summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/arm/assembler-arm.h
blob: 8418aeee143a0e639a1366baa498159f5299ddb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

// A light-weight ARM Assembler
// Generates user mode instructions for the ARM architecture up to version 5

#ifndef V8_ARM_ASSEMBLER_ARM_H_
#define V8_ARM_ASSEMBLER_ARM_H_
#include <stdio.h>
#include "assembler.h"
#include "constants-arm.h"
#include "serialize.h"

namespace v8 {
namespace internal {

// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.

// Core register
struct Register {
  static const int kNumRegisters = 16;
  static const int kNumAllocatableRegisters = 8;
  static const int kSizeInBytes = 4;

  static int ToAllocationIndex(Register reg) {
    ASSERT(reg.code() < kNumAllocatableRegisters);
    return reg.code();
  }

  static Register FromAllocationIndex(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    return from_code(index);
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    const char* const names[] = {
      "r0",
      "r1",
      "r2",
      "r3",
      "r4",
      "r5",
      "r6",
      "r7",
    };
    return names[index];
  }

  static Register from_code(int code) {
    Register r = { code };
    return r;
  }

  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
  bool is(Register reg) const { return code_ == reg.code_; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }

  void set_code(int code) {
    code_ = code;
    ASSERT(is_valid());
  }

  // Unfortunately we can't make this private in a struct.
  int code_;
};

// These constants are used in several locations, including static initializers
const int kRegister_no_reg_Code = -1;
const int kRegister_r0_Code = 0;
const int kRegister_r1_Code = 1;
const int kRegister_r2_Code = 2;
const int kRegister_r3_Code = 3;
const int kRegister_r4_Code = 4;
const int kRegister_r5_Code = 5;
const int kRegister_r6_Code = 6;
const int kRegister_r7_Code = 7;
const int kRegister_r8_Code = 8;
const int kRegister_r9_Code = 9;
const int kRegister_r10_Code = 10;
const int kRegister_fp_Code = 11;
const int kRegister_ip_Code = 12;
const int kRegister_sp_Code = 13;
const int kRegister_lr_Code = 14;
const int kRegister_pc_Code = 15;

const Register no_reg = { kRegister_no_reg_Code };

const Register r0  = { kRegister_r0_Code };
const Register r1  = { kRegister_r1_Code };
const Register r2  = { kRegister_r2_Code };
const Register r3  = { kRegister_r3_Code };
const Register r4  = { kRegister_r4_Code };
const Register r5  = { kRegister_r5_Code };
const Register r6  = { kRegister_r6_Code };
const Register r7  = { kRegister_r7_Code };
// Used as context register.
const Register r8  = { kRegister_r8_Code };
// Used as lithium codegen scratch register.
const Register r9  = { kRegister_r9_Code };
// Used as roots register.
const Register r10 = { kRegister_r10_Code };
const Register fp  = { kRegister_fp_Code };
const Register ip  = { kRegister_ip_Code };
const Register sp  = { kRegister_sp_Code };
const Register lr  = { kRegister_lr_Code };
const Register pc  = { kRegister_pc_Code };


// Single word VFP register.
struct SwVfpRegister {
  bool is_valid() const { return 0 <= code_ && code_ < 32; }
  bool is(SwVfpRegister reg) const { return code_ == reg.code_; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }
  void split_code(int* vm, int* m) const {
    ASSERT(is_valid());
    *m = code_ & 0x1;
    *vm = code_ >> 1;
  }

  int code_;
};


// Double word VFP register.
struct DwVfpRegister {
  static const int kNumRegisters = 16;
  // A few double registers are reserved: one as a scratch register and one to
  // hold 0.0, that does not fit in the immediate field of vmov instructions.
  //  d14: 0.0
  //  d15: scratch register.
  static const int kNumReservedRegisters = 2;
  static const int kNumAllocatableRegisters = kNumRegisters -
      kNumReservedRegisters;

  inline static int ToAllocationIndex(DwVfpRegister reg);

  static DwVfpRegister FromAllocationIndex(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    return from_code(index);
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    const char* const names[] = {
      "d0",
      "d1",
      "d2",
      "d3",
      "d4",
      "d5",
      "d6",
      "d7",
      "d8",
      "d9",
      "d10",
      "d11",
      "d12",
      "d13"
    };
    return names[index];
  }

  static DwVfpRegister from_code(int code) {
    DwVfpRegister r = { code };
    return r;
  }

  // Supporting d0 to d15, can be later extended to d31.
  bool is_valid() const { return 0 <= code_ && code_ < 16; }
  bool is(DwVfpRegister reg) const { return code_ == reg.code_; }
  SwVfpRegister low() const {
    SwVfpRegister reg;
    reg.code_ = code_ * 2;

    ASSERT(reg.is_valid());
    return reg;
  }
  SwVfpRegister high() const {
    SwVfpRegister reg;
    reg.code_ = (code_ * 2) + 1;

    ASSERT(reg.is_valid());
    return reg;
  }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }
  void split_code(int* vm, int* m) const {
    ASSERT(is_valid());
    *m = (code_ & 0x10) >> 4;
    *vm = code_ & 0x0F;
  }

  int code_;
};


typedef DwVfpRegister DoubleRegister;


