summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/arm/builtins-arm.cc
blob: c99e778a7f0469118269df8eb3ce697bbc185112 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_ARM)

#include "codegen.h"
#include "debug.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "runtime.h"

namespace v8 {
namespace internal {


#define __ ACCESS_MASM(masm)


void Builtins::Generate_Adaptor(MacroAssembler* masm,
                                CFunctionId id,
                                BuiltinExtraArguments extra_args) {
  // ----------- S t a t e -------------
  //  -- r0                 : number of arguments excluding receiver
  //  -- r1                 : called function (only guaranteed when
  //                          extra_args requires it)
  //  -- cp                 : context
  //  -- sp[0]              : last argument
  //  -- ...
  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
  //  -- sp[4 * argc]       : receiver
  // -----------------------------------

  // Insert extra arguments.
  int num_extra_args = 0;
  if (extra_args == NEEDS_CALLED_FUNCTION) {
    num_extra_args = 1;
    __ push(r1);
  } else {
    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
  }

  // JumpToExternalReference expects r0 to contain the number of arguments
  // including the receiver and the extra arguments.
  __ add(r0, r0, Operand(num_extra_args + 1));
  __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}


// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
                                              Register result) {
  // Load the global context.

  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ ldr(result,
         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
  // Load the InternalArray function from the global context.
  __ ldr(result,
         MemOperand(result,
                    Context::SlotOffset(
                        Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
}


// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
  // Load the global context.

  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ ldr(result,
         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
  // Load the Array function from the global context.
  __ ldr(result,
         MemOperand(result,
                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}


// Allocate an empty JSArray. The allocated array is put into the result
// register. An elements backing store is allocated with size initial_capacity
// and filled with the hole values.
static void AllocateEmptyJSArray(MacroAssembler* masm,
                                 Register array_function,
                                 Register result,
                                 Register scratch1,
                                 Register scratch2,
                                 Register scratch3,
                                 Label* gc_required) {
  const int initial_capacity = JSArray::kPreallocatedArrayElements;
  STATIC_ASSERT(initial_capacity >= 0);
  __ LoadInitialArrayMap(array_function, scratch2, scratch1);

  // Allocate the JSArray object together with space for a fixed array with the
  // requested elements.
  int size = JSArray::kSize;
  if (initial_capacity > 0) {
    size += FixedArray::SizeFor(initial_capacity);
  }
  __ AllocateInNewSpace(size,
                        result,
                        scratch2,
                        scratch3,
                        gc_required,
                        TAG_OBJECT);

  // Allocated the JSArray. Now initialize the fields except for the elements
  // array.
  // result: JSObject
  // scratch1: initial map
  // scratch2: start of next object
  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
  // Field JSArray::kElementsOffset is initialized later.
  __ mov(scratch3,  Operand(0, RelocInfo::NONE));
  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));

  if (initial_capacity == 0) {
    __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
    return;
  }

  // Calculate the location of the elements array and set elements array member
  // of the JSArray.
  // result: JSObject
  // scratch2: start of next object
  __ add(scratch1, result, Operand(JSArray::kSize));
  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));

  // Clear the heap tag on the elements array.
  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));

  // Initialize the FixedArray and fill it with holes. FixedArray length is
  // stored as a smi.
  // result: JSObject
  // scratch1: elements array (untagged)
  // scratch2: start of next object
  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
  STATIC_ASSERT(0 * kPointerSize == FixedArray::kMapOffset);
  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
  STATIC_ASSERT(1 * kPointerSize == FixedArray::kLengthOffset);
  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));

  // Fill the FixedArray with the hole value. Inline the code if short.
  STATIC_ASSERT(2 * kPointerSize == FixedArray::kHeaderSize);
  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
  static const int kLoopUnfoldLimit = 4;
  if (initial_capacity <= kLoopUnfoldLimit) {
    for (int i = 0; i < initial_capacity; i++) {
      __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
    }
  } else {
    Label loop, entry;
    __ add(scratch2, scratch1, Operand(initial_capacity * kPointerSize));
    __ b(&entry);
    __ bind(&loop);
    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
    __ bind(&entry);
    __ cmp(scratch1, scratch2);
    __ b(lt, &loop);
  }
}

// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array_storage and elements_array_end
// (see  below for when that is not the case). If the parameter fill_with_holes
// is true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array_storage is scratched.
static void AllocateJSArray(MacroAssembler* masm,
                            Register array_function,  // Array function.
                            Register array_size,  // As a smi, cannot be 0.
                            Register result,
                            Register elements_array_storage,
                            Register elements_array_end,
                            Register scratch1,
                            Register scratch2,
                            bool fill_with_hole,
                            Label* gc_required) {
  // Load the initial map from the array function.
  __ LoadInitialArrayMap(array_function, scratch2, elements_array_storage);

  if (FLAG_debug_code) {  // Assert that array size is not zero.
    __ tst(array_size, array_size);
    __ Assert(ne, "array size is unexpectedly 0");
  }

  // Allocate the JSArray object together with space for a FixedArray with the
  // requested number of elements.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
  __ mov(elements_array_end,
         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
  __ add(elements_array_end,
         elements_array_end,
         Operand(array_size, ASR, kSmiTagSize));
  __ AllocateInNewSpace(
      elements_array_end,
      result,
      scratch1,
      scratch2,
      gc_required,
      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));

  // Allocated the JSArray. Now initialize the fields except for the elements
  // array.
  // result: JSObject
  // elements_array_storage: initial map
  // array_size: size of array (smi)
  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
  __ str(elements_array_storage,
         FieldMemOperand(result, JSArray::kPropertiesOffset));
  // Field JSArray::kElementsOffset is initialized later.
  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));

  // Calculate the location of the elements array and set elements array member
  // of the JSArray.
  // result: JSObject
  // array_size: size of array (smi)
  __ add(elements_array_storage, result, Operand(JSArray::kSize));
  __ str(elements_array_storage,
         FieldMemOperand(result, JSArray::kElementsOffset));

  // Clear the heap tag on the elements array.
  STATIC_ASSERT(kSmiTag == 0);
  __ sub(elements_array_storage,
         elements_array_storage,
         Operand(kHeapObjectTag));
  // Initialize the fixed array and fill it with holes. FixedArray length is
  // stored as a smi.
  // result: JSObject
  // elements_array_storage: elements array (untagged)
  // array_size: size of array (smi)
  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
  STATIC_ASSERT(kSmiTag == 0);
  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
  __ str(array_size,
         MemOperand(elements_array_storage, kPointerSize, PostIndex));

  // Calculate elements array and elements array end.
  // result: JSObject
  // elements_array_storage: elements array element storage
  // array_size: smi-tagged size of elements array
  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
  __ add(elements_array_end,
         elements_array_storage,
         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));

  // Fill the allocated FixedArray with the hole value if requested.
  // result: JSObject
  // elements_array_storage: elements array element storage
  // elements_array_end: start of next object
  if (fill_with_hole) {
    Label loop, entry;
    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
    __ jmp(&entry);
    __ bind(&loop);
    __ str(scratch1,
           MemOperand(elements_array_storage, kPointerSize, PostIndex));
    __ bind(&entry);
    __ cmp(elements_array_storage, elements_array_end);
    __ b(lt, &loop);
  }
}

// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
//   r0: argc
//   r1: constructor (built-in Array function)
//   lr: return address
//   sp[0]: last argument
// This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// construct call the constructor function in r1 needs to be preserved for
// entering the generic code. In both cases argc in r0 needs to be preserved.
// Both registers are preserved by this code so no need to differentiate between
// construct call and normal call.
static void ArrayNativeCode(MacroAssembler* masm,
                            Label* call_generic_code) {
  Counters* counters = masm->isolate()->counters();
  Label argc_one_or_more, argc_two_or_more, not_empty_array, empty_array,
      has_non_smi_element, finish, cant_transition_map, not_double;

  // Check for array construction with zero arguments or one.
  __ cmp(r0, Operand(0, RelocInfo::NONE));
  __ b(ne, &argc_one_or_more);

