summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/image-decoders/png/PNGImageDecoder.cpp
blob: a0c2e47c71a819145a62ed5aae655c7566a4cfc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
/*
 * Copyright (C) 2006 Apple Inc.
 * Copyright (C) 2007-2009 Torch Mobile, Inc.
 * Copyright (C) Research In Motion Limited 2009-2010. All rights reserved.
 *
 * Portions are Copyright (C) 2001 mozilla.org
 *
 * Other contributors:
 *   Stuart Parmenter <stuart@mozilla.com>
 *   Max Stepin <maxstepin@gmail.com>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Alternatively, the contents of this file may be used under the terms
 * of either the Mozilla Public License Version 1.1, found at
 * http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public
 * License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html
 * (the "GPL"), in which case the provisions of the MPL or the GPL are
 * applicable instead of those above.  If you wish to allow use of your
 * version of this file only under the terms of one of those two
 * licenses (the MPL or the GPL) and not to allow others to use your
 * version of this file under the LGPL, indicate your decision by
 * deletingthe provisions above and replace them with the notice and
 * other provisions required by the MPL or the GPL, as the case may be.
 * If you do not delete the provisions above, a recipient may use your
 * version of this file under any of the LGPL, the MPL or the GPL.
 */

#include "config.h"
#include "PNGImageDecoder.h"

#include "Color.h"
#include <png.h>
#include <wtf/StdLibExtras.h>

#if USE(QCMSLIB)
#include <qcms.h>
#endif

#if defined(PNG_LIBPNG_VER_MAJOR) && defined(PNG_LIBPNG_VER_MINOR) && (PNG_LIBPNG_VER_MAJOR > 1 || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 4))
#define JMPBUF(png_ptr) png_jmpbuf(png_ptr)
#else
#define JMPBUF(png_ptr) png_ptr->jmpbuf
#endif

namespace WebCore {

// Gamma constants.
const double cMaxGamma = 21474.83;
const double cDefaultGamma = 2.2;
const double cInverseGamma = 0.45455;

// Protect against large PNGs. See Mozilla's bug #251381 for more info.
const unsigned long cMaxPNGSize = 1000000UL;

// Called if the decoding of the image fails.
static NO_RETURN void PNGAPI decodingFailed(png_structp, png_const_charp);
static void PNGAPI decodingFailed(png_structp png, png_const_charp)
{
    longjmp(JMPBUF(png), 1);
}

// Callbacks given to the read struct.  The first is for warnings (we want to
// treat a particular warning as an error, which is why we have to register this
// callback).
static void PNGAPI decodingWarning(png_structp png, png_const_charp warningMsg)
{
    // Mozilla did this, so we will too.
    // Convert a tRNS warning to be an error (see
    // http://bugzilla.mozilla.org/show_bug.cgi?id=251381 )
    if (!strncmp(warningMsg, "Missing PLTE before tRNS", 24))
        png_error(png, warningMsg);
}

// Called when we have obtained the header information (including the size).
static void PNGAPI headerAvailable(png_structp png, png_infop)
{
    static_cast<PNGImageDecoder*>(png_get_progressive_ptr(png))->headerAvailable();
}

// Called when a row is ready.
static void PNGAPI rowAvailable(png_structp png, png_bytep rowBuffer, png_uint_32 rowIndex, int interlacePass)
{
    static_cast<PNGImageDecoder*>(png_get_progressive_ptr(png))->rowAvailable(rowBuffer, rowIndex, interlacePass);
}

// Called when we have completely finished decoding the image.
static void PNGAPI pngComplete(png_structp png, png_infop)
{
    static_cast<PNGImageDecoder*>(png_get_progressive_ptr(png))->pngComplete();
}

#if ENABLE(APNG)
// Called when we have the frame header.
static void PNGAPI frameHeader(png_structp png, png_infop)
{
    static_cast<PNGImageDecoder*>(png_get_progressive_ptr(png))->frameHeader();
}

// Called when we found user chunks.
static int PNGAPI readChunks(png_structp png, png_unknown_chunkp chunk)
{
    static_cast<PNGImageDecoder*>(png_get_user_chunk_ptr(png))->readChunks(chunk);
    return 1;
}
#endif

class PNGImageReader {
    WTF_MAKE_FAST_ALLOCATED;
public:
    PNGImageReader(PNGImageDecoder* decoder)
        : m_readOffset(0)
        , m_currentBufferSize(0)
        , m_decodingSizeOnly(false)
        , m_hasAlpha(false)
        , m_interlaceBuffer(0)
#if USE(QCMSLIB)
        , m_transform(0)
        , m_rowBuffer()
#endif
    {
        m_png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, decodingFailed, decodingWarning);
        m_info = png_create_info_struct(m_png);
        png_set_progressive_read_fn(m_png, decoder, headerAvailable, rowAvailable, pngComplete);
#if ENABLE(APNG)
        png_byte apngChunks[]= {"acTL\0fcTL\0fdAT\0"};
        png_set_keep_unknown_chunks(m_png, 1, apngChunks, 3);
        png_set_read_user_chunk_fn(m_png, static_cast<png_voidp>(decoder), readChunks);
        decoder->init();
#endif
    }