// Support for the VFP registers s0 to s31 (d0 to d15).
// Note that "s(N):s(N+1)" is the same as "d(N/2)".
const SwVfpRegister s0  = {  0 };
const SwVfpRegister s1  = {  1 };
const SwVfpRegister s2  = {  2 };
const SwVfpRegister s3  = {  3 };
const SwVfpRegister s4  = {  4 };
const SwVfpRegister s5  = {  5 };
const SwVfpRegister s6  = {  6 };
const SwVfpRegister s7  = {  7 };
const SwVfpRegister s8  = {  8 };
const SwVfpRegister s9  = {  9 };
const SwVfpRegister s10 = { 10 };
const SwVfpRegister s11 = { 11 };
const SwVfpRegister s12 = { 12 };
const SwVfpRegister s13 = { 13 };
const SwVfpRegister s14 = { 14 };
const SwVfpRegister s15 = { 15 };
const SwVfpRegister s16 = { 16 };
const SwVfpRegister s17 = { 17 };
const SwVfpRegister s18 = { 18 };
const SwVfpRegister s19 = { 19 };
const SwVfpRegister s20 = { 20 };
const SwVfpRegister s21 = { 21 };
const SwVfpRegister s22 = { 22 };
const SwVfpRegister s23 = { 23 };
const SwVfpRegister s24 = { 24 };
const SwVfpRegister s25 = { 25 };
const SwVfpRegister s26 = { 26 };
const SwVfpRegister s27 = { 27 };
const SwVfpRegister s28 = { 28 };
const SwVfpRegister s29 = { 29 };
const SwVfpRegister s30 = { 30 };
const SwVfpRegister s31 = { 31 };

const DwVfpRegister no_dreg = { -1 };
const DwVfpRegister d0  = {  0 };
const DwVfpRegister d1  = {  1 };
const DwVfpRegister d2  = {  2 };
const DwVfpRegister d3  = {  3 };
const DwVfpRegister d4  = {  4 };
const DwVfpRegister d5  = {  5 };
const DwVfpRegister d6  = {  6 };
const DwVfpRegister d7  = {  7 };
const DwVfpRegister d8  = {  8 };
const DwVfpRegister d9  = {  9 };
const DwVfpRegister d10 = { 10 };
const DwVfpRegister d11 = { 11 };
const DwVfpRegister d12 = { 12 };
const DwVfpRegister d13 = { 13 };
const DwVfpRegister d14 = { 14 };
const DwVfpRegister d15 = { 15 };

// Aliases for double registers.  Defined using #define instead of
// "static const DwVfpRegister&" because Clang complains otherwise when a
// compilation unit that includes this header doesn't use the variables.
#define kFirstCalleeSavedDoubleReg d8
#define kLastCalleeSavedDoubleReg d15
#define kDoubleRegZero d14
#define kScratchDoubleReg d15


// Coprocessor register
struct CRegister {
  bool is_valid() const { return 0 <= code_ && code_ < 16; }
  bool is(CRegister creg) const { return code_ == creg.code_; }
  int code() const {
    ASSERT(is_valid());
    return code_;
  }
  int bit() const {
    ASSERT(is_valid());
    return 1 << code_;
  }

  // Unfortunately we can't make this private in a struct.
  int code_;
};


const CRegister no_creg = { -1 };

const CRegister cr0  = {  0 };
const CRegister cr1  = {  1 };
const CRegister cr2  = {  2 };
const CRegister cr3  = {  3 };
const CRegister cr4  = {  4 };
const CRegister cr5  = {  5 };
const CRegister cr6  = {  6 };
const CRegister cr7  = {  7 };
const CRegister cr8  = {  8 };
const CRegister cr9  = {  9 };
const CRegister cr10 = { 10 };
const CRegister cr11 = { 11 };
const CRegister cr12 = { 12 };
const CRegister cr13 = { 13 };
const CRegister cr14 = { 14 };
const CRegister cr15 = { 15 };


// Coprocessor number
enum Coprocessor {
  p0  = 0,
  p1  = 1,
  p2  = 2,
  p3  = 3,
  p4  = 4,
  p5  = 5,
  p6  = 6,
  p7  = 7,
  p8  = 8,
  p9  = 9,
  p10 = 10,
  p11 = 11,
  p12 = 12,
  p13 = 13,
  p14 = 14,
  p15 = 15
};


// -----------------------------------------------------------------------------
// Machine instruction Operands

// Class Operand represents a shifter operand in data processing instructions
class Operand BASE_EMBEDDED {
 public:
  // immediate
  INLINE(explicit Operand(int32_t immediate,
         RelocInfo::Mode rmode = RelocInfo::NONE));
  INLINE(static Operand Zero()) {
    return Operand(static_cast<int32_t>(0));
  }
  INLINE(explicit Operand(const ExternalReference& f));
  explicit Operand(Handle<Object> handle);
  INLINE(explicit Operand(Smi* value));

  // rm
  INLINE(explicit Operand(Register rm));

  // rm <shift_op> shift_imm
  explicit Operand(Register rm, ShiftOp shift_op, int shift_imm);

  // rm <shift_op> rs
  explicit Operand(Register rm, ShiftOp shift_op, Register rs);

  // Return true if this is a register operand.
  INLINE(bool is_reg() const);