  // Handle construction of an empty array.
  __ bind(&empty_array);
  AllocateEmptyJSArray(masm,
                       r1,
                       r2,
                       r3,
                       r4,
                       r5,
                       call_generic_code);
  __ IncrementCounter(counters->array_function_native(), 1, r3, r4);
  // Set up return value, remove receiver from stack and return.
  __ mov(r0, r2);
  __ add(sp, sp, Operand(kPointerSize));
  __ Jump(lr);

  // Check for one argument. Bail out if argument is not smi or if it is
  // negative.
  __ bind(&argc_one_or_more);
  __ cmp(r0, Operand(1));
  __ b(ne, &argc_two_or_more);
  STATIC_ASSERT(kSmiTag == 0);
  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
  __ tst(r2, r2);
  __ b(ne, &not_empty_array);
  __ Drop(1);  // Adjust stack.
  __ mov(r0, Operand(0));  // Treat this as a call with argc of zero.
  __ b(&empty_array);

  __ bind(&not_empty_array);
  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
  __ b(ne, call_generic_code);

  // Handle construction of an empty array of a certain size. Bail out if size
  // is too large to actually allocate an elements array.
  STATIC_ASSERT(kSmiTag == 0);
  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
  __ b(ge, call_generic_code);

  // r0: argc
  // r1: constructor
  // r2: array_size (smi)
  // sp[0]: argument
  AllocateJSArray(masm,
                  r1,
                  r2,
                  r3,
                  r4,
                  r5,
                  r6,
                  r7,
                  true,
                  call_generic_code);
  __ IncrementCounter(counters->array_function_native(), 1, r2, r4);
  // Set up return value, remove receiver and argument from stack and return.
  __ mov(r0, r3);
  __ add(sp, sp, Operand(2 * kPointerSize));
  __ Jump(lr);

  // Handle construction of an array from a list of arguments.
  __ bind(&argc_two_or_more);
  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.

  // r0: argc
  // r1: constructor
  // r2: array_size (smi)
  // sp[0]: last argument
  AllocateJSArray(masm,
                  r1,
                  r2,
                  r3,
                  r4,
                  r5,
                  r6,
                  r7,
                  false,
                  call_generic_code);
  __ IncrementCounter(counters->array_function_native(), 1, r2, r6);

  // Fill arguments as array elements. Copy from the top of the stack (last
  // element) to the array backing store filling it backwards. Note:
  // elements_array_end points after the backing store therefore PreIndex is
  // used when filling the backing store.
  // r0: argc
  // r3: JSArray
  // r4: elements_array storage start (untagged)
  // r5: elements_array_end (untagged)
  // sp[0]: last argument
  Label loop, entry;
  __ mov(r7, sp);
  __ jmp(&entry);
  __ bind(&loop);
  __ ldr(r2, MemOperand(r7, kPointerSize, PostIndex));
  if (FLAG_smi_only_arrays) {
    __ JumpIfNotSmi(r2, &has_non_smi_element);
  }
  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
  __ bind(&entry);
  __ cmp(r4, r5);
  __ b(lt, &loop);

  __ bind(&finish);
  __ mov(sp, r7);

  // Remove caller arguments and receiver from the stack, setup return value and
  // return.
  // r0: argc
  // r3: JSArray
  // sp[0]: receiver
  __ add(sp, sp, Operand(kPointerSize));
  __ mov(r0, r3);
  __ Jump(lr);

  __ bind(&has_non_smi_element);
  // Double values are handled by the runtime.
  __ CheckMap(
      r2, r9, Heap::kHeapNumberMapRootIndex, &not_double, DONT_DO_SMI_CHECK);
  __ bind(&cant_transition_map);
  __ UndoAllocationInNewSpace(r3, r4);
  __ b(call_generic_code);

