {
        m_words.append(w);
    }

    Vector<uint32_t, 16> m_words;
};

static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
{
#ifdef USE_LONG_LONG
    unsigned long long carry;
#else
    uint32_t carry;
#endif

    int wds = b.size();
    uint32_t* x = b.words();
    int i = 0;
    carry = a;
    do {
#ifdef USE_LONG_LONG
        unsigned long long y = *x * (unsigned long long)m + carry;
        carry = y >> 32;
        *x++ = (uint32_t)y & 0xffffffffUL;
#else
        uint32_t xi = *x;
        uint32_t y = (xi & 0xffff) * m + carry;
        uint32_t z = (xi >> 16) * m + (y >> 16);
        carry = z >> 16;
        *x++ = (z << 16) + (y & 0xffff);
#endif
    } while (++i < wds);

    if (carry)
        b.append((uint32_t)carry);
}

static int hi0bits(uint32_t x)
{
    int k = 0;

    if (!(x & 0xffff0000)) {
        k = 16;
        x <<= 16;
    }
    if (!(x & 0xff000000)) {
        k += 8;
        x <<= 8;
    }
    if (!(x & 0xf0000000)) {
        k += 4;
        x <<= 4;
    }
    if (!(x & 0xc0000000)) {
        k += 2;
        x <<= 2;
    }
    if (!(x & 0x80000000)) {
        k++;
        if (!(x & 0x40000000))
            return 32;
    }
    return k;
}

static int lo0bits(uint32_t* y)
{
    int k;
    uint32_t x = *y;

    if (x & 7) {
        if (x & 1)
            return 0;
        if (x & 2) {
            *y = x >> 1;
            return 1;
        }
        *y = x >> 2;
        return 2;
    }
    k = 0;
    if (!(x & 0xffff)) {
        k = 16;
        x >>= 16;
    }
    if (!(x & 0xff)) {
        k += 8;
        x >>= 8;
    }
    if (!(x & 0xf)) {
        k += 4;
        x >>= 4;
    }
    if (!(x & 0x3)) {
        k += 2;
        x >>= 2;
    }
    if (!(x & 1)) {
        k++;
        x >>= 1;
        if (!x)
            return 32;
    }
    *y = x;
    return k;
}

static void i2b(BigInt& b, int i)
{
    b.sign = 0;
    b.resize(1);
    b.words()[0] = i;
}

static void mult(BigInt& aRef, const BigInt& bRef)
{
    const BigInt* a = &aRef;
    const BigInt* b = &bRef;
    BigInt c;
    int wa, wb, wc;
    const uint32_t* x = 0;
    const uint32_t* xa;
    const uint32_t* xb;
    const uint32_t* xae;
    const uint32_t* xbe;
    uint32_t* xc;
    uint32_t* xc0;
    uint32_t y;
#ifdef USE_LONG_LONG
    unsigned long long carry, z;
#else
    uint32_t carry, z;
#endif

    if (a->size() < b->size()) {
        const BigInt* tmp = a;
        a = b;
        b = tmp;
    }

    wa = a->size();
    wb = b->size();
    wc = wa + wb;
    c.resize(wc);

    for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
        *xc = 0;
    xa = a->words();
    xae = xa + wa;
    xb = b->words();
    xbe = xb + wb;
    xc0 = c.words();
#ifdef USE_LONG_LONG
    for (; xb < xbe; xc0++) {
        if ((y = *xb++)) {
            x = xa;
            xc = xc0;
            carry = 0;
            do {
                z = *x++ * (unsigned long long)y + *xc + carry;
                carry = z >> 32;
                *xc++ = (uint32_t)z & 0xffffffffUL;
            } while (x < xae);
            *xc = (uint32_t)carry;
        }
    }
#else
    for (; xb < xbe; xb++, xc0++) {
        if ((y = *xb & 0xffff)) {
            x = xa;
            xc = xc0;
            carry = 0;
            do {
                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
                carry = z >> 16;
                uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
                carry = z2 >> 16;
                xc = storeInc(xc, z2, z);
            } while (x < xae);
            *xc = carry;
        }
        if ((y = *xb >> 16)) {
            x = xa;
            xc = xc0;
            carry = 0;
            uint32_t z2 = *xc;
            do {
                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
                carry = z >> 16;
                xc = storeInc(xc, z, z2);
                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
                carry = z2 >> 16;
            } while (x < xae);
            *xc = z2;
        }
    }
#endif
    for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
    c.resize(wc);
    aRef = c;
}