  // Return true if this operand fits in one instruction so that no
  // 2-instruction solution with a load into the ip register is necessary. If
  // the instruction this operand is used for is a MOV or MVN instruction the
  // actual instruction to use is required for this calculation. For other
  // instructions instr is ignored.
  bool is_single_instruction(const Assembler* assembler, Instr instr = 0) const;
  bool must_output_reloc_info(const Assembler* assembler) const;

  inline int32_t immediate() const {
    ASSERT(!rm_.is_valid());
    return imm32_;
  }

  Register rm() const { return rm_; }
  Register rs() const { return rs_; }
  ShiftOp shift_op() const { return shift_op_; }

 private:
  Register rm_;
  Register rs_;
  ShiftOp shift_op_;
  int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
  int32_t imm32_;  // valid if rm_ == no_reg
  RelocInfo::Mode rmode_;

  friend class Assembler;
};


// Class MemOperand represents a memory operand in load and store instructions
class MemOperand BASE_EMBEDDED {
 public:
  // [rn +/- offset]      Offset/NegOffset
  // [rn +/- offset]!     PreIndex/NegPreIndex
  // [rn], +/- offset     PostIndex/NegPostIndex
  // offset is any signed 32-bit value; offset is first loaded to register ip if
  // it does not fit the addressing mode (12-bit unsigned and sign bit)
  explicit MemOperand(Register rn, int32_t offset = 0, AddrMode am = Offset);

  // [rn +/- rm]          Offset/NegOffset
  // [rn +/- rm]!         PreIndex/NegPreIndex
  // [rn], +/- rm         PostIndex/NegPostIndex
  explicit MemOperand(Register rn, Register rm, AddrMode am = Offset);

  // [rn +/- rm <shift_op> shift_imm]      Offset/NegOffset
  // [rn +/- rm <shift_op> shift_imm]!     PreIndex/NegPreIndex
  // [rn], +/- rm <shift_op> shift_imm     PostIndex/NegPostIndex
  explicit MemOperand(Register rn, Register rm,
                      ShiftOp shift_op, int shift_imm, AddrMode am = Offset);

  void set_offset(int32_t offset) {
      ASSERT(rm_.is(no_reg));
      offset_ = offset;
  }

  uint32_t offset() const {
      ASSERT(rm_.is(no_reg));
      return offset_;
  }

  Register rn() const { return rn_; }
  Register rm() const { return rm_; }
  AddrMode am() const { return am_; }

  bool OffsetIsUint12Encodable() const {
    return offset_ >= 0 ? is_uint12(offset_) : is_uint12(-offset_);
  }

 private:
  Register rn_;  // base
  Register rm_;  // register offset
  int32_t offset_;  // valid if rm_ == no_reg
  ShiftOp shift_op_;
  int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
  AddrMode am_;  // bits P, U, and W

  friend class Assembler;
};

// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
class CpuFeatures : public AllStatic {
 public:
  // Detect features of the target CPU. Set safe defaults if the serializer
  // is enabled (snapshots must be portable).
  static void Probe();

  // Check whether a feature is supported by the target CPU.
  static bool IsSupported(CpuFeature f) {
    ASSERT(initialized_);
    if (f == VFP3 && !FLAG_enable_vfp3) return false;
    if (f == VFP2 && !FLAG_enable_vfp2) return false;
    if (f == SUDIV && !FLAG_enable_sudiv) return false;
    if (f == UNALIGNED_ACCESSES && !FLAG_enable_unaligned_accesses) {
      return false;
    }
    return (supported_ & (1u << f)) != 0;
  }

#ifdef DEBUG
  // Check whether a feature is currently enabled.
  static bool IsEnabled(CpuFeature f) {
    ASSERT(initialized_);
    Isolate* isolate = Isolate::UncheckedCurrent();
    if (isolate == NULL) {
      // When no isolate is available, work as if we're running in
      // release mode.
      return IsSupported(f);
    }
    unsigned enabled = static_cast<unsigned>(isolate->enabled_cpu_features());
    return (enabled & (1u << f)) != 0;
  }
#endif

  // Enable a specified feature within a scope.
  class Scope BASE_EMBEDDED {
#ifdef DEBUG

   public:
    explicit Scope(CpuFeature f) {
      unsigned mask = 1u << f;
      // VFP2 and ARMv7 are implied by VFP3.
      if (f == VFP3) mask |= 1u << VFP2 | 1u << ARMv7;
      ASSERT(CpuFeatures::IsSupported(f));
      ASSERT(!Serializer::enabled() ||
             (CpuFeatures::found_by_runtime_probing_ & mask) == 0);
      isolate_ = Isolate::UncheckedCurrent();
      old_enabled_ = 0;
      if (isolate_ != NULL) {
        old_enabled_ = static_cast<unsigned>(isolate_->enabled_cpu_features());
        isolate_->set_enabled_cpu_features(old_enabled_ | mask);
      }
    }
    ~Scope() {
      ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
      if (isolate_ != NULL) {
        isolate_->set_enabled_cpu_features(old_enabled_);
      }
    }

   private:
    Isolate* isolate_;
    unsigned old_enabled_;
#else

   public:
    explicit Scope(CpuFeature f) {}
#endif
  };

  class TryForceFeatureScope BASE_EMBEDDED {
   public:
    explicit TryForceFeatureScope(CpuFeature f)
        : old_supported_(CpuFeatures::supported_) {
      if (CanForce()) {
        CpuFeatures::supported_ |= (1u << f);
      }
    }

