summaryrefslogtreecommitdiffstats
path: root/src/Runtime/ogl-runtime/res/effectlib/SMAA.glsllib
diff options
context:
space:
mode:
Diffstat (limited to 'src/Runtime/ogl-runtime/res/effectlib/SMAA.glsllib')
m---------src/Runtime/ogl-runtime0
-rw-r--r--src/Runtime/ogl-runtime/res/effectlib/SMAA.glsllib1444
2 files changed, 0 insertions, 1444 deletions
diff --git a/src/Runtime/ogl-runtime b/src/Runtime/ogl-runtime
new file mode 160000
+Subproject 2025912174c4cf99270b7439ec3b021e1d089ae
diff --git a/src/Runtime/ogl-runtime/res/effectlib/SMAA.glsllib b/src/Runtime/ogl-runtime/res/effectlib/SMAA.glsllib
deleted file mode 100644
index 97e0153a..00000000
--- a/src/Runtime/ogl-runtime/res/effectlib/SMAA.glsllib
+++ /dev/null
@@ -1,1444 +0,0 @@
-/****************************************************************************
-**
-** Copyright (C) 2014 NVIDIA Corporation.
-** Copyright (C) 2017 The Qt Company Ltd.
-** Contact: https://www.qt.io/licensing/
-**
-** This file is part of Qt 3D Studio.
-**
-** $QT_BEGIN_LICENSE:GPL$
-** Commercial License Usage
-** Licensees holding valid commercial Qt licenses may use this file in
-** accordance with the commercial license agreement provided with the
-** Software or, alternatively, in accordance with the terms contained in
-** a written agreement between you and The Qt Company. For licensing terms
-** and conditions see https://www.qt.io/terms-conditions. For further
-** information use the contact form at https://www.qt.io/contact-us.
-**
-** GNU General Public License Usage
-** Alternatively, this file may be used under the terms of the GNU
-** General Public License version 3 or (at your option) any later version
-** approved by the KDE Free Qt Foundation. The licenses are as published by
-** the Free Software Foundation and appearing in the file LICENSE.GPL3
-** included in the packaging of this file. Please review the following
-** information to ensure the GNU General Public License requirements will
-** be met: https://www.gnu.org/licenses/gpl-3.0.html.
-**
-** $QT_END_LICENSE$
-**
-****************************************************************************/
-
-/**
- * Copyright (C) 2011 Jorge Jimenez (jorge@iryoku.com)
- * Copyright (C) 2011 Jose I. Echevarria (joseignacioechevarria@gmail.com)
- * Copyright (C) 2011 Belen Masia (bmasia@unizar.es)
- * Copyright (C) 2011 Fernando Navarro (fernandn@microsoft.com)
- * Copyright (C) 2011 Diego Gutierrez (diegog@unizar.es)
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution:
- *
- * "Uses SMAA. Copyright (C) 2011 by Jorge Jimenez, Jose I. Echevarria,
- * Tiago Sousa, Belen Masia, Fernando Navarro and Diego Gutierrez."
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
- * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- *
- * The views and conclusions contained in the software and documentation are
- * those of the authors and should not be interpreted as representing official
- * policies, either expressed or implied, of the copyright holders.
- */
-
-
-/**
- * _______ ___ ___ ___ ___
- * / || \/ | / \ / \
- * | (---- | \ / | / ^ \ / ^ \
- * \ \ | |\/| | / /_\ \ / /_\ \
- * ----) | | | | | / _____ \ / _____ \
- * |_______/ |__| |__| /__/ \__\ /__/ \__\
- *
- * E N H A N C E D
- * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
- *
- * http://www.iryoku.com/smaa/
- *
- * Hi, welcome aboard!
- *
- * Here you'll find instructions to get the shader up and running as fast as
- * possible.
- *
- * IMPORTANTE NOTICE: when updating, remember to update both this file and the
- * precomputed textures! They may change from version to version.
- *
- * The shader has three passes, chained together as follows:
- *
- * |input|------------------
- * v |
- * [ SMAA*EdgeDetection ] |
- * v |
- * |edgesTex| |
- * v |
- * [ SMAABlendingWeightCalculation ] |
- * v |
- * |blendTex| |
- * v |
- * [ SMAANeighborhoodBlending ] <------
- * v
- * |output|
- *
- * Note that each [pass] has its own vertex and pixel shader.
- *
- * You've three edge detection methods to choose from: luma, color or depth.
- * They represent different quality/performance and anti-aliasing/sharpness
- * tradeoffs, so our recommendation is for you to choose the one that best
- * suits your particular scenario:
- *
- * - Depth edge detection is usually the fastest but it may miss some edges.
- *
- * - Luma edge detection is usually more expensive than depth edge detection,
- * but catches visible edges that depth edge detection can miss.
- *
- * - Color edge detection is usually the most expensive one but catches
- * chroma-only edges.
- *
- * For quickstarters: just use luma edge detection.
- *
- * The general advice is to not rush the integration process and ensure each
- * step is done correctly (don't try to integrate SMAA T2x with predicated edge
- * detection from the start!). Ok then, let's go!
- *
- * 1. The first step is to create two RGBA temporal framebuffers for holding
- * |edgesTex| and |blendTex|.
- *
- * In DX10, you can use a RG framebuffer for the edges texture, but in our
- * experience it yields worse performance.
- *
- * On the Xbox 360, you can use the same framebuffer for resolving both
- * |edgesTex| and |blendTex|, as they aren't needed simultaneously.
- *
- * 2. Both temporal framebuffers |edgesTex| and |blendTex| must be cleared
- * each frame. Do not forget to clear the alpha channel!
- *
- * 3. The next step is loading the two supporting precalculated textures,
- * 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as
- * C++ headers, and also as regular DDS files. They'll be needed for the
- * 'SMAABlendingWeightCalculation' pass.
- *
- * If you use the C++ headers, be sure to load them in the format specified
- * inside of them.
- *
- * 4. In DX9, all samplers must be set to linear filtering and clamp, with the
- * exception of 'searchTex', which must be set to point filtering.
- *
- * 5. All texture reads and buffer writes must be non-sRGB, with the exception
- * of the input read and the output write of input in
- * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
- * this last pass are not possible, the technique will work anyway, but
- * will perform antialiasing in gamma space.
- *
- * IMPORTANT: for best results the input read for the color/luma edge
- * detection should *NOT* be sRGB.
- *
- * 6. Before including SMAA.h you'll have to setup the framebuffer pixel size,
- * the target and any optional configuration defines. Optionally you can
- * use a preset.