struct P5Node {
    WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
public:
    P5Node() { }
    BigInt val;
    P5Node* next;
};

static P5Node* p5s;
static int p5sCount;

static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
{
    static const int p05[3] = { 5, 25, 125 };

    if (int i = k & 3)
        multadd(b, p05[i - 1], 0);

    if (!(k >>= 2))
        return;

    s_dtoaP5Mutex.lock();
    P5Node* p5 = p5s;

    if (!p5) {
        /* first time */
        p5 = new P5Node;
        i2b(p5->val, 625);
        p5->next = 0;
        p5s = p5;
        p5sCount = 1;
    }

    int p5sCountLocal = p5sCount;
    s_dtoaP5Mutex.unlock();
    int p5sUsed = 0;

    for (;;) {
        if (k & 1)
            mult(b, p5->val);

        if (!(k >>= 1))
            break;

        if (++p5sUsed == p5sCountLocal) {
            s_dtoaP5Mutex.lock();
            if (p5sUsed == p5sCount) {
                ASSERT(!p5->next);
                p5->next = new P5Node;
                p5->next->next = 0;
                p5->next->val = p5->val;
                mult(p5->next->val, p5->next->val);
                ++p5sCount;
            }

            p5sCountLocal = p5sCount;
            s_dtoaP5Mutex.unlock();
        }
        p5 = p5->next;
    }
}

static ALWAYS_INLINE void lshift(BigInt& b, int k)
{
    int n = k >> 5;

    int origSize = b.size();
    int n1 = n + origSize + 1;

    if (k &= 0x1f)
        b.resize(b.size() + n + 1);
    else
        b.resize(b.size() + n);

    const uint32_t* srcStart = b.words();
    uint32_t* dstStart = b.words();
    const uint32_t* src = srcStart + origSize - 1;
    uint32_t* dst = dstStart + n1 - 1;
    if (k) {
        uint32_t hiSubword = 0;
        int s = 32 - k;
        for (; src >= srcStart; --src) {
            *dst-- = hiSubword | *src >> s;
            hiSubword = *src << k;
        }
        *dst = hiSubword;
        ASSERT(dst == dstStart + n);

        b.resize(origSize + n + !!b.words()[n1 - 1]);
    }
    else {
        do {
            *--dst = *src--;
        } while (src >= srcStart);
    }
    for (dst = dstStart + n; dst != dstStart; )
        *--dst = 0;

    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
}

static int cmp(const BigInt& a, const BigInt& b)
{
    const uint32_t *xa, *xa0, *xb, *xb0;
    int i, j;

    i = a.size();
    j = b.size();
    ASSERT(i <= 1 || a.words()[i - 1]);
    ASSERT(j <= 1 || b.words()[j - 1]);
    if (i -= j)
        return i;
    xa0 = a.words();
    xa = xa0 + j;
    xb0 = b.words();
    xb = xb0 + j;
    for (;;) {
        if (*--xa != *--xb)
            return *xa < *xb ? -1 : 1;
        if (xa <= xa0)
            break;
    }
    return 0;
}

static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
{
    const BigInt* a = &aRef;
    const BigInt* b = &bRef;
    int i, wa, wb;
    uint32_t* xc;

    i = cmp(*a, *b);
    if (!i) {
        c.sign = 0;
        c.resize(1);
        c.words()[0] = 0;
        return;
    }
    if (i < 0) {
        const BigInt* tmp = a;
        a = b;
        b = tmp;
        i = 1;
    } else
        i = 0;

    wa = a->size();
    const uint32_t* xa = a->words();
    const uint32_t* xae = xa + wa;
    wb = b->size();
    const uint32_t* xb = b->words();
    const uint32_t* xbe = xb + wb;