    ~TryForceFeatureScope() {
      if (CanForce()) {
        CpuFeatures::supported_ = old_supported_;
      }
    }

   private:
    static bool CanForce() {
      // It's only safe to temporarily force support of CPU features
      // when there's only a single isolate, which is guaranteed when
      // the serializer is enabled.
      return Serializer::enabled();
    }

    const unsigned old_supported_;
  };

 private:
#ifdef DEBUG
  static bool initialized_;
#endif
  static unsigned supported_;
  static unsigned found_by_runtime_probing_;

  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
};


extern const Instr kMovLrPc;
extern const Instr kLdrPCMask;
extern const Instr kLdrPCPattern;
extern const Instr kBlxRegMask;
extern const Instr kBlxRegPattern;
extern const Instr kBlxIp;

extern const Instr kMovMvnMask;
extern const Instr kMovMvnPattern;
extern const Instr kMovMvnFlip;

extern const Instr kMovLeaveCCMask;
extern const Instr kMovLeaveCCPattern;
extern const Instr kMovwMask;
extern const Instr kMovwPattern;
extern const Instr kMovwLeaveCCFlip;

extern const Instr kCmpCmnMask;
extern const Instr kCmpCmnPattern;
extern const Instr kCmpCmnFlip;
extern const Instr kAddSubFlip;
extern const Instr kAndBicFlip;



class Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
  Assembler(Isolate* isolate, void* buffer, int buffer_size);
  ~Assembler();

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  void GetCode(CodeDesc* desc);

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position

  // Returns the branch offset to the given label from the current code position
  // Links the label to the current position if it is still unbound
  // Manages the jump elimination optimization if the second parameter is true.
  int branch_offset(Label* L, bool jump_elimination_allowed);

  // Puts a labels target address at the given position.
  // The high 8 bits are set to zero.
  void label_at_put(Label* L, int at_offset);

  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc, or the object in a mov.
  INLINE(static Address target_pointer_address_at(Address pc));

  // Read/Modify the pointer in the branch/call/move instruction at pc.
  INLINE(static Address target_pointer_at(Address pc));
  INLINE(static void set_target_pointer_at(Address pc, Address target));

  // Read/Modify the code target address in the branch/call instruction at pc.
  INLINE(static Address target_address_at(Address pc));
  INLINE(static void set_target_address_at(Address pc, Address target));

  // Return the code target address at a call site from the return address
  // of that call in the instruction stream.
  INLINE(static Address target_address_from_return_address(Address pc));

  // Given the address of the beginning of a call, return the address
  // in the instruction stream that the call will return from.
  INLINE(static Address return_address_from_call_start(Address pc));

  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
      Address constant_pool_entry, Address target);

  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches to runtime code.
  inline static void set_external_target_at(Address constant_pool_entry,
                                            Address target);

  // Here we are patching the address in the constant pool, not the actual call
  // instruction.  The address in the constant pool is the same size as a
  // pointer.
  static const int kSpecialTargetSize = kPointerSize;

  // Size of an instruction.
  static const int kInstrSize = sizeof(Instr);

  // Distance between start of patched return sequence and the emitted address
  // to jump to.
#ifdef USE_BLX
  // Patched return sequence is:
  //  ldr  ip, [pc, #0]   @ emited address and start
  //  blx  ip
  static const int kPatchReturnSequenceAddressOffset =  0 * kInstrSize;
#else
  // Patched return sequence is:
  //  mov  lr, pc         @ start of sequence
  //  ldr  pc, [pc, #-4]  @ emited address
  static const int kPatchReturnSequenceAddressOffset =  kInstrSize;
#endif

  // Distance between start of patched debug break slot and the emitted address
  // to jump to.
#ifdef USE_BLX
  // Patched debug break slot code is:
  //  ldr  ip, [pc, #0]   @ emited address and start
  //  blx  ip
  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
#else
  // Patched debug break slot code is:
  //  mov  lr, pc         @ start of sequence
  //  ldr  pc, [pc, #-4]  @ emited address
  static const int kPatchDebugBreakSlotAddressOffset =  kInstrSize;
#endif

#ifdef USE_BLX
  static const int kPatchDebugBreakSlotReturnOffset = 2 * kInstrSize;
#else
  static const int kPatchDebugBreakSlotReturnOffset = kInstrSize;
#endif

  // Difference between address of current opcode and value read from pc
  // register.
  static const int kPcLoadDelta = 8;

  static const int kJSReturnSequenceInstructions = 4;
  static const int kDebugBreakSlotInstructions = 3;
  static const int kDebugBreakSlotLength =
      kDebugBreakSlotInstructions * kInstrSize;

  // ---------------------------------------------------------------------------
  // Code generation

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Branch instructions
  void b(int branch_offset, Condition cond = al);
  void bl(int branch_offset, Condition cond = al);
  void blx(int branch_offset);  // v5 and above
  void blx(Register target, Condition cond = al);  // v5 and above
  void bx(Register target, Condition cond = al);  // v5 and above, plus v4t