- *
- * You have three targets available:
- * SMAA_HLSL_3
- * SMAA_HLSL_4
- * SMAA_HLSL_4_1
- * SMAA_GLSL_3 *
- * SMAA_GLSL_4 *
- *
- * * (See SMAA_ONLY_COMPILE_VS below).
- *
- * And four presets:
- * SMAA_PRESET_LOW (%60 of the quality)
- * SMAA_PRESET_MEDIUM (%80 of the quality)
- * SMAA_PRESET_HIGH (%95 of the quality)
- * SMAA_PRESET_ULTRA (%99 of the quality)
- *
- * For example:
- * #define SMAA_PIXEL_SIZE float2(1.0 / 1280.0, 1.0 / 720.0)
- * #define SMAA_HLSL_4 1
- * #define SMAA_PRESET_HIGH 1
- * include "SMAA.h"
- *
- * 7. Then, you'll have to setup the passes as indicated in the scheme above.
- * You can take a look into SMAA.fx, to see how we did it for our demo.
- * Checkout the function wrappers, you may want to copy-paste them!
- *
- * 8. It's recommended to validate the produced |edgesTex| and |blendTex|.
- * It's advised to not continue with the implementation until both buffers
- * are verified to produce identical results to our reference demo.
- *
- * 9. After you get the last pass to work, it's time to optimize. You'll have
- * to initialize a stencil buffer in the first pass (discard is already in
- * the code), then mask execution by using it the second pass. The last
- * pass should be executed in all pixels.
- *
- *
- * After this point you can choose to enable predicated thresholding,
- * temporal supersampling and motion blur integration:
- *
- * a) If you want to use predicated thresholding, take a look into
- * SMAA_PREDICATION; you'll need to pass an extra texture in the edge
- * detection pass.
- *
- * b) If you want to enable temporal supersampling (SMAA T2x):
- *
- * 1. The first step is to render using subpixel jitters. I won't go into
- * detail, but it's as simple as moving each vertex position in the
- * vertex shader, you can check how we do it in our DX10 demo.
- *
- * 2. Then, you must setup the temporal resolve. You may want to take a look
- * into SMAAResolve for resolving 2x modes. After you get it working, you'll
- * probably see ghosting everywhere. But fear not, you can enable the
- * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
- *
- * 3. The next step is to apply SMAA to each subpixel jittered frame, just as
- * done for 1x.
- *
- * 4. At this point you should already have something usable, but for best
- * results the proper area textures must be set depending on current jitter.
- * For this, the parameter 'subsampleIndices' of
- * 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x
- * mode:
- *
- * @SUBSAMPLE_INDICES
- *
- * | S# | Camera Jitter | subsampleIndices |
- * +----+------------------+--------------------+
- * | 0 | ( 0.25, -0.25) | int4(1, 1, 1, 0) |
- * | 1 | (-0.25, 0.25) | int4(2, 2, 2, 0) |
- *
- * These jitter positions assume a bottom-to-top y axis. S# stands for the
- * sample number.
- *
- * More information about temporal supersampling here:
- * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
- *
- * c) If you want to enable spatial multisampling (SMAA S2x):
- *
- * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
- * created with:
- * - DX10: see below (*)
- * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or
- * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN
- *
- * This allows to ensure that the subsample order matches the table in
- * @SUBSAMPLE_INDICES.
- *
- * (*) In the case of DX10, we refer the reader to:
- * - SMAA::detectMSAAOrder and
- * - SMAA::msaaReorder
- *
- * These functions allow to match the standard multisample patterns by
- * detecting the subsample order for a specific GPU, and reordering
- * them appropriately.
- *
- * 2. A shader must be run to output each subsample into a separate buffer
- * (DX10 is required). You can use SMAASeparate for this purpose, or just do
- * it in an existing pass (for example, in the tone mapping pass).
- *
- * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
- * the results in the final buffer. The second run should alpha blend with
- * the existing final buffer using a blending factor of 0.5.
- * 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point
- * b).
- *
- * d) If you want to enable temporal supersampling on top of SMAA S2x
- * (which actually is SMAA 4x):
- *
- * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
- * to calculate SMAA S2x for current frame. In this case, 'subsampleIndices'
- * must be set as follows:
- *
- * | F# | S# | Camera Jitter | Net Jitter | subsampleIndices |
- * +----+----+--------------------+-------------------+--------------------+
- * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | int4(5, 3, 1, 3) |
- * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | int4(4, 6, 2, 3) |
- * +----+----+--------------------+-------------------+--------------------+
- * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | int4(3, 5, 1, 4) |
- * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | int4(6, 4, 2, 4) |
- *
- * These jitter positions assume a bottom-to-top y axis. F# stands for the
- * frame number. S# stands for the sample number.
- *
- * 2. After calculating SMAA S2x for current frame (with the new subsample
- * indices), previous frame must be reprojected as in SMAA T2x mode (see
- * point b).
- *
- * e) If motion blur is used, you may want to do the edge detection pass
- * together with motion blur. This has two advantages:
- *
- * 1. Pixels under heavy motion can be omitted from the edge detection process.
- * For these pixels we can just store "no edge", as motion blur will take
- * care of them.
- * 2. The center pixel tap is reused.
- *
- * Note that in this case depth testing should be used instead of stenciling,
- * as we have to write all the pixels in the motion blur pass.
- *
- * That's it!
- */
-
-//-----------------------------------------------------------------------------
-// SMAA Presets
-
-/**
- * Note that if you use one of these presets, the corresponding macros below
- * won't be used.
- */
-
-#if SMAA_PRESET_LOW == 1
-#define SMAA_THRESHOLD 0.15
-#define SMAA_MAX_SEARCH_STEPS 4
-#define SMAA_MAX_SEARCH_STEPS_DIAG 0
-#define SMAA_CORNER_ROUNDING 100
-#elif SMAA_PRESET_MEDIUM == 1
-#define SMAA_THRESHOLD 0.1
-#define SMAA_MAX_SEARCH_STEPS 8
-#define SMAA_MAX_SEARCH_STEPS_DIAG 0
-#define SMAA_CORNER_ROUNDING 100
-#elif SMAA_PRESET_HIGH == 1
-#define SMAA_THRESHOLD 0.1
-#define SMAA_MAX_SEARCH_STEPS 16
-#define SMAA_MAX_SEARCH_STEPS_DIAG 8
-#define SMAA_CORNER_ROUNDING 25
-#elif SMAA_PRESET_ULTRA == 1
-#define SMAA_THRESHOLD 0.05
-#define SMAA_MAX_SEARCH_STEPS 32
-#define SMAA_MAX_SEARCH_STEPS_DIAG 16
-#define SMAA_CORNER_ROUNDING 25
-#endif
-
-//-----------------------------------------------------------------------------
-// Configurable Defines
-
-/**
- * SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
- * Lowering this value you will be able to detect more edges at the expense of
- * performance.