    ~PNGImageReader()
    {
        close();
    }

    void close()
    {
        if (m_png && m_info)
            // This will zero the pointers.
            png_destroy_read_struct(&m_png, &m_info, 0);
#if USE(QCMSLIB)
        if (m_transform)
            qcms_transform_release(m_transform);
        m_transform = 0;
#endif
        delete[] m_interlaceBuffer;
        m_interlaceBuffer = 0;
        m_readOffset = 0;
    }

    bool decode(const SharedBuffer& data, bool sizeOnly, unsigned haltAtFrame)
    {
        m_decodingSizeOnly = sizeOnly;
        PNGImageDecoder* decoder = static_cast<PNGImageDecoder*>(png_get_progressive_ptr(m_png));

        // We need to do the setjmp here. Otherwise bad things will happen.
        if (setjmp(JMPBUF(m_png)))
            return decoder->setFailed();

        const char* segment;
        while (unsigned segmentLength = data.getSomeData(segment, m_readOffset)) {
            m_readOffset += segmentLength;
            m_currentBufferSize = m_readOffset;
            png_process_data(m_png, m_info, reinterpret_cast<png_bytep>(const_cast<char*>(segment)), segmentLength);
            // We explicitly specify the superclass isSizeAvailable() because we
            // merely want to check if we've managed to set the size, not
            // (recursively) trigger additional decoding if we haven't.
            if (sizeOnly ? decoder->ImageDecoder::isSizeAvailable() : decoder->isCompleteAtIndex(haltAtFrame))
                return true;
        }
        return false;
    }

    png_structp pngPtr() const { return m_png; }
    png_infop infoPtr() const { return m_info; }

    void setReadOffset(unsigned offset) { m_readOffset = offset; }
    unsigned currentBufferSize() const { return m_currentBufferSize; }
    bool decodingSizeOnly() const { return m_decodingSizeOnly; }
    void setHasAlpha(bool hasAlpha) { m_hasAlpha = hasAlpha; }
    bool hasAlpha() const { return m_hasAlpha; }

    png_bytep interlaceBuffer() const { return m_interlaceBuffer; }
    void createInterlaceBuffer(int size) { m_interlaceBuffer = new png_byte[size]; }
#if USE(QCMSLIB)
    png_bytep rowBuffer() const { return m_rowBuffer.get(); }
    void createRowBuffer(int size) { m_rowBuffer = std::make_unique<png_byte[]>(size); }
    qcms_transform* colorTransform() const { return m_transform; }

    void createColorTransform(const ColorProfile& colorProfile, bool hasAlpha)
    {
        if (m_transform)
            qcms_transform_release(m_transform);
        m_transform = 0;

        if (colorProfile.isEmpty())
            return;
        qcms_profile* deviceProfile = ImageDecoder::qcmsOutputDeviceProfile();
        if (!deviceProfile)
            return;
        qcms_profile* inputProfile = qcms_profile_from_memory(colorProfile.data(), colorProfile.size());
        if (!inputProfile)
            return;
        // We currently only support color profiles for RGB and RGBA images.
        ASSERT(icSigRgbData == qcms_profile_get_color_space(inputProfile));
        qcms_data_type dataFormat = hasAlpha ? QCMS_DATA_RGBA_8 : QCMS_DATA_RGB_8;
        // FIXME: Don't force perceptual intent if the image profile contains an intent.
        m_transform = qcms_transform_create(inputProfile, dataFormat, deviceProfile, dataFormat, QCMS_INTENT_PERCEPTUAL);
        qcms_profile_release(inputProfile);
    }
#endif

private:
    png_structp m_png;
    png_infop m_info;
    unsigned m_readOffset;
    unsigned m_currentBufferSize;
    bool m_decodingSizeOnly;
    bool m_hasAlpha;
    png_bytep m_interlaceBuffer;
#if USE(QCMSLIB)
    qcms_transform* m_transform;
    std::unique_ptr<png_byte[]> m_rowBuffer;
#endif
};

PNGImageDecoder::PNGImageDecoder(ImageSource::AlphaOption alphaOption, ImageSource::GammaAndColorProfileOption gammaAndColorProfileOption)
    : ImageDecoder(alphaOption, gammaAndColorProfileOption)
    , m_doNothingOnFailure(false)
    , m_currentFrame(0)
#if ENABLE(APNG)
    , m_png(nullptr)
    , m_info(nullptr)
    , m_isAnimated(false)
    , m_frameInfo(false)
    , m_frameIsHidden(false)
    , m_hasInfo(false)
    , m_gamma(45455)
    , m_frameCount(1)
    , m_playCount(0)
    , m_totalFrames(0)
    , m_sizePLTE(0)
    , m_sizetRNS(0)
    , m_sequenceNumber(0)
    , m_width(0)
    , m_height(0)
    , m_xOffset(0)
    , m_yOffset(0)
    , m_delayNumerator(1)
    , m_delayDenominator(1)
    , m_dispose(0)
    , m_blend(0)
#endif
{
}