  // Convenience branch instructions using labels
  void b(Label* L, Condition cond = al)  {
    b(branch_offset(L, cond == al), cond);
  }
  void b(Condition cond, Label* L)  { b(branch_offset(L, cond == al), cond); }
  void bl(Label* L, Condition cond = al)  { bl(branch_offset(L, false), cond); }
  void bl(Condition cond, Label* L)  { bl(branch_offset(L, false), cond); }
  void blx(Label* L)  { blx(branch_offset(L, false)); }  // v5 and above

  // Data-processing instructions

  void and_(Register dst, Register src1, const Operand& src2,
            SBit s = LeaveCC, Condition cond = al);

  void eor(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void sub(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
  void sub(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al) {
    sub(dst, src1, Operand(src2), s, cond);
  }

  void rsb(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void add(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
  void add(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al) {
    add(dst, src1, Operand(src2), s, cond);
  }

  void adc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void sbc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void rsc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void tst(Register src1, const Operand& src2, Condition cond = al);
  void tst(Register src1, Register src2, Condition cond = al) {
    tst(src1, Operand(src2), cond);
  }

  void teq(Register src1, const Operand& src2, Condition cond = al);

  void cmp(Register src1, const Operand& src2, Condition cond = al);
  void cmp(Register src1, Register src2, Condition cond = al) {
    cmp(src1, Operand(src2), cond);
  }
  void cmp_raw_immediate(Register src1, int raw_immediate, Condition cond = al);

  void cmn(Register src1, const Operand& src2, Condition cond = al);

  void orr(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
  void orr(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al) {
    orr(dst, src1, Operand(src2), s, cond);
  }

  void mov(Register dst, const Operand& src,
           SBit s = LeaveCC, Condition cond = al);
  void mov(Register dst, Register src, SBit s = LeaveCC, Condition cond = al) {
    mov(dst, Operand(src), s, cond);
  }

  // ARMv7 instructions for loading a 32 bit immediate in two instructions.
  // This may actually emit a different mov instruction, but on an ARMv7 it
  // is guaranteed to only emit one instruction.
  void movw(Register reg, uint32_t immediate, Condition cond = al);
  // The constant for movt should be in the range 0-0xffff.
  void movt(Register reg, uint32_t immediate, Condition cond = al);

  void bic(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void mvn(Register dst, const Operand& src,
           SBit s = LeaveCC, Condition cond = al);

  // Multiply instructions

  void mla(Register dst, Register src1, Register src2, Register srcA,
           SBit s = LeaveCC, Condition cond = al);

  void mls(Register dst, Register src1, Register src2, Register srcA,
           Condition cond = al);

  void sdiv(Register dst, Register src1, Register src2,
            Condition cond = al);

  void mul(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al);

  void smlal(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void smull(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void umlal(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void umull(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  // Miscellaneous arithmetic instructions

  void clz(Register dst, Register src, Condition cond = al);  // v5 and above

  // Saturating instructions. v6 and above.

  // Unsigned saturate.
  //
  // Saturate an optionally shifted signed value to an unsigned range.
  //
  //   usat dst, #satpos, src
  //   usat dst, #satpos, src, lsl #sh
  //   usat dst, #satpos, src, asr #sh
  //
  // Register dst will contain:
  //
  //   0,                 if s < 0
  //   (1 << satpos) - 1, if s > ((1 << satpos) - 1)
  //   s,                 otherwise
  //
  // where s is the contents of src after shifting (if used.)
  void usat(Register dst, int satpos, const Operand& src, Condition cond = al);

  // Bitfield manipulation instructions. v7 and above.

  void ubfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  void sbfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  void bfc(Register dst, int lsb, int width, Condition cond = al);

  void bfi(Register dst, Register src, int lsb, int width,
           Condition cond = al);

  // Status register access instructions

  void mrs(Register dst, SRegister s, Condition cond = al);
  void msr(SRegisterFieldMask fields, const Operand& src, Condition cond = al);

  // Load/Store instructions
  void ldr(Register dst, const MemOperand& src, Condition cond = al);
  void str(Register src, const MemOperand& dst, Condition cond = al);
  void ldrb(Register dst, const MemOperand& src, Condition cond = al);
  void strb(Register src, const MemOperand& dst, Condition cond = al);
  void ldrh(Register dst, const MemOperand& src, Condition cond = al);
  void strh(Register src, const MemOperand& dst, Condition cond = al);
  void ldrsb(Register dst, const MemOperand& src, Condition cond = al);
  void ldrsh(Register dst, const MemOperand& src, Condition cond = al);
  void ldrd(Register dst1,
            Register dst2,
            const MemOperand& src, Condition cond = al);
  void strd(Register src1,
            Register src2,
            const MemOperand& dst, Condition cond = al);

  // Load/Store multiple instructions
  void ldm(BlockAddrMode am, Register base, RegList dst, Condition cond = al);
  void stm(BlockAddrMode am, Register base, RegList src, Condition cond = al);

  // Exception-generating instructions and debugging support
  void stop(const char* msg,
            Condition cond = al,
            int32_t code = kDefaultStopCode);

  void bkpt(uint32_t imm16);  // v5 and above
  void svc(uint32_t imm24, Condition cond = al);