- *
- * Range: [0, 0.5]
- * 0.1 is a reasonable value, and allows to catch most visible edges.
- * 0.05 is a rather overkill value, that allows to catch 'em all.
- *
- * If temporal supersampling is used, 0.2 could be a reasonable value, as low
- * contrast edges are properly filtered by just 2x.
- */
-#ifndef SMAA_THRESHOLD
-#define SMAA_THRESHOLD 0.1
-#endif
-
-/**
- * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
- *
- * Range: depends on the depth range of the scene.
- */
-#ifndef SMAA_DEPTH_THRESHOLD
-#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
-#endif
-
-/**
- * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
- * horizontal/vertical pattern searches, at each side of the pixel.
- *
- * In number of pixels, it's actually the double. So the maximum line length
- * perfectly handled by, for example 16, is 64 (by perfectly, we meant that
- * longer lines won't look as good, but still antialiased).
- *
- * Range: [0, 98]
- */
-#ifndef SMAA_MAX_SEARCH_STEPS
-#define SMAA_MAX_SEARCH_STEPS 16
-#endif
-
-/**
- * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
- * diagonal pattern searches, at each side of the pixel. In this case we jump
- * one pixel at time, instead of two.
- *
- * Range: [0, 20]; set it to 0 to disable diagonal processing.
- *
- * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
- * steps), but it can have a significant impact on older machines.
- */
-#ifndef SMAA_MAX_SEARCH_STEPS_DIAG
-#define SMAA_MAX_SEARCH_STEPS_DIAG 8
-#endif
-
-/**
- * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
- *
- * Range: [0, 100]; set it to 100 to disable corner detection.
- */
-#ifndef SMAA_CORNER_ROUNDING
-#define SMAA_CORNER_ROUNDING 25
-#endif
-
-/**
- * Predicated thresholding allows to better preserve texture details and to
- * improve performance, by decreasing the number of detected edges using an
- * additional buffer like the light accumulation buffer, object ids or even the
- * depth buffer (the depth buffer usage may be limited to indoor or short range
- * scenes).
- *
- * It locally decreases the luma or color threshold if an edge is found in an
- * additional buffer (so the global threshold can be higher).
- *
- * This method was developed by Playstation EDGE MLAA team, and used in
- * Killzone 3, by using the light accumulation buffer. More information here:
- * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
- */
-#ifndef SMAA_PREDICATION
-#define SMAA_PREDICATION 0
-#endif
-
-/**
- * Threshold to be used in the additional predication buffer.
- *
- * Range: depends on the input, so you'll have to find the magic number that
- * works for you.
- */
-#ifndef SMAA_PREDICATION_THRESHOLD
-#define SMAA_PREDICATION_THRESHOLD 0.01
-#endif
-
-/**
- * How much to scale the global threshold used for luma or color edge
- * detection when using predication.
- *
- * Range: [1, 5]
- */
-#ifndef SMAA_PREDICATION_SCALE
-#define SMAA_PREDICATION_SCALE 2.0
-#endif
-
-/**
- * How much to locally decrease the threshold.
- *
- * Range: [0, 1]
- */
-#ifndef SMAA_PREDICATION_STRENGTH
-#define SMAA_PREDICATION_STRENGTH 0.4
-#endif
-
-/**
- * Temporal reprojection allows to remove ghosting artifacts when using
- * temporal supersampling. We use the CryEngine 3 method which also introduces
- * velocity weighting. This feature is of extreme importance for totally
- * removing ghosting. More information here:
- * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
- *
- * Note that you'll need to setup a velocity buffer for enabling reprojection.
- * For static geometry, saving the previous depth buffer is a viable
- * alternative.
- */
-#ifndef SMAA_REPROJECTION
-#define SMAA_REPROJECTION 0
-#endif
-
-/**
- * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
- * remove ghosting trails behind the moving object, which are not removed by
- * just using reprojection. Using low values will exhibit ghosting, while using
- * high values will disable temporal supersampling under motion.
- *
- * Behind the scenes, velocity weighting removes temporal supersampling when
- * the velocity of the subsamples differs (meaning they are different objects).
- *
- * Range: [0, 80]
- */
-#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
-
-/**
- * In the last pass we leverage bilinear filtering to avoid some lerps.
- * However, bilinear filtering is done in gamma space in DX9, under DX9
- * hardware (but not in DX9 code running on DX10 hardware), which gives
- * inaccurate results.
- *
- * So, if you are in DX9, under DX9 hardware, and do you want accurate linear
- * blending, you must set this flag to 1.
- *
- * It's ignored when using SMAA_HLSL_4, and of course, only has sense when
- * using sRGB read and writes on the last pass.
- */
-#ifndef SMAA_DIRECTX9_LINEAR_BLEND
-#define SMAA_DIRECTX9_LINEAR_BLEND 0
-#endif
-
-/**
- * On ATI compilers, discard cannot be used in vertex shaders. Thus, they need
- * to be compiled separately. These macros allow to easily accomplish it.