    c.resize(wa);
    c.sign = i;
    xc = c.words();
#ifdef USE_LONG_LONG
    unsigned long long borrow = 0;
    do {
        unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
        borrow = y >> 32 & (uint32_t)1;
        *xc++ = (uint32_t)y & 0xffffffffUL;
    } while (xb < xbe);
    while (xa < xae) {
        unsigned long long y = *xa++ - borrow;
        borrow = y >> 32 & (uint32_t)1;
        *xc++ = (uint32_t)y & 0xffffffffUL;
    }
#else
    uint32_t borrow = 0;
    do {
        uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
        borrow = (y & 0x10000) >> 16;
        uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
        borrow = (z & 0x10000) >> 16;
        xc = storeInc(xc, z, y);
    } while (xb < xbe);
    while (xa < xae) {
        uint32_t y = (*xa & 0xffff) - borrow;
        borrow = (y & 0x10000) >> 16;
        uint32_t z = (*xa++ >> 16) - borrow;
        borrow = (z & 0x10000) >> 16;
        xc = storeInc(xc, z, y);
    }
#endif
    while (!*--xc)
        wa--;
    c.resize(wa);
}

static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
{
    int de, k;
    uint32_t* x;
    uint32_t y, z;
    int i;
#define d0 word0(d)
#define d1 word1(d)

    b.sign = 0;
    b.resize(1);
    x = b.words();

    z = d0 & Frac_mask;
    d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
    if ((de = (int)(d0 >> Exp_shift)))
        z |= Exp_msk1;
    if ((y = d1)) {
        if ((k = lo0bits(&y))) {
            x[0] = y | (z << (32 - k));
            z >>= k;
        } else
            x[0] = y;
        if (z) {
            b.resize(2);
            x[1] = z;
        }

        i = b.size();
    } else {
        k = lo0bits(&z);
        x[0] = z;
        i = 1;
        b.resize(1);
        k += 32;
    }
    if (de) {
        *e = de - Bias - (P - 1) + k;
        *bits = P - k;
    } else {
        *e = 0 - Bias - (P - 1) + 1 + k;
        *bits = (32 * i) - hi0bits(x[i - 1]);
    }
}
#undef d0
#undef d1

static const double tens[] = {
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
    1e20, 1e21, 1e22
};

static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };

#define Scale_Bit 0x10
#define n_bigtens 5

static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
{
    size_t n;
    uint32_t* bx;
    uint32_t* bxe;
    uint32_t q;
    uint32_t* sx;
    uint32_t* sxe;
#ifdef USE_LONG_LONG
    unsigned long long borrow, carry, y, ys;
#else
    uint32_t borrow, carry, y, ys;
    uint32_t si, z, zs;
#endif
    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
    ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);

    n = S.size();
    ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
    if (b.size() < n)
        return 0;
    sx = S.words();
    sxe = sx + --n;
    bx = b.words();
    bxe = bx + n;
    q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
    ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
    if (q) {
        borrow = 0;
        carry = 0;
        do {
#ifdef USE_LONG_LONG
            ys = *sx++ * (unsigned long long)q + carry;
            carry = ys >> 32;
            y = *bx - (ys & 0xffffffffUL) - borrow;
            borrow = y >> 32 & (uint32_t)1;
            *bx++ = (uint32_t)y & 0xffffffffUL;
#else
            si = *sx++;
            ys = (si & 0xffff) * q + carry;
            zs = (si >> 16) * q + (ys >> 16);
            carry = zs >> 16;
            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
            borrow = (y & 0x10000) >> 16;
            z = (*bx >> 16) - (zs & 0xffff) - borrow;
            borrow = (z & 0x10000) >> 16;
            bx = storeInc(bx, z, y);
#endif
        } while (sx <= sxe);
        if (!*bxe) {
            bx = b.words();
            while (--bxe > bx && !*bxe)
                --n;
            b.resize(n);
        }
    }
    if (cmp(b, S) >= 0) {
        q++;
        borrow = 0;
        carry = 0;
        bx = b.words();
        sx = S.words();
        do {
#ifdef USE_LONG_LONG
            ys = *sx++ + carry;
            carry = ys >> 32;
            y = *bx - (ys & 0xffffffffUL) - borrow;
            borrow = y >> 32 & (uint32_t)1;
            *bx++ = (uint32_t)y & 0xffffffffUL;
#else
            si = *sx++;
            ys = (si & 0xffff) + carry;
            zs = (si >> 16) + (ys >> 16);
            carry = zs >> 16;
            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
            borrow = (y & 0x10000) >> 16;
            z = (*bx >> 16) - (zs & 0xffff) - borrow;
            borrow = (z & 0x10000) >> 16;
            bx = storeInc(bx, z, y);
#endif
        } while (sx <= sxe);
        bx = b.words();
        bxe = bx + n;
        if (!*bxe) {
            while (--bxe > bx && !*bxe)
                --n;
            b.resize(n);
        }
    }
    return q;
}