  // Coprocessor instructions

  void cdp(Coprocessor coproc, int opcode_1,
           CRegister crd, CRegister crn, CRegister crm,
           int opcode_2, Condition cond = al);

  void cdp2(Coprocessor coproc, int opcode_1,
            CRegister crd, CRegister crn, CRegister crm,
            int opcode_2);  // v5 and above

  void mcr(Coprocessor coproc, int opcode_1,
           Register rd, CRegister crn, CRegister crm,
           int opcode_2 = 0, Condition cond = al);

  void mcr2(Coprocessor coproc, int opcode_1,
            Register rd, CRegister crn, CRegister crm,
            int opcode_2 = 0);  // v5 and above

  void mrc(Coprocessor coproc, int opcode_1,
           Register rd, CRegister crn, CRegister crm,
           int opcode_2 = 0, Condition cond = al);

  void mrc2(Coprocessor coproc, int opcode_1,
            Register rd, CRegister crn, CRegister crm,
            int opcode_2 = 0);  // v5 and above

  void ldc(Coprocessor coproc, CRegister crd, const MemOperand& src,
           LFlag l = Short, Condition cond = al);
  void ldc(Coprocessor coproc, CRegister crd, Register base, int option,
           LFlag l = Short, Condition cond = al);

  void ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src,
            LFlag l = Short);  // v5 and above
  void ldc2(Coprocessor coproc, CRegister crd, Register base, int option,
            LFlag l = Short);  // v5 and above

  // Support for VFP.
  // All these APIs support S0 to S31 and D0 to D15.
  // Currently these APIs do not support extended D registers, i.e, D16 to D31.
  // However, some simple modifications can allow
  // these APIs to support D16 to D31.

  void vldr(const DwVfpRegister dst,
            const Register base,
            int offset,
            const Condition cond = al);
  void vldr(const DwVfpRegister dst,
            const MemOperand& src,
            const Condition cond = al);

  void vldr(const SwVfpRegister dst,
            const Register base,
            int offset,
            const Condition cond = al);
  void vldr(const SwVfpRegister dst,
            const MemOperand& src,
            const Condition cond = al);

  void vstr(const DwVfpRegister src,
            const Register base,
            int offset,
            const Condition cond = al);
  void vstr(const DwVfpRegister src,
            const MemOperand& dst,
            const Condition cond = al);

  void vstr(const SwVfpRegister src,
            const Register base,
            int offset,
            const Condition cond = al);
  void vstr(const SwVfpRegister src,
            const MemOperand& dst,
            const Condition cond = al);

  void vldm(BlockAddrMode am,
            Register base,
            DwVfpRegister first,
            DwVfpRegister last,
            Condition cond = al);

  void vstm(BlockAddrMode am,
            Register base,
            DwVfpRegister first,
            DwVfpRegister last,
            Condition cond = al);

  void vldm(BlockAddrMode am,
            Register base,
            SwVfpRegister first,
            SwVfpRegister last,
            Condition cond = al);

  void vstm(BlockAddrMode am,
            Register base,
            SwVfpRegister first,
            SwVfpRegister last,
            Condition cond = al);

  void vmov(const DwVfpRegister dst,
            double imm,
            const Register scratch = no_reg,
            const Condition cond = al);
  void vmov(const SwVfpRegister dst,
            const SwVfpRegister src,
            const Condition cond = al);
  void vmov(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
  void vmov(const DwVfpRegister dst,
            const Register src1,
            const Register src2,
            const Condition cond = al);
  void vmov(const Register dst1,
            const Register dst2,
            const DwVfpRegister src,
            const Condition cond = al);
  void vmov(const SwVfpRegister dst,
            const Register src,
            const Condition cond = al);
  void vmov(const Register dst,
            const SwVfpRegister src,
            const Condition cond = al);
  void vcvt_f64_s32(const DwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f32_s32(const SwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f64_u32(const DwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_s32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_u32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f64_f32(const DwVfpRegister dst,
                    const SwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);
  void vcvt_f32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
                    VFPConversionMode mode = kDefaultRoundToZero,
                    const Condition cond = al);

  void vneg(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
  void vabs(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
  void vadd(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vsub(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vmul(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vdiv(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vcmp(const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vcmp(const DwVfpRegister src1,
            const double src2,
            const Condition cond = al);
  void vmrs(const Register dst,
            const Condition cond = al);
  void vmsr(const Register dst,
            const Condition cond = al);
  void vsqrt(const DwVfpRegister dst,
             const DwVfpRegister src,
             const Condition cond = al);

  // Pseudo instructions

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    NON_MARKING_NOP = 0,
    DEBUG_BREAK_NOP,
    // IC markers.
    PROPERTY_ACCESS_INLINED,
    PROPERTY_ACCESS_INLINED_CONTEXT,
    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    // Helper values.
    LAST_CODE_MARKER,
    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
  };

  void nop(int type = 0);   // 0 is the default non-marking type.

  void push(Register src, Condition cond = al) {
    str(src, MemOperand(sp, 4, NegPreIndex), cond);
  }

  void pop(Register dst, Condition cond = al) {
    ldr(dst, MemOperand(sp, 4, PostIndex), cond);
  }

  void pop() {
    add(sp, sp, Operand(kPointerSize));
  }

  // Jump unconditionally to given label.
  void jmp(Label* L) { b(L, al); }

  static bool use_immediate_embedded_pointer_loads(
      const Assembler* assembler) {
#ifdef USE_BLX
    return CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
        (assembler == NULL || !assembler->predictable_code_size());
#else
    // If not using BLX, all loads from the constant pool cannot be immediate,
    // because the ldr pc, [pc + #xxxx] used for calls must be a single
    // instruction and cannot be easily distinguished out of context from
    // other loads that could use movw/movt.
    return false;
#endif
  }