- */
-#ifndef SMAA_ONLY_COMPILE_VS
-#define SMAA_ONLY_COMPILE_VS 0
-#endif
-#ifndef SMAA_ONLY_COMPILE_PS
-#define SMAA_ONLY_COMPILE_PS 0
-#endif
-
-//-----------------------------------------------------------------------------
-// Non-Configurable Defines
-
-#ifndef SMAA_AREATEX_MAX_DISTANCE
-#define SMAA_AREATEX_MAX_DISTANCE 16
-#endif
-#ifndef SMAA_AREATEX_MAX_DISTANCE_DIAG
-#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
-#endif
-#define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0))
-#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
-
-//-----------------------------------------------------------------------------
-// Porting Functions
-
-#if SMAA_HLSL_3 == 1
-#define SMAATexture2D sampler2D
-#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
-#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
-#define SMAASample(tex, coord) tex2D(tex, coord)
-#define SMAASamplePoint(tex, coord) tex2D(tex, coord)
-#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_PIXEL_SIZE, 0.0, 0.0))
-#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_PIXEL_SIZE)
-#define SMAALerp(a, b, t) lerp(a, b, t)
-#define SMAASaturate(a) saturate(a)
-#define SMAAMad(a, b, c) mad(a, b, c)
-#define SMAA_FLATTEN [flatten]
-#define SMAA_BRANCH [branch]
-#endif
-#if SMAA_HLSL_4 == 1 || SMAA_HLSL_4_1 == 1
-SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
-SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
-#define SMAATexture2D Texture2D
-#define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
-#define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0)
-#define SMAASample(tex, coord) SMAASampleLevelZero(tex, coord)
-#define SMAASamplePoint(tex, coord) SMAASampleLevelZeroPoint(tex, coord)
-#define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset)
-#define SMAASampleOffset(tex, coord, offset) SMAASampleLevelZeroOffset(tex, coord, offset)
-#define SMAALerp(a, b, t) lerp(a, b, t)
-#define SMAASaturate(a) saturate(a)
-#define SMAAMad(a, b, c) mad(a, b, c)
-#define SMAA_FLATTEN [flatten]
-#define SMAA_BRANCH [branch]
-#define SMAATexture2DMS2 Texture2DMS<float4, 2>
-#define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
-#endif
-#if SMAA_HLSL_4_1 == 1
-#define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0)
-#endif
-#if SMAA_GLSL_3 == 1 || SMAA_GLSL_4 == 1
-#define SMAATexture2D sampler2D
-#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
-#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
-#define SMAASample(tex, coord) texture(tex, coord)
-#define SMAASamplePoint(tex, coord) texture(tex, coord)
-#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
-#define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
-#define SMAALerp(a, b, t) mix(a, b, t)
-#define SMAASaturate(a) clamp(a, 0.0, 1.0)
-#define SMAA_FLATTEN
-#define SMAA_BRANCH
-#define float2 vec2
-#define float3 vec3
-#define float4 vec4
-#define int2 ivec2
-#define int3 ivec3
-#define int4 ivec4
-#endif
-#if SMAA_GLSL_3 == 1
-#define SMAAMad(a, b, c) (a * b + c)
-#endif
-#if SMAA_GLSL_4 == 1
-#define SMAAMad(a, b, c) fma(a, b, c)
-#define SMAAGather(tex, coord) textureGather(tex, coord)
-#endif
-
-//-----------------------------------------------------------------------------
-// Misc functions
-
-/**
- * Gathers current pixel, and the top-left neighbors.
- */
-float3 SMAAGatherNeighbors(float2 texcoord,
- float4 offset[3],
- SMAATexture2D tex) {
- #if SMAA_HLSL_4_1 == 1 || SMAA_GLSL_4 == 1
- return SMAAGather(tex, texcoord + SMAA_PIXEL_SIZE * float2(-0.5, -0.5)).grb;
- #else
- float P = SMAASample(tex, texcoord).r;
- float Pleft = SMAASample(tex, offset[0].xy).r;
- float Ptop = SMAASample(tex, offset[0].zw).r;
- return float3(P, Pleft, Ptop);
- #endif
-}
-
-/**
- * Adjusts the threshold by means of predication.
- */
-float2 SMAACalculatePredicatedThreshold(float2 texcoord,
- float4 offset[3],
- SMAATexture2D colorTex,
- SMAATexture2D predicationTex) {
- float3 neighbors = SMAAGatherNeighbors(texcoord, offset, predicationTex);
- float2 delta = abs(neighbors.xx - neighbors.yz);
- float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta);
- return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);
-}
-
-#if SMAA_ONLY_COMPILE_PS == 0
-//-----------------------------------------------------------------------------
-// Vertex Shaders
-
-/**
- * Edge Detection Vertex Shader
- */
-void SMAAEdgeDetectionVS(float4 position,
- out float4 svPosition,
- in float2 texcoord,
- out float4 offset[3]) {
- svPosition = position;
-
- offset[0] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-1.0, 0.0, 0.0, -1.0);
- offset[1] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4( 1.0, 0.0, 0.0, 1.0);
- offset[2] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-2.0, 0.0, 0.0, -2.0);
-}
-
-/**
- * Blend Weight Calculation Vertex Shader
- */
-void SMAABlendingWeightCalculationVS(float4 position,
- out float4 svPosition,
- inout float2 texcoord,
- out float2 pixcoord,
- out float4 offset[3]) {
- svPosition = position;
-
- pixcoord = texcoord / SMAA_PIXEL_SIZE;
-
- // We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
- offset[0] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-0.25, -0.125, 1.25, -0.125);
- offset[1] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-0.125, -0.25, -0.125, 1.25);
-
- // And these for the searches, they indicate the ends of the loops:
- offset[2] = float4(offset[0].xz, offset[1].yw) +
- float4(-2.0, 2.0, -2.0, 2.0) *
- SMAA_PIXEL_SIZE.xxyy * float(SMAA_MAX_SEARCH_STEPS);
-}
-
-/**
- * Neighborhood Blending Vertex Shader
- */
-void SMAANeighborhoodBlendingVS(float4 position,
- out float4 svPosition,
- inout float2 texcoord,
- out float4 offset[2]) {
- svPosition = position;
-
- offset[0] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4(-1.0, 0.0, 0.0, -1.0);
- offset[1] = texcoord.xyxy + SMAA_PIXEL_SIZE.xyxy * float4( 1.0, 0.0, 0.0, 1.0);
-}
-
-/**
- * Resolve Vertex Shader
- */
-void SMAAResolveVS(float4 position,
- out float4 svPosition,
- inout float2 texcoord) {
- svPosition = position;
-}
-
-/**
- * Separate Vertex Shader
- */
-void SMAASeparateVS(float4 position,
- out float4 svPosition,
- inout float2 texcoord) {
- svPosition = position;
-}
-#endif // SMAA_ONLY_COMPILE_PS == 0
-
-#if SMAA_ONLY_COMPILE_VS == 0
-//-----------------------------------------------------------------------------
-// Edge Detection Pixel Shaders (First Pass)
-
-/**
- * Luma Edge Detection
- *
- * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
- * thus 'colorTex' should be a non-sRGB texture.