/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 *
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 *
 * Modifications:
 *    1. Rather than iterating, we use a simple numeric overestimate
 *       to determine k = floor(log10(d)).  We scale relevant
 *       quantities using O(log2(k)) rather than O(k) multiplications.
 *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 *       try to generate digits strictly left to right.  Instead, we
 *       compute with fewer bits and propagate the carry if necessary
 *       when rounding the final digit up.  This is often faster.
 *    3. Under the assumption that input will be rounded nearest,
 *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 *       That is, we allow equality in stopping tests when the
 *       round-nearest rule will give the same floating-point value
 *       as would satisfaction of the stopping test with strict
 *       inequality.
 *    4. We remove common factors of powers of 2 from relevant
 *       quantities.
 *    5. When converting floating-point integers less than 1e16,
 *       we use floating-point arithmetic rather than resorting
 *       to multiple-precision integers.
 *    6. When asked to produce fewer than 15 digits, we first try
 *       to get by with floating-point arithmetic; we resort to
 *       multiple-precision integer arithmetic only if we cannot
 *       guarantee that the floating-point calculation has given
 *       the correctly rounded result.  For k requested digits and
 *       "uniformly" distributed input, the probability is
 *       something like 10^(k-15) that we must resort to the int32_t
 *       calculation.
 *
 * Note: 'leftright' translates to 'generate shortest possible string'.
 */
template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
{
    // Exactly one rounding mode must be specified.
    ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
    // roundingNone only allowed (only sensible?) with leftright set.
    ASSERT(!roundingNone || leftright);

    ASSERT(std::isfinite(dd));

    int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
        j, j1, k, k0, k_check, m2, m5, s2, s5,
        spec_case;
    int32_t L;
    int denorm;
    uint32_t x;
    BigInt b, delta, mlo, mhi, S;
    U d2, eps, u;
    double ds;
    char* s;
    char* s0;

    u.d = dd;

    /* Infinity or NaN */
    ASSERT((word0(&u) & Exp_mask) != Exp_mask);

    // JavaScript toString conversion treats -0 as 0.
    if (!dval(&u)) {
        signOut = false;
        exponentOut = 0;
        precisionOut = 1;
        result[0] = '0';
        result[1] = '\0';
        return;
    }

    if (word0(&u) & Sign_bit) {
        signOut = true;
        word0(&u) &= ~Sign_bit; // clear sign bit
    } else
        signOut = false;

    d2b(b, &u, &be, &bbits);
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
        dval(&d2) = dval(&u);
        word0(&d2) &= Frac_mask1;
        word0(&d2) |= Exp_11;

        /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
         * log10(x)     =  log(x) / log(10)
         *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
         *
         * This suggests computing an approximation k to log10(d) by
         *
         * k = (i - Bias)*0.301029995663981
         *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
         *
         * We want k to be too large rather than too small.
         * The error in the first-order Taylor series approximation
         * is in our favor, so we just round up the constant enough
         * to compensate for any error in the multiplication of
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
         * adding 1e-13 to the constant term more than suffices.
         * Hence we adjust the constant term to 0.1760912590558.
         * (We could get a more accurate k by invoking log10,
         *  but this is probably not worthwhile.)
         */