  __ bind(&not_double);
  // Transition FAST_SMI_ONLY_ELEMENTS to FAST_ELEMENTS.
  // r3: JSArray
  __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
  __ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
                                         FAST_ELEMENTS,
                                         r2,
                                         r9,
                                         &cant_transition_map);
  __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
  __ RecordWriteField(r3,
                      HeapObject::kMapOffset,
                      r2,
                      r9,
                      kLRHasNotBeenSaved,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  Label loop2;
  __ sub(r7, r7, Operand(kPointerSize));
  __ bind(&loop2);
  __ ldr(r2, MemOperand(r7, kPointerSize, PostIndex));
  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
  __ cmp(r4, r5);
  __ b(lt, &loop2);
  __ b(&finish);
}


void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r0     : number of arguments
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------
  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;

  // Get the InternalArray function.
  GenerateLoadInternalArrayFunction(masm, r1);

  if (FLAG_debug_code) {
    // Initial map for the builtin InternalArray functions should be maps.
    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
    __ tst(r2, Operand(kSmiTagMask));
    __ Assert(ne, "Unexpected initial map for InternalArray function");
    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
    __ Assert(eq, "Unexpected initial map for InternalArray function");
  }

  // Run the native code for the InternalArray function called as a normal
  // function.
  ArrayNativeCode(masm, &generic_array_code);

  // Jump to the generic array code if the specialized code cannot handle the
  // construction.
  __ bind(&generic_array_code);

  Handle<Code> array_code =
      masm->isolate()->builtins()->InternalArrayCodeGeneric();
  __ Jump(array_code, RelocInfo::CODE_TARGET);
}


void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r0     : number of arguments
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------
  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;

  // Get the Array function.
  GenerateLoadArrayFunction(masm, r1);

  if (FLAG_debug_code) {
    // Initial map for the builtin Array functions should be maps.
    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
    __ tst(r2, Operand(kSmiTagMask));
    __ Assert(ne, "Unexpected initial map for Array function");
    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
    __ Assert(eq, "Unexpected initial map for Array function");
  }

  // Run the native code for the Array function called as a normal function.
  ArrayNativeCode(masm, &generic_array_code);

  // Jump to the generic array code if the specialized code cannot handle
  // the construction.
  __ bind(&generic_array_code);

  Handle<Code> array_code =
      masm->isolate()->builtins()->ArrayCodeGeneric();
  __ Jump(array_code, RelocInfo::CODE_TARGET);
}


void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r0     : number of arguments
  //  -- r1     : constructor function
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------
  Label generic_constructor;

  if (FLAG_debug_code) {
    // The array construct code is only set for the builtin and internal
    // Array functions which always have a map.
    // Initial map for the builtin Array function should be a map.
    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
    __ tst(r2, Operand(kSmiTagMask));
    __ Assert(ne, "Unexpected initial map for Array function");
    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
    __ Assert(eq, "Unexpected initial map for Array function");
  }

  // Run the native code for the Array function called as a constructor.
  ArrayNativeCode(masm, &generic_constructor);

  // Jump to the generic construct code in case the specialized code cannot
  // handle the construction.
  __ bind(&generic_constructor);
  Handle<Code> generic_construct_stub =
      masm->isolate()->builtins()->JSConstructStubGeneric();
  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}


void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r0                     : number of arguments
  //  -- r1                     : constructor function
  //  -- lr                     : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->string_ctor_calls(), 1, r2, r3);

  Register function = r1;
  if (FLAG_debug_code) {
    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2);
    __ cmp(function, Operand(r2));
    __ Assert(eq, "Unexpected String function");
  }

  // Load the first arguments in r0 and get rid of the rest.
  Label no_arguments;
  __ cmp(r0, Operand(0, RelocInfo::NONE));
  __ b(eq, &no_arguments);
  // First args = sp[(argc - 1) * 4].
  __ sub(r0, r0, Operand(1));
  __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
  // sp now point to args[0], drop args[0] + receiver.
  __ Drop(2);

  Register argument = r2;
  Label not_cached, argument_is_string;
  NumberToStringStub::GenerateLookupNumberStringCache(
      masm,
      r0,        // Input.
      argument,  // Result.
      r3,        // Scratch.
      r4,        // Scratch.
      r5,        // Scratch.
      false,     // Is it a Smi?
      &not_cached);
  __ IncrementCounter(counters->string_ctor_cached_number(), 1, r3, r4);
  __ bind(&argument_is_string);