- */
-float4 SMAALumaEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D colorTex
- #if SMAA_PREDICATION == 1
- , SMAATexture2D predicationTex
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION == 1
- float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, colorTex, predicationTex);
- #else
- float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
-
- // Calculate lumas:
- float3 weights = float3(0.2126, 0.7152, 0.0722);
- float L = dot(SMAASample(colorTex, texcoord).rgb, weights);
- float Lleft = dot(SMAASample(colorTex, offset[0].xy).rgb, weights);
- float Ltop = dot(SMAASample(colorTex, offset[0].zw).rgb, weights);
-
- // We do the usual threshold:
- float4 delta;
- delta.xy = abs(L - float2(Lleft, Ltop));
- float2 edges = step(threshold, delta.xy);
-
- // Then discard if there is no edge:
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
-
- // Calculate right and bottom deltas:
- float Lright = dot(SMAASample(colorTex, offset[1].xy).rgb, weights);
- float Lbottom = dot(SMAASample(colorTex, offset[1].zw).rgb, weights);
- delta.zw = abs(L - float2(Lright, Lbottom));
-
- // Calculate the maximum delta in the direct neighborhood:
- float2 maxDelta = max(delta.xy, delta.zw);
- maxDelta = max(maxDelta.xx, maxDelta.yy);
-
- // Calculate left-left and top-top deltas:
- float Lleftleft = dot(SMAASample(colorTex, offset[2].xy).rgb, weights);
- float Ltoptop = dot(SMAASample(colorTex, offset[2].zw).rgb, weights);
- delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));
-
- // Calculate the final maximum delta:
- maxDelta = max(maxDelta.xy, delta.zw);
-
- /**
- * Each edge with a delta in luma of less than 50% of the maximum luma
- * surrounding this pixel is discarded. This allows to eliminate spurious
- * crossing edges, and is based on the fact that, if there is too much
- * contrast in a direction, that will hide contrast in the other
- * neighbors.
- * This is done after the discard intentionally as this situation doesn't
- * happen too frequently (but it's important to do as it prevents some
- * edges from going undetected).
- */
- edges.xy *= step(0.5 * maxDelta, delta.xy);
-
- return float4(edges, 0.0, 0.0);
-}
-
-/**
- * Color Edge Detection
- *
- * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and
- * thus 'colorTex' should be a non-sRGB texture.
- */
-float4 SMAAColorEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D colorTex
- #if SMAA_PREDICATION == 1
- , SMAATexture2D predicationTex
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION == 1
- float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, colorTex, predicationTex);
- #else
- float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
-
- // Calculate color deltas:
- float4 delta;
- float3 C = SMAASample(colorTex, texcoord).rgb;
-
- float3 Cleft = SMAASample(colorTex, offset[0].xy).rgb;
- float3 t = abs(C - Cleft);
- delta.x = max(max(t.r, t.g), t.b);
-
- float3 Ctop = SMAASample(colorTex, offset[0].zw).rgb;
- t = abs(C - Ctop);
- delta.y = max(max(t.r, t.g), t.b);
-
- // We do the usual threshold:
- float2 edges = step(threshold, delta.xy);
-
- // Then discard if there is no edge:
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
-
- // Calculate right and bottom deltas:
- float3 Cright = SMAASample(colorTex, offset[1].xy).rgb;
- t = abs(C - Cright);
- delta.z = max(max(t.r, t.g), t.b);
-
- float3 Cbottom = SMAASample(colorTex, offset[1].zw).rgb;
- t = abs(C - Cbottom);
- delta.w = max(max(t.r, t.g), t.b);
-
- // Calculate the maximum delta in the direct neighborhood:
- float maxDelta = max(max(max(delta.x, delta.y), delta.z), delta.w);
-
- // Calculate left-left and top-top deltas:
- float3 Cleftleft = SMAASample(colorTex, offset[2].xy).rgb;
- t = abs(C - Cleftleft);
- delta.z = max(max(t.r, t.g), t.b);
-
- float3 Ctoptop = SMAASample(colorTex, offset[2].zw).rgb;
- t = abs(C - Ctoptop);
- delta.w = max(max(t.r, t.g), t.b);
-
- // Calculate the final maximum delta:
- maxDelta = max(max(maxDelta, delta.z), delta.w);
-
- // Local contrast adaptation in action:
- edges.xy *= step(0.5 * maxDelta, delta.xy);
-
- return float4(edges, 0.0, 0.0);
-}
-
-float4 SMAASingleChannelEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D colorTex
- #if SMAA_PREDICATION == 1
- , SMAATexture2D predicationTex
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION == 1
- float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, colorTex, predicationTex);
- #else
- float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
-
- // Calculate lumas:
- float L = SMAASample(colorTex, texcoord).r;
- float Lleft = SMAASample(colorTex, offset[0].xy).r;
- float Ltop = SMAASample(colorTex, offset[0].zw).r;
-
- // We do the usual threshold:
- float4 delta;
- delta.xy = abs(L - float2(Lleft, Ltop));
- float2 edges = step(threshold, delta.xy);
-
- // Then discard if there is no edge:
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
-
- // Calculate right and bottom deltas:
- float Lright = SMAASample(colorTex, offset[1].xy).r;
- float Lbottom = SMAASample(colorTex, offset[1].zw).r;
- delta.zw = abs(L - float2(Lright, Lbottom));
-
- // Calculate the maximum delta in the direct neighborhood:
- float2 maxDelta = max(delta.xy, delta.zw);
- maxDelta = max(maxDelta.xx, maxDelta.yy);
-
- // Calculate left-left and top-top deltas:
- float Lleftleft = SMAASample(colorTex, offset[2].xy).r;
- float Ltoptop = SMAASample(colorTex, offset[2].zw).r;
- delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));
-
- // Calculate the final maximum delta:
- maxDelta = max(maxDelta.xy, delta.zw);
-
- /**
- * Each edge with a delta in luma of less than 50% of the maximum luma
- * surrounding this pixel is discarded. This allows to eliminate spurious
- * crossing edges, and is based on the fact that, if there is too much
- * contrast in a direction, that will hide contrast in the other
- * neighbors.
- * This is done after the discard intentionally as this situation doesn't
- * happen too frequently (but it's important to do as it prevents some
- * edges from going undetected).
- */
- edges.xy *= step(0.5 * maxDelta, delta.xy);
-
- return float4(edges, 0.0, 0.0);
-}
-
-/**
- * Depth Edge Detection
- */
-float4 SMAADepthEdgeDetectionPS(float2 texcoord,
- float4 offset[3],
- SMAATexture2D depthTex) {
- float3 neighbors = SMAAGatherNeighbors(texcoord, offset, depthTex);
- float2 delta = abs(neighbors.xx - float2(neighbors.y, neighbors.z));
- float2 edges = step(SMAA_DEPTH_THRESHOLD, delta);
-
- if (dot(edges, float2(1.0, 1.0)) == 0.0)
- discard;
-
- return float4(edges, 0.0, 0.0);
-}
-
-//-----------------------------------------------------------------------------
-// Diagonal Search Functions
-
-#if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
-
-/**
- * These functions allows to perform diagonal pattern searches.