PNGImageDecoder::~PNGImageDecoder()
{
}

bool PNGImageDecoder::isSizeAvailable()
{
    if (!ImageDecoder::isSizeAvailable())
        decode(true, 0);

    return ImageDecoder::isSizeAvailable();
}

bool PNGImageDecoder::setSize(unsigned width, unsigned height)
{
    if (!ImageDecoder::setSize(width, height))
        return false;

    prepareScaleDataIfNecessary();
    return true;
}

ImageFrame* PNGImageDecoder::frameBufferAtIndex(size_t index)
{
#if ENABLE(APNG)
    if (!isSizeAvailable())
        return nullptr;

    if (index >= frameCount())
        index = frameCount() - 1;
#else
    if (index)
        return nullptr;
#endif

    if (m_frameBufferCache.isEmpty()) {
        m_frameBufferCache.resize(1);
        m_frameBufferCache[0].setPremultiplyAlpha(m_premultiplyAlpha);
    }

    ImageFrame& frame = m_frameBufferCache[index];
    if (frame.status() != ImageFrame::FrameComplete)
        decode(false, index);
    return &frame;
}

bool PNGImageDecoder::setFailed()
{
    if (m_doNothingOnFailure)
        return false;
    m_reader = nullptr;
    return ImageDecoder::setFailed();
}

static void readColorProfile(png_structp png, png_infop info, ColorProfile& colorProfile)
{
    ASSERT(colorProfile.isEmpty());

#ifdef PNG_iCCP_SUPPORTED
    char* profileName;
    int compressionType;
#if (PNG_LIBPNG_VER < 10500)
    png_charp profile;
#else
    png_bytep profile;
#endif
    png_uint_32 profileLength;
    if (!png_get_iCCP(png, info, &profileName, &compressionType, &profile, &profileLength))
        return;

    // Only accept RGB color profiles from input class devices.
    bool ignoreProfile = false;
    char* profileData = reinterpret_cast<char*>(profile);
    if (profileLength < ImageDecoder::iccColorProfileHeaderLength)
        ignoreProfile = true;
    else if (!ImageDecoder::rgbColorProfile(profileData, profileLength))
        ignoreProfile = true;
    else if (!ImageDecoder::inputDeviceColorProfile(profileData, profileLength))
        ignoreProfile = true;

    if (!ignoreProfile)
        colorProfile.append(profileData, profileLength);
#endif
}

void PNGImageDecoder::headerAvailable()
{
    png_structp png = m_reader->pngPtr();
    png_infop info = m_reader->infoPtr();
    png_uint_32 width = png_get_image_width(png, info);
    png_uint_32 height = png_get_image_height(png, info);

    // Protect against large images.
    if (width > cMaxPNGSize || height > cMaxPNGSize) {
        longjmp(JMPBUF(png), 1);
        return;
    }

    // We can fill in the size now that the header is available.  Avoid memory
    // corruption issues by neutering setFailed() during this call; if we don't
    // do this, failures will cause |m_reader| to be deleted, and our jmpbuf
    // will cease to exist.  Note that we'll still properly set the failure flag
    // in this case as soon as we longjmp().
    m_doNothingOnFailure = true;
    bool result = setSize(width, height);
    m_doNothingOnFailure = false;
    if (!result) {
        longjmp(JMPBUF(png), 1);
        return;
    }

    int bitDepth, colorType, interlaceType, compressionType, filterType, channels;
    png_get_IHDR(png, info, &width, &height, &bitDepth, &colorType, &interlaceType, &compressionType, &filterType);

    // The options we set here match what Mozilla does.

#if ENABLE(APNG)
    m_hasInfo = true;
    if (m_isAnimated) {
        png_save_uint_32(m_dataIHDR, 13);
        memcpy(m_dataIHDR + 4, "IHDR", 4);
        png_save_uint_32(m_dataIHDR + 8, width);
        png_save_uint_32(m_dataIHDR + 12, height);
        m_dataIHDR[16] = bitDepth;
        m_dataIHDR[17] = colorType;
        m_dataIHDR[18] = compressionType;
        m_dataIHDR[19] = filterType;
        m_dataIHDR[20] = interlaceType;
    }
#endif

    // Expand to ensure we use 24-bit for RGB and 32-bit for RGBA.
    if (colorType == PNG_COLOR_TYPE_PALETTE) {
#if ENABLE(APNG)
        if (m_isAnimated) {
            png_colorp palette;
            int paletteSize = 0;
            png_get_PLTE(png, info, &palette, &paletteSize);
            paletteSize *= 3;
            png_save_uint_32(m_dataPLTE, paletteSize);
            memcpy(m_dataPLTE + 4, "PLTE", 4);
            memcpy(m_dataPLTE + 8, palette, paletteSize);
            m_sizePLTE = paletteSize + 12;
        }
#endif
        png_set_expand(png);
    }

    if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8)
        png_set_expand(png);

    png_bytep trns = 0;
    int trnsCount = 0;
    png_color_16p transValues;
    if (png_get_valid(png, info, PNG_INFO_tRNS)) {
        png_get_tRNS(png, info, &trns, &trnsCount, &transValues);
#if ENABLE(APNG)
        if (m_isAnimated) {
            if (colorType == PNG_COLOR_TYPE_RGB) {
                png_save_uint_16(m_datatRNS + 8, transValues->red);
                png_save_uint_16(m_datatRNS + 10, transValues->green);
                png_save_uint_16(m_datatRNS + 12, transValues->blue);
                trnsCount = 6;
            } else if (colorType == PNG_COLOR_TYPE_GRAY) {
                png_save_uint_16(m_datatRNS + 8, transValues->gray);
                trnsCount = 2;
            } else if (colorType == PNG_COLOR_TYPE_PALETTE)
                memcpy(m_datatRNS + 8, trns, trnsCount);