  // ----------- S t a t e -------------
  //  -- r2     : argument converted to string
  //  -- r1     : constructor function
  //  -- lr     : return address
  // -----------------------------------

  Label gc_required;
  __ AllocateInNewSpace(JSValue::kSize,
                        r0,  // Result.
                        r3,  // Scratch.
                        r4,  // Scratch.
                        &gc_required,
                        TAG_OBJECT);

  // Initialising the String Object.
  Register map = r3;
  __ LoadGlobalFunctionInitialMap(function, map, r4);
  if (FLAG_debug_code) {
    __ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset));
    __ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2));
    __ Assert(eq, "Unexpected string wrapper instance size");
    __ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
    __ cmp(r4, Operand(0, RelocInfo::NONE));
    __ Assert(eq, "Unexpected unused properties of string wrapper");
  }
  __ str(map, FieldMemOperand(r0, HeapObject::kMapOffset));

  __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
  __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
  __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));

  __ str(argument, FieldMemOperand(r0, JSValue::kValueOffset));

  // Ensure the object is fully initialized.
  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);

  __ Ret();

  // The argument was not found in the number to string cache. Check
  // if it's a string already before calling the conversion builtin.
  Label convert_argument;
  __ bind(&not_cached);
  __ JumpIfSmi(r0, &convert_argument);

  // Is it a String?
  __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
  __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kNotStringTag != 0);
  __ tst(r3, Operand(kIsNotStringMask));
  __ b(ne, &convert_argument);
  __ mov(argument, r0);
  __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
  __ b(&argument_is_string);

  // Invoke the conversion builtin and put the result into r2.
  __ bind(&convert_argument);
  __ push(function);  // Preserve the function.
  __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(r0);
    __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
  }
  __ pop(function);
  __ mov(argument, r0);
  __ b(&argument_is_string);

  // Load the empty string into r2, remove the receiver from the
  // stack, and jump back to the case where the argument is a string.
  __ bind(&no_arguments);
  __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
  __ Drop(1);
  __ b(&argument_is_string);

  // At this point the argument is already a string. Call runtime to
  // create a string wrapper.
  __ bind(&gc_required);
  __ IncrementCounter(counters->string_ctor_gc_required(), 1, r3, r4);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(argument);
    __ CallRuntime(Runtime::kNewStringWrapper, 1);
  }
  __ Ret();
}


static void Generate_JSConstructStubHelper(MacroAssembler* masm,
                                           bool is_api_function,
                                           bool count_constructions) {
  // ----------- S t a t e -------------
  //  -- r0     : number of arguments
  //  -- r1     : constructor function
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Should never count constructions for api objects.
  ASSERT(!is_api_function || !count_constructions);

  Isolate* isolate = masm->isolate();

  // Enter a construct frame.
  {
    FrameScope scope(masm, StackFrame::CONSTRUCT);

    // Preserve the two incoming parameters on the stack.
    __ mov(r0, Operand(r0, LSL, kSmiTagSize));
    __ push(r0);  // Smi-tagged arguments count.
    __ push(r1);  // Constructor function.

    // Try to allocate the object without transitioning into C code. If any of
    // the preconditions is not met, the code bails out to the runtime call.
    Label rt_call, allocated;
    if (FLAG_inline_new) {
      Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
      ExternalReference debug_step_in_fp =
          ExternalReference::debug_step_in_fp_address(isolate);
      __ mov(r2, Operand(debug_step_in_fp));
      __ ldr(r2, MemOperand(r2));
      __ tst(r2, r2);
      __ b(ne, &rt_call);
#endif

      // Load the initial map and verify that it is in fact a map.
      // r1: constructor function
      __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
      __ JumpIfSmi(r2, &rt_call);
      __ CompareObjectType(r2, r3, r4, MAP_TYPE);
      __ b(ne, &rt_call);