- */
-float SMAASearchDiag1(SMAATexture2D edgesTex, float2 texcoord, float2 dir, float c) {
- texcoord += dir * SMAA_PIXEL_SIZE;
- float2 e = float2(0.0, 0.0);
- float i;
- for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
- e.rg = SMAASampleLevelZero(edgesTex, texcoord).rg;
- SMAA_FLATTEN if (dot(e, float2(1.0, 1.0)) < 1.9) break;
- texcoord += dir * SMAA_PIXEL_SIZE;
- }
- return i + float(e.g > 0.9) * c;
-}
-
-float SMAASearchDiag2(SMAATexture2D edgesTex, float2 texcoord, float2 dir, float c) {
- texcoord += dir * SMAA_PIXEL_SIZE;
- float2 e = float2(0.0, 0.0);
- float i;
- for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
- e.g = SMAASampleLevelZero(edgesTex, texcoord).g;
- e.r = SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r;
- SMAA_FLATTEN if (dot(e, float2(1.0, 1.0)) < 1.9) break;
- texcoord += dir * SMAA_PIXEL_SIZE;
- }
- return i + float(e.g > 0.9) * c;
-}
-
-/**
- * Similar to SMAAArea, this calculates the area corresponding to a certain
- * diagonal distance and crossing edges 'e'.
- */
-float2 SMAAAreaDiag(SMAATexture2D areaTex, float2 dist, float2 e, float offset) {
- float2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist;
-
- // We do a scale and bias for mapping to texel space:
- texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);
-
- // Diagonal areas are on the second half of the texture:
- texcoord.x += 0.5;
-
- // Move to proper place, according to the subpixel offset:
- texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
-
- // Do it!
- return SMAASampleLevelZero(areaTex, texcoord).ra;
-}
-
-/**
- * This searches for diagonal patterns and returns the corresponding weights.
- */
-float2 SMAACalculateDiagWeights(SMAATexture2D edgesTex, SMAATexture2D areaTex, float2 texcoord, float2 e, int4 subsampleIndices) {
- float2 weights = float2(0.0, 0.0);
-
- float2 d;
- d.x = e.r > 0.0? SMAASearchDiag1(edgesTex, texcoord, float2(-1.0, 1.0), 1.0) : 0.0;
- d.y = SMAASearchDiag1(edgesTex, texcoord, float2(1.0, -1.0), 0.0);
-
- SMAA_BRANCH
- if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
- float4 coords = SMAAMad(float4(-d.r, d.r, d.g, -d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
-
- float4 c;
- c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
- c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r;
- c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g;
- c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r;
- float2 e = 2.0 * c.xz + c.yw;
- float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
- e *= step(d.rg, float2(t, t));
-
- weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.z));
- }
-
- d.x = SMAASearchDiag2(edgesTex, texcoord, float2(-1.0, -1.0), 0.0);
- float right = SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r;
- d.y = right > 0.0? SMAASearchDiag2(edgesTex, texcoord, float2(1.0, 1.0), 1.0) : 0.0;
-
- SMAA_BRANCH
- if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
- float4 coords = SMAAMad(float4(-d.r, -d.r, d.g, d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
-
- float4 c;
- c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
- c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, -1)).r;
- c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).gr;
- float2 e = 2.0 * c.xz + c.yw;
- float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
- e *= step(d.rg, float2(t, t));
-
- weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.w)).gr;
- }
-
- return weights;
-}
-#endif
-
-//-----------------------------------------------------------------------------
-// Horizontal/Vertical Search Functions
-
-/**
- * This allows to determine how much length should we add in the last step
- * of the searches. It takes the bilinearly interpolated edge (see
- * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
- * crossing edges are active.
- */
-float SMAASearchLength(SMAATexture2D searchTex, float2 e, float bias, float scale) {
- // Not required if searchTex accesses are set to point:
- // float2 SEARCH_TEX_PIXEL_SIZE = 1.0 / float2(66.0, 33.0);
- // e = float2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE +
- // e * float2(scale, 1.0) * float2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
- e.r = bias + e.r * scale;
- return 255.0 * SMAASampleLevelZeroPoint(searchTex, e).r;
-}
-
-/**
- * Horizontal/vertical search functions for the 2nd pass.
- */
-float SMAASearchXLeft(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
- /**
- * @PSEUDO_GATHER4
- * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
- * sample between edge, thus fetching four edges in a row.
- * Sampling with different offsets in each direction allows to disambiguate
- * which edges are active from the four fetched ones.
- */
- float2 e = float2(0.0, 1.0);
- while (texcoord.x > end &&
- e.g > 0.8281 && // Is there some edge not activated?
- e.r == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord -= float2(2.0, 0.0) * SMAA_PIXEL_SIZE;
- }
-
- // We correct the previous (-0.25, -0.125) offset we applied:
- texcoord.x += 0.25 * SMAA_PIXEL_SIZE.x;
-
- // The searches are bias by 1, so adjust the coords accordingly:
- texcoord.x += SMAA_PIXEL_SIZE.x;
-
- // Disambiguate the length added by the last step:
- texcoord.x += 2.0 * SMAA_PIXEL_SIZE.x; // Undo last step
- texcoord.x -= SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.0, 0.5);
-
- return texcoord.x;
-}
-
-float SMAASearchXRight(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
- float2 e = float2(0.0, 1.0);
- while (texcoord.x < end &&
- e.g > 0.8281 && // Is there some edge not activated?
- e.r == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord += float2(2.0, 0.0) * SMAA_PIXEL_SIZE;
- }
-
- texcoord.x -= 0.25 * SMAA_PIXEL_SIZE.x;
- texcoord.x -= SMAA_PIXEL_SIZE.x;
- texcoord.x -= 2.0 * SMAA_PIXEL_SIZE.x;
- texcoord.x += SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.5, 0.5);
- return texcoord.x;
-}
-
-float SMAASearchYUp(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
- float2 e = float2(1.0, 0.0);
- while (texcoord.y > end &&
- e.r > 0.8281 && // Is there some edge not activated?
- e.g == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord -= float2(0.0, 2.0) * SMAA_PIXEL_SIZE;
- }
-
- texcoord.y += 0.25 * SMAA_PIXEL_SIZE.y;
- texcoord.y += SMAA_PIXEL_SIZE.y;
- texcoord.y += 2.0 * SMAA_PIXEL_SIZE.y;
- texcoord.y -= SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.0, 0.5);
- return texcoord.y;
-}
-
-float SMAASearchYDown(SMAATexture2D edgesTex, SMAATexture2D searchTex, float2 texcoord, float end) {
- float2 e = float2(1.0, 0.0);
- while (texcoord.y < end &&
- e.r > 0.8281 && // Is there some edge not activated?
- e.g == 0.0) { // Or is there a crossing edge that breaks the line?