            png_save_uint_32(m_datatRNS, trnsCount);
            memcpy(m_datatRNS + 4, "tRNS", 4);
            m_sizetRNS = trnsCount + 12;
        }
#endif
        png_set_expand(png);
    }

    if (bitDepth == 16)
        png_set_strip_16(png);

    if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA)
        png_set_gray_to_rgb(png);

    if ((colorType & PNG_COLOR_MASK_COLOR) && !m_ignoreGammaAndColorProfile) {
        // We only support color profiles for color PALETTE and RGB[A] PNG. Supporting
        // color profiles for gray-scale images is slightly tricky, at least using the
        // CoreGraphics ICC library, because we expand gray-scale images to RGB but we
        // do not similarly transform the color profile. We'd either need to transform
        // the color profile or we'd need to decode into a gray-scale image buffer and
        // hand that to CoreGraphics.
        readColorProfile(png, info, m_colorProfile);
#if USE(QCMSLIB)
        bool decodedImageHasAlpha = (colorType & PNG_COLOR_MASK_ALPHA) || trnsCount;
        m_reader->createColorTransform(m_colorProfile, decodedImageHasAlpha);
        m_colorProfile.clear();
#endif
    }

    // Deal with gamma and keep it under our control.
    double gamma;
    if (!m_ignoreGammaAndColorProfile && png_get_gAMA(png, info, &gamma)) {
        if ((gamma <= 0.0) || (gamma > cMaxGamma)) {
            gamma = cInverseGamma;
            png_set_gAMA(png, info, gamma);
        }
        png_set_gamma(png, cDefaultGamma, gamma);
#if ENABLE(APNG)
        m_gamma = static_cast<int>(gamma * 100000);
#endif
    } else
        png_set_gamma(png, cDefaultGamma, cInverseGamma);

    // Tell libpng to send us rows for interlaced pngs.
    if (interlaceType == PNG_INTERLACE_ADAM7)
        png_set_interlace_handling(png);

    // Update our info now.
    png_read_update_info(png, info);
    channels = png_get_channels(png, info);
    ASSERT(channels == 3 || channels == 4);

    m_reader->setHasAlpha(channels == 4);

    if (m_reader->decodingSizeOnly()) {
        // If we only needed the size, halt the reader.
#if defined(PNG_LIBPNG_VER_MAJOR) && defined(PNG_LIBPNG_VER_MINOR) && (PNG_LIBPNG_VER_MAJOR > 1 || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 5))
        // '0' argument to png_process_data_pause means: Do not cache unprocessed data.
        m_reader->setReadOffset(m_reader->currentBufferSize() - png_process_data_pause(png, 0));
#else
        m_reader->setReadOffset(m_reader->currentBufferSize() - png->buffer_size);
        png->buffer_size = 0;
#endif
    }
}

static inline void setPixelRGB(ImageFrame::PixelData* dest, png_bytep pixel)
{
    *dest = 0xFF000000U | pixel[0] << 16 | pixel[1] << 8 | pixel[2];
}

static inline void setPixelRGBA(ImageFrame::PixelData* dest, png_bytep pixel, unsigned char& nonTrivialAlphaMask)
{
    unsigned char a = pixel[3];
    *dest = a << 24 | pixel[0] << 16 | pixel[1] << 8 | pixel[2];
    nonTrivialAlphaMask |= (255 - a);
}

static inline void setPixelPremultipliedRGBA(ImageFrame::PixelData* dest, png_bytep pixel, unsigned char& nonTrivialAlphaMask)
{
    unsigned char a = pixel[3];
    unsigned char r = fastDivideBy255(pixel[0] * a);
    unsigned char g = fastDivideBy255(pixel[1] * a);
    unsigned char b = fastDivideBy255(pixel[2] * a);

    *dest = a << 24 | r << 16 | g << 8 | b;
    nonTrivialAlphaMask |= (255 - a);
}

void PNGImageDecoder::rowAvailable(unsigned char* rowBuffer, unsigned rowIndex, int)
{
    if (m_frameBufferCache.isEmpty())
        return;

    // Initialize the framebuffer if needed.
#if ENABLE(APNG)
    if (m_currentFrame >= frameCount())
        return;
#endif
    ImageFrame& buffer = m_frameBufferCache[m_currentFrame];
    if (buffer.status() == ImageFrame::FrameEmpty) {
        png_structp png = m_reader->pngPtr();
        if (!buffer.setSize(scaledSize().width(), scaledSize().height())) {
            longjmp(JMPBUF(png), 1);
            return;
        }

        unsigned colorChannels = m_reader->hasAlpha() ? 4 : 3;
        if (PNG_INTERLACE_ADAM7 == png_get_interlace_type(png, m_reader->infoPtr())
            || m_currentFrame) {
            if (!m_reader->interlaceBuffer())
                m_reader->createInterlaceBuffer(colorChannels * size().width() * size().height());
            if (!m_reader->interlaceBuffer()) {
                longjmp(JMPBUF(png), 1);
                return;
            }
        }