        i -= Bias;
        denorm = 0;
    } else {
        /* d is denormalized */

        i = bbits + be + (Bias + (P - 1) - 1);
        x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
                : word1(&u) << (32 - i);
        dval(&d2) = x;
        word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
        i -= (Bias + (P - 1) - 1) + 1;
        denorm = 1;
    }
    ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
    k = (int)ds;
    if (ds < 0. && ds != k)
        k--;    /* want k = floor(ds) */
    k_check = 1;
    if (k >= 0 && k <= Ten_pmax) {
        if (dval(&u) < tens[k])
            k--;
        k_check = 0;
    }
    j = bbits - i - 1;
    if (j >= 0) {
        b2 = 0;
        s2 = j;
    } else {
        b2 = -j;
        s2 = 0;
    }
    if (k >= 0) {
        b5 = 0;
        s5 = k;
        s2 += k;
    } else {
        b2 -= k;
        b5 = -k;
        s5 = 0;
    }

    if (roundingNone) {
        ilim = ilim1 = -1;
        i = 18;
        ndigits = 0;
    }
    if (roundingSignificantFigures) {
        if (ndigits <= 0)
            ndigits = 1;
        ilim = ilim1 = i = ndigits;
    }
    if (roundingDecimalPlaces) {
        i = ndigits + k + 1;
        ilim = i;
        ilim1 = i - 1;
        if (i <= 0)
            i = 1;
    }

    s = s0 = result;

    if (ilim >= 0 && ilim <= Quick_max) {
        /* Try to get by with floating-point arithmetic. */

        i = 0;
        dval(&d2) = dval(&u);
        k0 = k;
        ilim0 = ilim;
        ieps = 2; /* conservative */
        if (k > 0) {
            ds = tens[k & 0xf];
            j = k >> 4;
            if (j & Bletch) {
                /* prevent overflows */
                j &= Bletch - 1;
                dval(&u) /= bigtens[n_bigtens - 1];
                ieps++;
            }
            for (; j; j >>= 1, i++) {
                if (j & 1) {
                    ieps++;
                    ds *= bigtens[i];
                }
            }
            dval(&u) /= ds;
        } else if ((j1 = -k)) {
            dval(&u) *= tens[j1 & 0xf];
            for (j = j1 >> 4; j; j >>= 1, i++) {
                if (j & 1) {
                    ieps++;
                    dval(&u) *= bigtens[i];
                }
            }
        }
        if (k_check && dval(&u) < 1. && ilim > 0) {
            if (ilim1 <= 0)
                goto fastFailed;
            ilim = ilim1;
            k--;
            dval(&u) *= 10.;
            ieps++;
        }
        dval(&eps) = (ieps * dval(&u)) + 7.;
        word0(&eps) -= (P - 1) * Exp_msk1;
        if (!ilim) {
            S.clear();
            mhi.clear();
            dval(&u) -= 5.;
            if (dval(&u) > dval(&eps))
                goto oneDigit;
            if (dval(&u) < -dval(&eps))
                goto noDigits;
            goto fastFailed;
        }
        if (leftright) {
            /* Use Steele & White method of only
             * generating digits needed.
             */
            dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
            for (i = 0;;) {
                L = (long int)dval(&u);
                dval(&u) -= L;
                *s++ = '0' + (int)L;
                if (dval(&u) < dval(&eps))
                    goto ret;
                if (1. - dval(&u) < dval(&eps))
                    goto bumpUp;
                if (++i >= ilim)
                    break;
                dval(&eps) *= 10.;
                dval(&u) *= 10.;
            }
        } else {
            /* Generate ilim digits, then fix them up. */
            dval(&eps) *= tens[ilim - 1];
            for (i = 1;; i++, dval(&u) *= 10.) {
                L = (int32_t)(dval(&u));
                if (!(dval(&u) -= L))
                    ilim = i;
                *s++ = '0' + (int)L;
                if (i == ilim) {
                    if (dval(&u) > 0.5 + dval(&eps))
                        goto bumpUp;
                    if (dval(&u) < 0.5 - dval(&eps)) {
                        while (*--s == '0') { }
                        s++;
                        goto ret;
                    }
                    break;
                }
            }
        }
fastFailed:
        s = s0;
        dval(&u) = dval(&d2);
        k = k0;
        ilim = ilim0;
    }