- e = SMAASampleLevelZero(edgesTex, texcoord).rg;
- texcoord += float2(0.0, 2.0) * SMAA_PIXEL_SIZE;
- }
-
- texcoord.y -= 0.25 * SMAA_PIXEL_SIZE.y;
- texcoord.y -= SMAA_PIXEL_SIZE.y;
- texcoord.y -= 2.0 * SMAA_PIXEL_SIZE.y;
- texcoord.y += SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.5, 0.5);
- return texcoord.y;
-}
-
-/**
- * Ok, we have the distance and both crossing edges. So, what are the areas
- * at each side of current edge?
- */
-float2 SMAAArea(SMAATexture2D areaTex, float2 dist, float e1, float e2, float offset) {
- // Rounding prevents precision errors of bilinear filtering:
- float2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE) * round(4.0 * float2(e1, e2)) + dist;
-
- // We do a scale and bias for mapping to texel space:
- texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);
-
- // Move to proper place, according to the subpixel offset:
- texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
-
- // Do it!
- return SMAASampleLevelZero(areaTex, texcoord).ra;
-}
-
-//-----------------------------------------------------------------------------
-// Corner Detection Functions
-
-void SMAADetectHorizontalCornerPattern(SMAATexture2D edgesTex, inout float2 weights, float2 texcoord, float2 d) {
- #if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
- float4 coords = SMAAMad(float4(d.x, 0.0, d.y, 0.0),
- SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
- float2 e;
- e.r = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0.0, 1.0)).r;
- bool left = abs(d.x) < abs(d.y);
- e.g = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0.0, -2.0)).r;
- if (left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);
-
- e.r = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1.0, 1.0)).r;
- e.g = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1.0, -2.0)).r;
- if (!left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);
- #endif
-}
-
-void SMAADetectVerticalCornerPattern(SMAATexture2D edgesTex, inout float2 weights, float2 texcoord, float2 d) {
- #if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
- float4 coords = SMAAMad(float4(0.0, d.x, 0.0, d.y),
- SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
- float2 e;
- e.r = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 1.0, 0.0)).g;
- bool left = abs(d.x) < abs(d.y);
- e.g = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-2.0, 0.0)).g;
- if (left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);
-
- e.r = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1.0, 1.0)).g;
- e.g = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(-2.0, 1.0)).g;
- if (!left) weights *= SMAASaturate(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e);
- #endif
-}
-
-//-----------------------------------------------------------------------------
-// Blending Weight Calculation Pixel Shader (Second Pass)
-
-float4 SMAABlendingWeightCalculationPS(float2 texcoord,
- float2 pixcoord,
- float4 offset[3],
- SMAATexture2D edgesTex,
- SMAATexture2D areaTex,
- SMAATexture2D searchTex,
- int4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
- float4 weights = float4(0.0, 0.0, 0.0, 0.0);
-
- float2 e = SMAASample(edgesTex, texcoord).rg;
-
- SMAA_BRANCH
- if (e.g > 0.0) { // Edge at north
- #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
- // Diagonals have both north and west edges, so searching for them in
- // one of the boundaries is enough.
- weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices);
-
- // We give priority to diagonals, so if we find a diagonal we skip
- // horizontal/vertical processing.
- SMAA_BRANCH
- if (dot(weights.rg, float2(1.0, 1.0)) == 0.0) {
- #endif
-
- float2 d;
-
- // Find the distance to the left:
- float2 coords;
- coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x);
- coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_PIXEL_SIZE.y (@CROSSING_OFFSET)
- d.x = coords.x;
-
- // Now fetch the left crossing edges, two at a time using bilinear
- // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
- // discern what value each edge has:
- float e1 = SMAASampleLevelZero(edgesTex, coords).r;
-
- // Find the distance to the right:
- coords.x = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y);
- d.y = coords.x;
-
- // We want the distances to be in pixel units (doing this here allow to
- // better interleave arithmetic and memory accesses):
- d = d / SMAA_PIXEL_SIZE.x - pixcoord.x;
-
- // SMAAArea below needs a sqrt, as the areas texture is compressed
- // quadratically:
- float2 sqrt_d = sqrt(abs(d));
-
- // Fetch the right crossing edges:
- float e2 = SMAASampleLevelZeroOffset(edgesTex, coords, int2(1, 0)).r;
-
- // Ok, we know how this pattern looks like, now it is time for getting
- // the actual area:
- weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.y));
-
- // Fix corners:
- SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, texcoord, d);
-
- #if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
- } else
- e.r = 0.0; // Skip vertical processing.
- #endif
- }
-
- SMAA_BRANCH
- if (e.r > 0.0) { // Edge at west
- float2 d;
-
- // Find the distance to the top:
- float2 coords;
- coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z);
- coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_PIXEL_SIZE.x;
- d.x = coords.y;
-
- // Fetch the top crossing edges:
- float e1 = SMAASampleLevelZero(edgesTex, coords).g;
-
- // Find the distance to the bottom:
- coords.y = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w);
- d.y = coords.y;
-
- // We want the distances to be in pixel units:
- d = d / SMAA_PIXEL_SIZE.y - pixcoord.y;
-
- // SMAAArea below needs a sqrt, as the areas texture is compressed
- // quadratically:
- float2 sqrt_d = sqrt(abs(d));
-
- // Fetch the bottom crossing edges:
- float e2 = SMAASampleLevelZeroOffset(edgesTex, coords, int2(0, 1)).g;
-
- // Get the area for this direction:
- weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.x));
-
- // Fix corners:
- SMAADetectVerticalCornerPattern(edgesTex, weights.ba, texcoord, d);
- }
-
- return weights;
-}
-
-//-----------------------------------------------------------------------------
-// Neighborhood Blending Pixel Shader (Third Pass)
-
-float4 SMAANeighborhoodBlendingPS(float2 texcoord,
- float4 offset[2],
- SMAATexture2D colorTex,
- SMAATexture2D blendTex) {
- // Fetch the blending weights for current pixel:
- float4 a;
- a.xz = SMAASample(blendTex, texcoord).xz;
- a.y = SMAASample(blendTex, offset[1].zw).g;
- a.w = SMAASample(blendTex, offset[1].xy).a;
-
- // Is there any blending weight with a value greater than 0.0?