#if USE(QCMSLIB)
        if (m_reader->colorTransform() && !m_currentFrame) {
            m_reader->createRowBuffer(colorChannels * size().width());
            if (!m_reader->rowBuffer()) {
                longjmp(JMPBUF(png), 1);
                return;
            }
        }
#endif
        buffer.setStatus(ImageFrame::FramePartial);
        buffer.setHasAlpha(false);
        buffer.setColorProfile(m_colorProfile);

#if ENABLE(APNG)
        if (m_currentFrame)
            initFrameBuffer(m_currentFrame);
        else
#endif
        // For PNGs, the frame always fills the entire image.
        buffer.setOriginalFrameRect(IntRect(IntPoint(), size()));
    }

    /* libpng comments (here to explain what follows).
     *
     * this function is called for every row in the image.  If the
     * image is interlacing, and you turned on the interlace handler,
     * this function will be called for every row in every pass.
     * Some of these rows will not be changed from the previous pass.
     * When the row is not changed, the new_row variable will be NULL.
     * The rows and passes are called in order, so you don't really
     * need the row_num and pass, but I'm supplying them because it
     * may make your life easier.
     */

    // Nothing to do if the row is unchanged, or the row is outside
    // the image bounds: libpng may send extra rows, ignore them to
    // make our lives easier.
    if (!rowBuffer)
        return;
    int y = !m_scaled ? rowIndex : scaledY(rowIndex);
    if (y < 0 || y >= scaledSize().height())
        return;

    /* libpng comments (continued).
     *
     * For the non-NULL rows of interlaced images, you must call
     * png_progressive_combine_row() passing in the row and the
     * old row.  You can call this function for NULL rows (it will
     * just return) and for non-interlaced images (it just does the
     * memcpy for you) if it will make the code easier.  Thus, you
     * can just do this for all cases:
     *
     *    png_progressive_combine_row(png_ptr, old_row, new_row);
     *
     * where old_row is what was displayed for previous rows.  Note
     * that the first pass (pass == 0 really) will completely cover
     * the old row, so the rows do not have to be initialized.  After
     * the first pass (and only for interlaced images), you will have
     * to pass the current row, and the function will combine the
     * old row and the new row.
     */

    bool hasAlpha = m_reader->hasAlpha();
    unsigned colorChannels = hasAlpha ? 4 : 3;
    png_bytep row = rowBuffer;

    if (png_bytep interlaceBuffer = m_reader->interlaceBuffer()) {
        row = interlaceBuffer + (rowIndex * colorChannels * size().width());
#if ENABLE(APNG)
        if (m_currentFrame) {
            png_progressive_combine_row(m_png, row, rowBuffer);
            return; // Only do incremental image display for the first frame.
        }
#endif
        png_progressive_combine_row(m_reader->pngPtr(), row, rowBuffer);
    }

#if USE(QCMSLIB)
    if (qcms_transform* transform = m_reader->colorTransform()) {
        qcms_transform_data(transform, row, m_reader->rowBuffer(), size().width());
        row = m_reader->rowBuffer();
    }
#endif

    // Write the decoded row pixels to the frame buffer.
    ImageFrame::PixelData* address = buffer.getAddr(0, y);
    int width = scaledSize().width();
    unsigned char nonTrivialAlphaMask = 0;

#if ENABLE(IMAGE_DECODER_DOWN_SAMPLING)
    if (m_scaled) {
        for (int x = 0; x < width; ++x) {
            png_bytep pixel = row + m_scaledColumns[x] * colorChannels;
            unsigned alpha = hasAlpha ? pixel[3] : 255;
            buffer.setRGBA(address++, pixel[0], pixel[1], pixel[2], alpha);
            nonTrivialAlphaMask |= (255 - alpha);
        }
    } else
#endif
    {
        png_bytep pixel = row;
        if (hasAlpha) {
            if (buffer.premultiplyAlpha()) {
                for (int x = 0; x < width; ++x, pixel += 4)
                    setPixelPremultipliedRGBA(address++, pixel, nonTrivialAlphaMask);
            } else {
                for (int x = 0; x < width; ++x, pixel += 4)
                    setPixelRGBA(address++, pixel, nonTrivialAlphaMask);
            }
        } else {
            for (int x = 0; x < width; ++x, pixel += 3)
                setPixelRGB(address++, pixel);
        }
    }


    if (nonTrivialAlphaMask && !buffer.hasAlpha())
        buffer.setHasAlpha(true);
}

void PNGImageDecoder::pngComplete()
{
#if ENABLE(APNG)
    if (m_isAnimated) {
        if (!processingFinish() && m_frameCount == m_currentFrame)
            return;

        fallbackNotAnimated();
    }
#endif
    if (!m_frameBufferCache.isEmpty())
        m_frameBufferCache.first().setStatus(ImageFrame::FrameComplete);
}

void PNGImageDecoder::decode(bool onlySize, unsigned haltAtFrame)
{
    if (failed())
        return;

    if (!m_reader)
        m_reader = std::make_unique<PNGImageReader>(this);