      // Check that the constructor is not constructing a JSFunction (see
      // comments in Runtime_NewObject in runtime.cc). In which case the
      // initial map's instance type would be JS_FUNCTION_TYPE.
      // r1: constructor function
      // r2: initial map
      __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
      __ b(eq, &rt_call);

      if (count_constructions) {
        Label allocate;
        // Decrease generous allocation count.
        __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
        MemOperand constructor_count =
            FieldMemOperand(r3, SharedFunctionInfo::kConstructionCountOffset);
        __ ldrb(r4, constructor_count);
        __ sub(r4, r4, Operand(1), SetCC);
        __ strb(r4, constructor_count);
        __ b(ne, &allocate);

        __ Push(r1, r2);

        __ push(r1);  // constructor
        // The call will replace the stub, so the countdown is only done once.
        __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);

        __ pop(r2);
        __ pop(r1);

        __ bind(&allocate);
      }

      // Now allocate the JSObject on the heap.
      // r1: constructor function
      // r2: initial map
      __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
      __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);

      // Allocated the JSObject, now initialize the fields. Map is set to
      // initial map and properties and elements are set to empty fixed array.
      // r1: constructor function
      // r2: initial map
      // r3: object size
      // r4: JSObject (not tagged)
      __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
      __ mov(r5, r4);
      ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
      __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
      ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
      __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
      ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
      __ str(r6, MemOperand(r5, kPointerSize, PostIndex));

      // Fill all the in-object properties with the appropriate filler.
      // r1: constructor function
      // r2: initial map
      // r3: object size (in words)
      // r4: JSObject (not tagged)
      // r5: First in-object property of JSObject (not tagged)
      __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
      ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
      __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
      if (count_constructions) {
        __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
        __ Ubfx(r0, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
                kBitsPerByte);
        __ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2));
        // r0: offset of first field after pre-allocated fields
        if (FLAG_debug_code) {
          __ cmp(r0, r6);
          __ Assert(le, "Unexpected number of pre-allocated property fields.");
        }
        __ InitializeFieldsWithFiller(r5, r0, r7);
        // To allow for truncation.
        __ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex);
      }
      __ InitializeFieldsWithFiller(r5, r6, r7);

      // Add the object tag to make the JSObject real, so that we can continue
      // and jump into the continuation code at any time from now on. Any
      // failures need to undo the allocation, so that the heap is in a
      // consistent state and verifiable.
      __ add(r4, r4, Operand(kHeapObjectTag));

      // Check if a non-empty properties array is needed. Continue with
      // allocated object if not fall through to runtime call if it is.
      // r1: constructor function
      // r4: JSObject
      // r5: start of next object (not tagged)
      __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
      // The field instance sizes contains both pre-allocated property fields
      // and in-object properties.
      __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
      __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
              kBitsPerByte);
      __ add(r3, r3, Operand(r6));
      __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * kBitsPerByte,
              kBitsPerByte);
      __ sub(r3, r3, Operand(r6), SetCC);

      // Done if no extra properties are to be allocated.
      __ b(eq, &allocated);
      __ Assert(pl, "Property allocation count failed.");

      // Scale the number of elements by pointer size and add the header for
      // FixedArrays to the start of the next object calculation from above.
      // r1: constructor
      // r3: number of elements in properties array
      // r4: JSObject
      // r5: start of next object
      __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
      __ AllocateInNewSpace(
          r0,
          r5,
          r6,
          r2,
          &undo_allocation,
          static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));

      // Initialize the FixedArray.
      // r1: constructor
      // r3: number of elements in properties array
      // r4: JSObject
      // r5: FixedArray (not tagged)
      __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
      __ mov(r2, r5);
      ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
      __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
      ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
      __ mov(r0, Operand(r3, LSL, kSmiTagSize));
      __ str(r0, MemOperand(r2, kPointerSize, PostIndex));

      // Initialize the fields to undefined.
      // r1: constructor function
      // r2: First element of FixedArray (not tagged)
      // r3: number of elements in properties array
      // r4: JSObject
      // r5: FixedArray (not tagged)
      __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
      ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
      { Label loop, entry;
        if (count_constructions) {
          __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
        } else if (FLAG_debug_code) {
          __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
          __ cmp(r7, r8);
          __ Assert(eq, "Undefined value not loaded.");
        }
        __ b(&entry);
        __ bind(&loop);
        __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
        __ bind(&entry);
        __ cmp(r2, r6);
        __ b(lt, &loop);
      }