    /* Do we have a "small" integer? */

    if (be >= 0 && k <= Int_max) {
        /* Yes. */
        ds = tens[k];
        if (ndigits < 0 && ilim <= 0) {
            S.clear();
            mhi.clear();
            if (ilim < 0 || dval(&u) <= 5 * ds)
                goto noDigits;
            goto oneDigit;
        }
        for (i = 1;; i++, dval(&u) *= 10.) {
            L = (int32_t)(dval(&u) / ds);
            dval(&u) -= L * ds;
            *s++ = '0' + (int)L;
            if (!dval(&u)) {
                break;
            }
            if (i == ilim) {
                dval(&u) += dval(&u);
                if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
bumpUp:
                    while (*--s == '9')
                        if (s == s0) {
                            k++;
                            *s = '0';
                            break;
                        }
                    ++*s++;
                }
                break;
            }
        }
        goto ret;
    }

    m2 = b2;
    m5 = b5;
    mhi.clear();
    mlo.clear();
    if (leftright) {
        i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
        b2 += i;
        s2 += i;
        i2b(mhi, 1);
    }
    if (m2 > 0 && s2 > 0) {
        i = m2 < s2 ? m2 : s2;
        b2 -= i;
        m2 -= i;
        s2 -= i;
    }
    if (b5 > 0) {
        if (leftright) {
            if (m5 > 0) {
                pow5mult(mhi, m5);
                mult(b, mhi);
            }
            if ((j = b5 - m5))
                pow5mult(b, j);
        } else
            pow5mult(b, b5);
    }
    i2b(S, 1);
    if (s5 > 0)
        pow5mult(S, s5);

    /* Check for special case that d is a normalized power of 2. */

    spec_case = 0;
    if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
        /* The special case */
        b2 += Log2P;
        s2 += Log2P;
        spec_case = 1;
    }

    /* Arrange for convenient computation of quotients:
     * shift left if necessary so divisor has 4 leading 0 bits.
     *
     * Perhaps we should just compute leading 28 bits of S once
     * and for all and pass them and a shift to quorem, so it
     * can do shifts and ors to compute the numerator for q.
     */
    if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
        i = 32 - i;
    if (i > 4) {
        i -= 4;
        b2 += i;
        m2 += i;
        s2 += i;
    } else if (i < 4) {
        i += 28;
        b2 += i;
        m2 += i;
        s2 += i;
    }
    if (b2 > 0)
        lshift(b, b2);
    if (s2 > 0)
        lshift(S, s2);
    if (k_check) {
        if (cmp(b, S) < 0) {
            k--;
            multadd(b, 10, 0);    /* we botched the k estimate */
            if (leftright)
                multadd(mhi, 10, 0);
            ilim = ilim1;
        }
    }
    if (ilim <= 0 && roundingDecimalPlaces) {
        if (ilim < 0)
            goto noDigits;
        multadd(S, 5, 0);
        // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
        if (cmp(b, S) < 0)
            goto noDigits;
        goto oneDigit;
    }
    if (leftright) {
        if (m2 > 0)
            lshift(mhi, m2);

        /* Compute mlo -- check for special case
         * that d is a normalized power of 2.
         */

        mlo = mhi;
        if (spec_case)
            lshift(mhi, Log2P);