    // If we couldn't decode the image but we've received all the data, decoding
    // has failed.
    if (!m_reader->decode(*m_data, onlySize, haltAtFrame) && isAllDataReceived())
        setFailed();
    // If we're done decoding the image, we don't need the PNGImageReader
    // anymore.  (If we failed, |m_reader| has already been cleared.)
    else if (isComplete())
        m_reader = nullptr;
}

#if ENABLE(APNG)
void PNGImageDecoder::readChunks(png_unknown_chunkp chunk)
{
    if (!memcmp(chunk->name, "acTL", 4) && chunk->size == 8) {
        if (m_hasInfo || m_isAnimated)
            return;

        m_frameCount = png_get_uint_32(chunk->data);
        m_playCount = png_get_uint_32(chunk->data + 4);

        if (!m_frameCount || m_frameCount > PNG_UINT_31_MAX || m_playCount > PNG_UINT_31_MAX) {
            fallbackNotAnimated();
            return;
        }

        m_isAnimated = true;
        if (!m_frameInfo)
            m_frameIsHidden = true;

        if (m_frameBufferCache.size() == m_frameCount)
            return;

        m_frameBufferCache.resize(m_frameCount);
        for (auto& imageFrame : m_frameBufferCache)
            imageFrame.setPremultiplyAlpha(m_premultiplyAlpha);
    } else if (!memcmp(chunk->name, "fcTL", 4) && chunk->size == 26) {
        if (m_hasInfo && !m_isAnimated)
            return;

        m_frameInfo = false;

        if (processingFinish()) {
            fallbackNotAnimated();
            return;
        }

        // At this point the old frame is done. Let's start a new one.
        unsigned sequenceNumber = png_get_uint_32(chunk->data);
        if (sequenceNumber != m_sequenceNumber++) {
            fallbackNotAnimated();
            return;
        }

        m_width = png_get_uint_32(chunk->data + 4);
        m_height = png_get_uint_32(chunk->data + 8);
        m_xOffset = png_get_uint_32(chunk->data + 12);
        m_yOffset = png_get_uint_32(chunk->data + 16);
        m_delayNumerator = png_get_uint_16(chunk->data + 20);
        m_delayDenominator = png_get_uint_16(chunk->data + 22);
        m_dispose = chunk->data[24];
        m_blend = chunk->data[25];

        png_structp png = m_reader->pngPtr();
        png_infop info = m_reader->infoPtr();
        png_uint_32 width = png_get_image_width(png, info);
        png_uint_32 height = png_get_image_height(png, info);

        if (m_width > cMaxPNGSize || m_height > cMaxPNGSize
            || m_xOffset > cMaxPNGSize || m_yOffset > cMaxPNGSize
            || m_xOffset + m_width > width
            || m_yOffset + m_height > height
            || m_dispose > 2 || m_blend > 1) {
            fallbackNotAnimated();
            return;
        }

        if (m_frameBufferCache.isEmpty()) {
            m_frameBufferCache.resize(1);
            m_frameBufferCache[0].setPremultiplyAlpha(m_premultiplyAlpha);
        }

        if (m_currentFrame < m_frameBufferCache.size()) {
            ImageFrame& buffer = m_frameBufferCache[m_currentFrame];

            if (!m_delayDenominator)
                buffer.setDuration(m_delayNumerator * 10);
            else
                buffer.setDuration(m_delayNumerator * 1000 / m_delayDenominator);

            if (m_dispose == 2)
                buffer.setDisposalMethod(ImageFrame::DisposeOverwritePrevious);
            else if (m_dispose == 1)
                buffer.setDisposalMethod(ImageFrame::DisposeOverwriteBgcolor);
            else
                buffer.setDisposalMethod(ImageFrame::DisposeKeep);
        }

        m_frameInfo = true;
        m_frameIsHidden = false;

        if (processingStart(chunk)) {
            fallbackNotAnimated();
            return;
        }
    } else if (!memcmp(chunk->name, "fdAT", 4) && chunk->size >= 4) {
        if (!m_frameInfo || !m_isAnimated)
            return;

        unsigned sequenceNumber = png_get_uint_32(chunk->data);
        if (sequenceNumber != m_sequenceNumber++) {
            fallbackNotAnimated();
            return;
        }

        if (setjmp(JMPBUF(m_png))) {
            fallbackNotAnimated();
            return;
        }

        png_save_uint_32(chunk->data, chunk->size - 4);
        png_process_data(m_png, m_info, chunk->data, 4);
        memcpy(chunk->data, "IDAT", 4);
        png_process_data(m_png, m_info, chunk->data, chunk->size);
        png_process_data(m_png, m_info, chunk->data, 4);
    }
}

void PNGImageDecoder::frameHeader()
{
    int colorType = png_get_color_type(m_png, m_info);

    if (colorType == PNG_COLOR_TYPE_PALETTE)
        png_set_expand(m_png);

    int bitDepth = png_get_bit_depth(m_png, m_info);
    if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8)
        png_set_expand(m_png);

    if (png_get_valid(m_png, m_info, PNG_INFO_tRNS))
        png_set_expand(m_png);