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Check the number of instructions generated from label to here.
  int InstructionsGeneratedSince(Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
  }

  // Check whether an immediate fits an addressing mode 1 instruction.
  bool ImmediateFitsAddrMode1Instruction(int32_t imm32);

  // Class for scoping postponing the constant pool generation.
  class BlockConstPoolScope {
   public:
    explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockConstPool();
    }
    ~BlockConstPoolScope() {
      assem_->EndBlockConstPool();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
  };

  // Debugging

  // Mark address of the ExitJSFrame code.
  void RecordJSReturn();

  // Mark address of a debug break slot.
  void RecordDebugBreakSlot();

  // Record the AST id of the CallIC being compiled, so that it can be placed
  // in the relocation information.
  void SetRecordedAstId(TypeFeedbackId ast_id) {
    ASSERT(recorded_ast_id_.IsNone());
    recorded_ast_id_ = ast_id;
  }

  TypeFeedbackId RecordedAstId() {
    ASSERT(!recorded_ast_id_.IsNone());
    return recorded_ast_id_;
  }

  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }

  // Record a comment relocation entry that can be used by a disassembler.
  // Use --code-comments to enable.
  void RecordComment(const char* msg);

  // Record the emission of a constant pool.
  //
  // The emission of constant pool depends on the size of the code generated and
  // the number of RelocInfo recorded.
  // The Debug mechanism needs to map code offsets between two versions of a
  // function, compiled with and without debugger support (see for example
  // Debug::PrepareForBreakPoints()).
  // Compiling functions with debugger support generates additional code
  // (Debug::GenerateSlot()). This may affect the emission of the constant
  // pools and cause the version of the code with debugger support to have
  // constant pools generated in different places.
  // Recording the position and size of emitted constant pools allows to
  // correctly compute the offset mappings between the different versions of a
  // function in all situations.
  //
  // The parameter indicates the size of the constant pool (in bytes), including
  // the marker and branch over the data.
  void RecordConstPool(int size);

  // Writes a single byte or word of data in the code stream.  Used
  // for inline tables, e.g., jump-tables. The constant pool should be
  // emitted before any use of db and dd to ensure that constant pools
  // are not emitted as part of the tables generated.
  void db(uint8_t data);
  void dd(uint32_t data);

  int pc_offset() const { return pc_ - buffer_; }

  PositionsRecorder* positions_recorder() { return &positions_recorder_; }

  // Read/patch instructions
  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
  void instr_at_put(int pos, Instr instr) {
    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
  }
  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
  static void instr_at_put(byte* pc, Instr instr) {
    *reinterpret_cast<Instr*>(pc) = instr;
  }
  static Condition GetCondition(Instr instr);
  static bool IsBranch(Instr instr);
  static int GetBranchOffset(Instr instr);
  static bool IsLdrRegisterImmediate(Instr instr);
  static int GetLdrRegisterImmediateOffset(Instr instr);
  static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset);
  static bool IsStrRegisterImmediate(Instr instr);
  static Instr SetStrRegisterImmediateOffset(Instr instr, int offset);
  static bool IsAddRegisterImmediate(Instr instr);
  static Instr SetAddRegisterImmediateOffset(Instr instr, int offset);
  static Register GetRd(Instr instr);
  static Register GetRn(Instr instr);
  static Register GetRm(Instr instr);
  static bool IsPush(Instr instr);
  static bool IsPop(Instr instr);
  static bool IsStrRegFpOffset(Instr instr);
  static bool IsLdrRegFpOffset(Instr instr);
  static bool IsStrRegFpNegOffset(Instr instr);
  static bool IsLdrRegFpNegOffset(Instr instr);
  static bool IsLdrPcImmediateOffset(Instr instr);
  static bool IsTstImmediate(Instr instr);
  static bool IsCmpRegister(Instr instr);
  static bool IsCmpImmediate(Instr instr);
  static Register GetCmpImmediateRegister(Instr instr);
  static int GetCmpImmediateRawImmediate(Instr instr);
  static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
  static bool IsMovT(Instr instr);
  static bool IsMovW(Instr instr);

  // Constants in pools are accessed via pc relative addressing, which can
  // reach +/-4KB thereby defining a maximum distance between the instruction
  // and the accessed constant.
  static const int kMaxDistToPool = 4*KB;
  static const int kMaxNumPendingRelocInfo = kMaxDistToPool/kInstrSize;
  STATIC_ASSERT((kConstantPoolLengthMaxMask & kMaxNumPendingRelocInfo) ==
                kMaxNumPendingRelocInfo);

  // Postpone the generation of the constant pool for the specified number of
  // instructions.
  void BlockConstPoolFor(int instructions);