- SMAA_BRANCH
- if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5)
- return SMAASampleLevelZero(colorTex, texcoord);
- else {
- float4 color = float4(0.0, 0.0, 0.0, 0.0);
-
- // Up to 4 lines can be crossing a pixel (one through each edge). We
- // favor blending by choosing the line with the maximum weight for each
- // direction:
- float2 offset;
- offset.x = a.a > a.b? a.a : -a.b; // left vs. right
- offset.y = a.g > a.r? a.g : -a.r; // top vs. bottom
-
- // Then we go in the direction that has the maximum weight:
- if (abs(offset.x) > abs(offset.y)) // horizontal vs. vertical
- offset.y = 0.0;
- else
- offset.x = 0.0;
-
- #if SMAA_REPROJECTION == 1
- // Fetch the opposite color and lerp by hand:
- float4 C = SMAASampleLevelZero(colorTex, texcoord);
- texcoord += sign(offset) * SMAA_PIXEL_SIZE;
- float4 Cop = SMAASampleLevelZero(colorTex, texcoord);
- float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);
-
- // Unpack the velocity values:
- C.a *= C.a;
- Cop.a *= Cop.a;
-
- // Lerp the colors:
- float4 Caa = SMAALerp(C, Cop, s);
-
- // Unpack velocity and return the resulting value:
- Caa.a = sqrt(Caa.a);
- return Caa;
- #elif SMAA_HLSL_4 == 1 || SMAA_DIRECTX9_LINEAR_BLEND == 0
- // We exploit bilinear filtering to mix current pixel with the chosen
- // neighbor:
- texcoord += offset * SMAA_PIXEL_SIZE;
- return SMAASampleLevelZero(colorTex, texcoord);
- #else
- // Fetch the opposite color and lerp by hand:
- float4 C = SMAASampleLevelZero(colorTex, texcoord);
- texcoord += sign(offset) * SMAA_PIXEL_SIZE;
- float4 Cop = SMAASampleLevelZero(colorTex, texcoord);
- float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);
- return SMAALerp(C, Cop, s);
- #endif
- }
-}
-
-float4 SMAASampleLevelZeroResolve( SMAATexture2D currentTex,
- SMAATexture2D previousTex,
- float2 texcoord )
-{
- return SMAALerp( SMAASampleLevelZero( currentTex, texcoord ), SMAASampleLevelZero( previousTex, texcoord ), .5 );
-}
-
-float4 SMAANeighborhoodBlendingTemporalPS(float2 texcoord,
- float4 offset[2],
- SMAATexture2D colorTex,
- SMAATexture2D previousTex,
- SMAATexture2D blendTex) {
- // Fetch the blending weights for current pixel:
- float4 a;
- a.xz = SMAASample(blendTex, texcoord).xz;
- a.y = SMAASample(blendTex, offset[1].zw).g;
- a.w = SMAASample(blendTex, offset[1].xy).a;
-
- // Is there any blending weight with a value greater than 0.0?
- SMAA_BRANCH
- if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5)
- return SMAASampleLevelZero(colorTex, texcoord);
- else {
- float4 color = float4(0.0, 0.0, 0.0, 0.0);
-
- // Up to 4 lines can be crossing a pixel (one through each edge). We
- // favor blending by choosing the line with the maximum weight for each
- // direction:
- float2 offset;
- offset.x = a.a > a.b? a.a : -a.b; // left vs. right
- offset.y = a.g > a.r? a.g : -a.r; // top vs. bottom
-
- // Then we go in the direction that has the maximum weight:
- if (abs(offset.x) > abs(offset.y)) // horizontal vs. vertical
- offset.y = 0.0;
- else
- offset.x = 0.0;
-
- #if SMAA_REPROJECTION == 1
- // Fetch the opposite color and lerp by hand:
- return SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
- texcoord += sign(offset) * SMAA_PIXEL_SIZE;
- return SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
- float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);
-
- // Unpack the velocity values:
- C.a *= C.a;
- Cop.a *= Cop.a;
-
- // Lerp the colors:
- float4 Caa = SMAALerp(C, Cop, s);
-
- // Unpack velocity and return the resulting value:
- Caa.a = sqrt(Caa.a);
- return Caa;
- #elif SMAA_HLSL_4 == 1 || SMAA_DIRECTX9_LINEAR_BLEND == 0
- // We exploit bilinear filtering to mix current pixel with the chosen
- // neighbor:
- texcoord += offset * SMAA_PIXEL_SIZE;
- return SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
- #else
- // Fetch the opposite color and lerp by hand:
- float4 C = SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
- texcoord += sign(offset) * SMAA_PIXEL_SIZE;
- float4 Cop = SMAASampleLevelZeroResolve(colorTex, previousTex, texcoord);
- float s = abs(offset.x) > abs(offset.y)? abs(offset.x) : abs(offset.y);
- return SMAALerp(C, Cop, s);
- #endif
- }
-}
-
-//-----------------------------------------------------------------------------
-// Temporal Resolve Pixel Shader (Optional Pass)
-
-float4 SMAAResolvePS(float2 texcoord,
- SMAATexture2D colorTexCurr,
- SMAATexture2D colorTexPrev
- #if SMAA_REPROJECTION == 1
- , SMAATexture2D velocityTex
- #endif
- ) {
- #if SMAA_REPROJECTION == 1
- // Velocity is calculated from previous to current position, so we need to
- // inverse it:
- float2 velocity = -SMAASample(velocityTex, texcoord).rg;
-
- // Fetch current pixel:
- float4 current = SMAASample(colorTexCurr, texcoord);
-
- // Reproject current coordinates and fetch previous pixel:
- float4 previous = SMAASample(colorTexPrev, texcoord + velocity);
-
- // Attenuate the previous pixel if the velocity is different:
- float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0;
- float weight = 0.5 * SMAASaturate(1.0 - (sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE));
-
- // Blend the pixels according to the calculated weight:
- return SMAALerp(current, previous, weight);
- #else
- // Just blend the pixels:
- float4 current = SMAASample(colorTexCurr, texcoord);
- float4 previous = SMAASample(colorTexPrev, texcoord);
- return SMAALerp(current, previous, 0.5);
- #endif
-}
-
-//-----------------------------------------------------------------------------
-// Separate Multisamples Pixel Shader (Optional Pass)
-
-#if SMAA_HLSL_4 == 1 || SMAA_HLSL_4_1 == 1
-void SMAASeparatePS(float4 position : SV_POSITION,
- float2 texcoord : TEXCOORD0,
- out float4 target0,
- out float4 target1,
- uniform SMAATexture2DMS2 colorTexMS) {
- int2 pos = int2(position.xy);
- target0 = SMAALoad(colorTexMS, pos, 0);
- target1 = SMAALoad(colorTexMS, pos, 1);
-}
-#endif
-
-//-----------------------------------------------------------------------------
-#endif // SMAA_ONLY_COMPILE_VS == 0