      // Store the initialized FixedArray into the properties field of
      // the JSObject
      // r1: constructor function
      // r4: JSObject
      // r5: FixedArray (not tagged)
      __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
      __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));

      // Continue with JSObject being successfully allocated
      // r1: constructor function
      // r4: JSObject
      __ jmp(&allocated);

      // Undo the setting of the new top so that the heap is verifiable. For
      // example, the map's unused properties potentially do not match the
      // allocated objects unused properties.
      // r4: JSObject (previous new top)
      __ bind(&undo_allocation);
      __ UndoAllocationInNewSpace(r4, r5);
    }

    // Allocate the new receiver object using the runtime call.
    // r1: constructor function
    __ bind(&rt_call);
    __ push(r1);  // argument for Runtime_NewObject
    __ CallRuntime(Runtime::kNewObject, 1);
    __ mov(r4, r0);

    // Receiver for constructor call allocated.
    // r4: JSObject
    __ bind(&allocated);
    __ push(r4);
    __ push(r4);

    // Reload the number of arguments and the constructor from the stack.
    // sp[0]: receiver
    // sp[1]: receiver
    // sp[2]: constructor function
    // sp[3]: number of arguments (smi-tagged)
    __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
    __ ldr(r3, MemOperand(sp, 3 * kPointerSize));

    // Set up pointer to last argument.
    __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));

    // Set up number of arguments for function call below
    __ mov(r0, Operand(r3, LSR, kSmiTagSize));

    // Copy arguments and receiver to the expression stack.
    // r0: number of arguments
    // r1: constructor function
    // r2: address of last argument (caller sp)
    // r3: number of arguments (smi-tagged)
    // sp[0]: receiver
    // sp[1]: receiver
    // sp[2]: constructor function
    // sp[3]: number of arguments (smi-tagged)
    Label loop, entry;
    __ b(&entry);
    __ bind(&loop);
    __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
    __ push(ip);
    __ bind(&entry);
    __ sub(r3, r3, Operand(2), SetCC);
    __ b(ge, &loop);

    // Call the function.
    // r0: number of arguments
    // r1: constructor function
    if (is_api_function) {
      __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
      Handle<Code> code =
          masm->isolate()->builtins()->HandleApiCallConstruct();
      ParameterCount expected(0);
      __ InvokeCode(code, expected, expected,
                    RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD);
    } else {
      ParameterCount actual(r0);
      __ InvokeFunction(r1, actual, CALL_FUNCTION,
                        NullCallWrapper(), CALL_AS_METHOD);
    }

    // Store offset of return address for deoptimizer.
    if (!is_api_function && !count_constructions) {
      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
    }

    // Restore context from the frame.
    // r0: result
    // sp[0]: receiver
    // sp[1]: constructor function
    // sp[2]: number of arguments (smi-tagged)
    __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));

    // If the result is an object (in the ECMA sense), we should get rid
    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    // on page 74.
    Label use_receiver, exit;

    // If the result is a smi, it is *not* an object in the ECMA sense.
    // r0: result
    // sp[0]: receiver (newly allocated object)
    // sp[1]: constructor function
    // sp[2]: number of arguments (smi-tagged)
    __ JumpIfSmi(r0, &use_receiver);

    // If the type of the result (stored in its map) is less than
    // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
    __ CompareObjectType(r0, r3, r3, FIRST_SPEC_OBJECT_TYPE);
    __ b(ge, &exit);

    // Throw away the result of the constructor invocation and use the
    // on-stack receiver as the result.
    __ bind(&use_receiver);
    __ ldr(r0, MemOperand(sp));

    // Remove receiver from the stack, remove caller arguments, and
    // return.
    __ bind(&exit);
    // r0: result
    // sp[0]: receiver (newly allocated object)
    // sp[1]: constructor function
    // sp[2]: number of arguments (smi-tagged)
    __ ldr(r1, MemOperand(sp, 2 * kPointerSize));