    if (bitDepth == 16)
        png_set_strip_16(m_png);

    if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA)
        png_set_gray_to_rgb(m_png);

    double gamma;
    if (png_get_gAMA(m_png, m_info, &gamma))
        png_set_gamma(m_png, cDefaultGamma, gamma);

    png_set_interlace_handling(m_png);

    png_read_update_info(m_png, m_info);
}

void PNGImageDecoder::init()
{
    m_isAnimated = false;
    m_frameInfo = false;
    m_frameIsHidden = false;
    m_hasInfo = false;
    m_currentFrame = 0;
    m_totalFrames = 0;
    m_sequenceNumber = 0;
}

void PNGImageDecoder::clearFrameBufferCache(size_t clearBeforeFrame)
{
    if (m_frameBufferCache.isEmpty())
        return;

    // See GIFImageDecoder for full explanation.
    clearBeforeFrame = std::min(clearBeforeFrame, m_frameBufferCache.size() - 1);
    const Vector<ImageFrame>::iterator end(m_frameBufferCache.begin() + clearBeforeFrame);

    Vector<ImageFrame>::iterator i(end);
    for (; (i != m_frameBufferCache.begin()) && ((i->status() == ImageFrame::FrameEmpty) || (i->disposalMethod() == ImageFrame::DisposeOverwritePrevious)); --i) {
        if ((i->status() == ImageFrame::FrameComplete) && (i != end))
            i->clearPixelData();
    }

    // Now |i| holds the last frame we need to preserve; clear prior frames.
    for (Vector<ImageFrame>::iterator j(m_frameBufferCache.begin()); j != i; ++j) {
        ASSERT(j->status() != ImageFrame::FramePartial);
        if (j->status() != ImageFrame::FrameEmpty)
            j->clearPixelData();
    }
}

void PNGImageDecoder::initFrameBuffer(size_t frameIndex)
{
    if (frameIndex >= frameCount())
        return;

    IntRect frameRect(m_xOffset, m_yOffset, m_width, m_height);

    // Make sure the frameRect doesn't extend outside the buffer.
    if (frameRect.maxX() > size().width())
        frameRect.setWidth(size().width() - m_xOffset);
    if (frameRect.maxY() > size().height())
        frameRect.setHeight(size().height() - m_yOffset);

    ImageFrame& buffer = m_frameBufferCache[frameIndex];
    int left = upperBoundScaledX(frameRect.x());
    int right = lowerBoundScaledX(frameRect.maxX(), left);
    int top = upperBoundScaledY(frameRect.y());
    int bottom = lowerBoundScaledY(frameRect.maxY(), top);
    buffer.setOriginalFrameRect(IntRect(left, top, right - left, bottom - top));

    // The starting state for this frame depends on the previous frame's
    // disposal method.
    //
    // Frames that use the DisposeOverwritePrevious method are effectively
    // no-ops in terms of changing the starting state of a frame compared to
    // the starting state of the previous frame, so skip over them.  (If the
    // first frame specifies this method, it will get treated like
    // DisposeOverwriteBgcolor below and reset to a completely empty image.)
    const ImageFrame* prevBuffer = &m_frameBufferCache[--frameIndex];
    ImageFrame::FrameDisposalMethod prevMethod = prevBuffer->disposalMethod();
    while (frameIndex && (prevMethod == ImageFrame::DisposeOverwritePrevious)) {
        prevBuffer = &m_frameBufferCache[--frameIndex];
        prevMethod = prevBuffer->disposalMethod();
    }
    ASSERT(prevBuffer->status() == ImageFrame::FrameComplete);

    if (prevMethod == ImageFrame::DisposeKeep) {
        // Preserve the last frame as the starting state for this frame.
        buffer.copyBitmapData(*prevBuffer);
    } else {
        // We want to clear the previous frame to transparent, without
        // affecting pixels in the image outside of the frame.
        const IntRect& prevRect = prevBuffer->originalFrameRect();
        if (!frameIndex || prevRect.contains(IntRect(IntPoint(), scaledSize()))) {
            // Clearing the first frame, or a frame the size of the whole
            // image, results in a completely empty image.
            buffer.zeroFillPixelData();
        } else {
            // Copy the whole previous buffer, then clear just its frame.
            buffer.copyBitmapData(*prevBuffer);
            buffer.zeroFillFrameRect(prevRect);
        }
    }
}

void PNGImageDecoder::frameComplete()
{
    if (m_frameIsHidden || m_currentFrame >= frameCount())
        return;

    ImageFrame& buffer = m_frameBufferCache[m_currentFrame];
    buffer.setStatus(ImageFrame::FrameComplete);

    png_bytep interlaceBuffer = m_reader->interlaceBuffer();

    if (m_currentFrame && interlaceBuffer) {
        const IntRect& rect = buffer.originalFrameRect();
        bool hasAlpha = m_reader->hasAlpha();
        unsigned colorChannels = hasAlpha ? 4 : 3;
        bool nonTrivialAlpha = false;
        if (m_blend && !hasAlpha)
            m_blend = 0;