  // Check if is time to emit a constant pool.
  void CheckConstPool(bool force_emit, bool require_jump);

 protected:
  // Relocation for a type-recording IC has the AST id added to it.  This
  // member variable is a way to pass the information from the call site to
  // the relocation info.
  TypeFeedbackId recorded_ast_id_;

  int buffer_space() const { return reloc_info_writer.pos() - pc_; }

  // Decode branch instruction at pos and return branch target pos
  int target_at(int pos);

  // Patch branch instruction at pos to branch to given branch target pos
  void target_at_put(int pos, int target_pos);

  // Prevent contant pool emission until EndBlockConstPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
  void StartBlockConstPool() {
    if (const_pool_blocked_nesting_++ == 0) {
      // Prevent constant pool checks happening by setting the next check to
      // the biggest possible offset.
      next_buffer_check_ = kMaxInt;
    }
  }

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockConstPool to have an effect.
  void EndBlockConstPool() {
    if (--const_pool_blocked_nesting_ == 0) {
      // Check the constant pool hasn't been blocked for too long.
      ASSERT((num_pending_reloc_info_ == 0) ||
             (pc_offset() < (first_const_pool_use_ + kMaxDistToPool)));
      // Two cases:
      //  * no_const_pool_before_ >= next_buffer_check_ and the emission is
      //    still blocked
      //  * no_const_pool_before_ < next_buffer_check_ and the next emit will
      //    trigger a check.
      next_buffer_check_ = no_const_pool_before_;
    }
  }

  bool is_const_pool_blocked() const {
    return (const_pool_blocked_nesting_ > 0) ||
           (pc_offset() < no_const_pool_before_);
  }

 private:
  // Code buffer:
  // The buffer into which code and relocation info are generated.
  byte* buffer_;
  int buffer_size_;
  // True if the assembler owns the buffer, false if buffer is external.
  bool own_buffer_;

  int next_buffer_check_;  // pc offset of next buffer check

  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries.
  static const int kGap = 32;
  byte* pc_;  // the program counter; moves forward

  // Constant pool generation
  // Pools are emitted in the instruction stream, preferably after unconditional
  // jumps or after returns from functions (in dead code locations).
  // If a long code sequence does not contain unconditional jumps, it is
  // necessary to emit the constant pool before the pool gets too far from the
  // location it is accessed from. In this case, we emit a jump over the emitted
  // constant pool.
  // Constants in the pool may be addresses of functions that gets relocated;
  // if so, a relocation info entry is associated to the constant pool entry.

  // Repeated checking whether the constant pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated. That also means that the sizing of the buffers is not
  // an exact science, and that we rely on some slop to not overrun buffers.
  static const int kCheckPoolIntervalInst = 32;
  static const int kCheckPoolInterval = kCheckPoolIntervalInst * kInstrSize;


  // Average distance beetween a constant pool and the first instruction
  // accessing the constant pool. Longer distance should result in less I-cache
  // pollution.
  // In practice the distance will be smaller since constant pool emission is
  // forced after function return and sometimes after unconditional branches.
  static const int kAvgDistToPool = kMaxDistToPool - kCheckPoolInterval;

  // Emission of the constant pool may be blocked in some code sequences.
  int const_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_const_pool_before_;  // Block emission before this pc offset.

  // Keep track of the first instruction requiring a constant pool entry
  // since the previous constant pool was emitted.
  int first_const_pool_use_;

  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;

  // Relocation info records are also used during code generation as temporary
  // containers for constants and code target addresses until they are emitted
  // to the constant pool. These pending relocation info records are temporarily
  // stored in a separate buffer until a constant pool is emitted.
  // If every instruction in a long sequence is accessing the pool, we need one
  // pending relocation entry per instruction.

  // the buffer of pending relocation info
  RelocInfo pending_reloc_info_[kMaxNumPendingRelocInfo];
  // number of pending reloc info entries in the buffer
  int num_pending_reloc_info_;

  // The bound position, before this we cannot do instruction elimination.
  int last_bound_pos_;

  // Code emission
  inline void CheckBuffer();
  void GrowBuffer();
  inline void emit(Instr x);

  // 32-bit immediate values
  void move_32_bit_immediate(Condition cond,
                             Register rd,
                             SBit s,
                             const Operand& x);

  // Instruction generation
  void addrmod1(Instr instr, Register rn, Register rd, const Operand& x);
  void addrmod2(Instr instr, Register rd, const MemOperand& x);
  void addrmod3(Instr instr, Register rd, const MemOperand& x);
  void addrmod4(Instr instr, Register rn, RegList rl);
  void addrmod5(Instr instr, CRegister crd, const MemOperand& x);

  // Labels
  void print(Label* L);
  void bind_to(Label* L, int pos);
  void link_to(Label* L, Label* appendix);
  void next(Label* L);

  enum UseConstantPoolMode {
    USE_CONSTANT_POOL,
    DONT_USE_CONSTANT_POOL
  };

  // Record reloc info for current pc_
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0,
                       UseConstantPoolMode mode = USE_CONSTANT_POOL);

  friend class RegExpMacroAssemblerARM;
  friend class RelocInfo;
  friend class CodePatcher;
  friend class BlockConstPoolScope;

  PositionsRecorder positions_recorder_;
  friend class PositionsRecorder;
  friend class EnsureSpace;
};


class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) {
    assembler->CheckBuffer();
  }
};


} }  // namespace v8::internal

#endif  // V8_ARM_ASSEMBLER_ARM_H_