        for (i = 1;;i++) {
            dig = quorem(b, S) + '0';
            /* Do we yet have the shortest decimal string
             * that will round to d?
             */
            j = cmp(b, mlo);
            diff(delta, S, mhi);
            j1 = delta.sign ? 1 : cmp(b, delta);
#ifdef DTOA_ROUND_BIASED
            if (j < 0 || !j) {
#else
            // FIXME: ECMA-262 specifies that equidistant results round away from
            // zero, which probably means we shouldn't be on the unbiased code path
            // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
            // yet understood this code well enough to make the call, but we should
            // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
            // case to understand is probably "Math.pow(0.5, 24).toString()".
            // I believe this value is interesting because I think it is precisely
            // representable in binary floating point, and its decimal representation
            // has a single digit that Steele & White reduction can remove, with the
            // value 5 (thus equidistant from the next numbers above and below).
            // We produce the correct answer using either codepath, and I don't as
            // yet understand why. :-)
            if (!j1 && !(word1(&u) & 1)) {
                if (dig == '9')
                    goto round9up;
                if (j > 0)
                    dig++;
                *s++ = dig;
                goto ret;
            }
            if (j < 0 || (!j && !(word1(&u) & 1))) {
#endif
                if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
                    lshift(b, 1);
                    j1 = cmp(b, S);
                    // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
                    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
                    // be rounded away from zero.
                    if (j1 >= 0) {
                        if (dig == '9')
                            goto round9up;
                        dig++;
                    }
                }
                *s++ = dig;
                goto ret;
            }
            if (j1 > 0) {
                if (dig == '9') { /* possible if i == 1 */
round9up:
                    *s++ = '9';
                    goto roundoff;
                }
                *s++ = dig + 1;
                goto ret;
            }
            *s++ = dig;
            if (i == ilim)
                break;
            multadd(b, 10, 0);
            multadd(mlo, 10, 0);
            multadd(mhi, 10, 0);
        }
    } else {
        for (i = 1;; i++) {
            *s++ = dig = quorem(b, S) + '0';
            if (!b.words()[0] && b.size() <= 1)
                goto ret;
            if (i >= ilim)
                break;
            multadd(b, 10, 0);
        }
    }

    /* Round off last digit */

    lshift(b, 1);
    j = cmp(b, S);
    // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
    // be rounded away from zero.
    if (j >= 0) {
roundoff:
        while (*--s == '9')
            if (s == s0) {
                k++;
                *s++ = '1';
                goto ret;
            }
        ++*s++;
    } else {
        while (*--s == '0') { }
        s++;
    }
    goto ret;
noDigits:
    exponentOut = 0;
    precisionOut = 1;
    result[0] = '0';
    result[1] = '\0';
    return;
oneDigit:
    *s++ = '1';
    k++;
    goto ret;
ret:
    ASSERT(s > result);
    *s = 0;
    exponentOut = k;
    precisionOut = s - result;
}

void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
{
    // flags are roundingNone, leftright.
    dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
}

void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
{
    // flag is roundingSignificantFigures.
    dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
}

void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
{
    // flag is roundingDecimalPlaces.
    dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
}

const char* numberToString(double d, NumberToStringBuffer buffer)
{
    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
    converter.ToShortest(d, &builder);
    return builder.Finalize();
}

static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
{
    size_t length = builder.position();
    size_t decimalPointPosition = 0;
    for (; decimalPointPosition < length; ++decimalPointPosition) {
        if (buffer[decimalPointPosition] == '.')
            break;
    }

    // No decimal seperator found, early exit.
    if (decimalPointPosition == length)
        return builder.Finalize();

    size_t truncatedLength = length - 1;
    for (; truncatedLength > decimalPointPosition; --truncatedLength) {
        if (buffer[truncatedLength] != '0')
            break;
    }

    // No trailing zeros found to strip.
    if (truncatedLength == length - 1)
        return builder.Finalize();

    // If we removed all trailing zeros, remove the decimal point as well.
    if (truncatedLength == decimalPointPosition) {
        ASSERT(truncatedLength > 0);
        --truncatedLength;
    }

    // Truncate the StringBuilder, and return the final result.
    builder.SetPosition(truncatedLength + 1);
    return builder.Finalize();
}

const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
{
    // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
    // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
    // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
    // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
    // "precision": The precision specifies the maximum number of significant digits printed.
    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
    converter.ToPrecision(d, significantFigures, &builder);
    if (!truncateTrailingZeros)
        return builder.Finalize();
    return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
}

const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
{
    // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
    // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits.
    // The number of digits before the decimal point depends on the magnitude of the number, and
    // the number of digits after the decimal point depends on the requested precision.
    // "precision": The precision value specifies the number of digits after the decimal point.
    // If a decimal point appears, at least one digit appears before it.
    // The value is rounded to the appropriate number of digits.    
    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
    converter.ToFixed(d, decimalPlaces, &builder);
    return builder.Finalize();
}

namespace Internal {

double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
{
    Vector<LChar> conversionBuffer(length);
    for (size_t i = 0; i < length; ++i)
        conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
    return parseDouble(conversionBuffer.data(), length, parsedLength);
}

} // namespace Internal

} // namespace WTF