#if ENABLE(IMAGE_DECODER_DOWN_SAMPLING)
        for (int y = 0; y < rect.maxY() - rect.y(); ++y) {
            png_bytep row = interlaceBuffer + (m_scaled ? m_scaledRows[y] : y) * colorChannels * size().width();
#if USE(QCMSLIB)
            if (qcms_transform* transform = m_reader->colorTransform()) {
                qcms_transform_data(transform, row, m_reader->rowBuffer(), size().width());
                row = m_reader->rowBuffer();
            }
#endif
            ImageFrame::PixelData* address = buffer.getAddr(rect.x(), y + rect.y());
            for (int x = 0; x < rect.maxX() - rect.x(); ++x) {
                png_bytep pixel = row + (m_scaled ? m_scaledColumns[x] : x) * colorChannels;
                unsigned alpha = hasAlpha ? pixel[3] : 255;
                nonTrivialAlpha |= alpha < 255;
                if (!m_blend)
                    buffer.setRGBA(address++, pixel[0], pixel[1], pixel[2], alpha);
                else
                    buffer.overRGBA(address++, pixel[0], pixel[1], pixel[2], alpha);
            }
        }
#else
        ASSERT(!m_scaled);
        png_bytep row = interlaceBuffer;
        for (int y = rect.y(); y < rect.maxY(); ++y, row += colorChannels * size().width()) {
            png_bytep pixel = row;
#if USE(QCMSLIB)
            if (qcms_transform* transform = m_reader->colorTransform()) {
                qcms_transform_data(transform, row, m_reader->rowBuffer(), size().width());
                pixel = m_reader->rowBuffer();
            }
#endif
            ImageFrame::PixelData* address = buffer.getAddr(rect.x(), y);
            for (int x = rect.x(); x < rect.maxX(); ++x, pixel += colorChannels) {
                unsigned alpha = hasAlpha ? pixel[3] : 255;
                nonTrivialAlpha |= alpha < 255;
                if (!m_blend)
                    buffer.setRGBA(address++, pixel[0], pixel[1], pixel[2], alpha);
                else
                    buffer.overRGBA(address++, pixel[0], pixel[1], pixel[2], alpha);
            }
        }
#endif

        if (!nonTrivialAlpha) {
            if (buffer.originalFrameRect().contains(IntRect(IntPoint(), scaledSize())))
                buffer.setHasAlpha(false);
            else {
                size_t frameIndex = m_currentFrame;
                const ImageFrame* prevBuffer = &m_frameBufferCache[--frameIndex];
                while (frameIndex && (prevBuffer->disposalMethod() == ImageFrame::DisposeOverwritePrevious))
                    prevBuffer = &m_frameBufferCache[--frameIndex];
                if ((prevBuffer->disposalMethod() == ImageFrame::DisposeOverwriteBgcolor)
                    && !prevBuffer->hasAlpha() && buffer.originalFrameRect().contains(prevBuffer->originalFrameRect()))
                    buffer.setHasAlpha(false);
            }
        } else if (!m_blend && !buffer.hasAlpha())
            buffer.setHasAlpha(nonTrivialAlpha);
    }
    m_currentFrame++;
}

int PNGImageDecoder::processingStart(png_unknown_chunkp chunk)
{
    static png_byte dataPNG[8] = {137, 80, 78, 71, 13, 10, 26, 10};
    static png_byte datagAMA[16] = {0, 0, 0, 4, 103, 65, 77, 65};

    if (!m_hasInfo)
        return 0;

    m_totalFrames++;

    m_png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, decodingFailed, 0);
    m_info = png_create_info_struct(m_png);
    if (setjmp(JMPBUF(m_png)))
        return 1;

    png_set_crc_action(m_png, PNG_CRC_QUIET_USE, PNG_CRC_QUIET_USE);
    png_set_progressive_read_fn(m_png, static_cast<png_voidp>(this),
        WebCore::frameHeader, WebCore::rowAvailable, 0);

    memcpy(m_dataIHDR + 8, chunk->data + 4, 8);
    png_save_uint_32(datagAMA + 8, m_gamma);

    png_process_data(m_png, m_info, dataPNG, 8);
    png_process_data(m_png, m_info, m_dataIHDR, 25);
    png_process_data(m_png, m_info, datagAMA, 16);
    if (m_sizePLTE > 0)
        png_process_data(m_png, m_info, m_dataPLTE, m_sizePLTE);
    if (m_sizetRNS > 0)
        png_process_data(m_png, m_info, m_datatRNS, m_sizetRNS);

    return 0;
}

int PNGImageDecoder::processingFinish()
{
    static png_byte dataIEND[12] = {0, 0, 0, 0, 73, 69, 78, 68, 174, 66, 96, 130};

    if (!m_hasInfo)
        return 0;

    if (m_totalFrames) {
        if (setjmp(JMPBUF(m_png)))
            return 1;

        png_process_data(m_png, m_info, dataIEND, 12);
        png_destroy_read_struct(&m_png, &m_info, 0);
    }

    frameComplete();
    return 0;
}

void PNGImageDecoder::fallbackNotAnimated()
{
    m_isAnimated = false;
    m_frameCount = 1;
    m_playCount = 0;
    m_currentFrame = 0;
    m_frameBufferCache.resize(1);
}
#endif

} // namespace WebCore