    // Leave construct frame.
  }

  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
  __ add(sp, sp, Operand(kPointerSize));
  __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2);
  __ Jump(lr);
}


void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false, true);
}


void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false, false);
}


void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, true, false);
}


static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Called from Generate_JS_Entry
  // r0: code entry
  // r1: function
  // r2: receiver
  // r3: argc
  // r4: argv
  // r5-r7, cp may be clobbered

  // Clear the context before we push it when entering the internal frame.
  __ mov(cp, Operand(0, RelocInfo::NONE));

  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Set up the context from the function argument.
    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));

    __ InitializeRootRegister();

    // Push the function and the receiver onto the stack.
    __ push(r1);
    __ push(r2);

    // Copy arguments to the stack in a loop.
    // r1: function
    // r3: argc
    // r4: argv, i.e. points to first arg
    Label loop, entry;
    __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
    // r2 points past last arg.
    __ b(&entry);
    __ bind(&loop);
    __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
    __ ldr(r0, MemOperand(r0));  // dereference handle
    __ push(r0);  // push parameter
    __ bind(&entry);
    __ cmp(r4, r2);
    __ b(ne, &loop);

    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
    __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
    __ mov(r5, Operand(r4));
    __ mov(r6, Operand(r4));
    __ mov(r7, Operand(r4));
    if (kR9Available == 1) {
      __ mov(r9, Operand(r4));
    }

    // Invoke the code and pass argc as r0.
    __ mov(r0, Operand(r3));
    if (is_construct) {
      CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
      __ CallStub(&stub);
    } else {
      ParameterCount actual(r0);
      __ InvokeFunction(r1, actual, CALL_FUNCTION,
                        NullCallWrapper(), CALL_AS_METHOD);
    }
    // Exit the JS frame and remove the parameters (except function), and
    // return.
    // Respect ABI stack constraint.
  }
  __ Jump(lr);

  // r0: result
}


void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}


void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}


void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Preserve the function.
    __ push(r1);
    // Push call kind information.
    __ push(r5);

    // Push the function on the stack as the argument to the runtime function.
    __ push(r1);
    __ CallRuntime(Runtime::kLazyCompile, 1);
    // Calculate the entry point.
    __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));

    // Restore call kind information.
    __ pop(r5);
    // Restore saved function.
    __ pop(r1);

    // Tear down internal frame.
  }

  // Do a tail-call of the compiled function.
  __ Jump(r2);
}


void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Preserve the function.
    __ push(r1);
    // Push call kind information.
    __ push(r5);

    // Push the function on the stack as the argument to the runtime function.
    __ push(r1);
    __ CallRuntime(Runtime::kLazyRecompile, 1);
    // Calculate the entry point.
    __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));

    // Restore call kind information.
    __ pop(r5);
    // Restore saved function.
    __ pop(r1);

    // Tear down internal frame.
  }

  // Do a tail-call of the compiled function.
  __ Jump(r2);
}


static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
                                             Deoptimizer::BailoutType type) {
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    // Pass the function and deoptimization type to the runtime system.
    __ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
    __ push(r0);
    __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
  }

  // Get the full codegen state from the stack and untag it -> r6.
  __ ldr(r6, MemOperand(sp, 0 * kPointerSize));
  __ SmiUntag(r6);
  // Switch on the state.
  Label with_tos_register, unknown_state;
  __ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS));
  __ b(ne, &with_tos_register);
  __ add(sp, sp, Operand(1 * kPointerSize));  // Remove state.
  __ Ret();

  __ bind(&with_tos_register);
  __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
  __ cmp(r6, Operand(FullCodeGenerator::TOS_REG));
  __ b(ne, &unknown_state);
  __ add(sp, sp, Operand(2 * kPointerSize));  // Remove state.
  __ Ret();

  __ bind(&unknown_state);
  __ stop("no cases left");
}


void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}


void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}


void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
  // For now, we are relying on the fact that Runtime::NotifyOSR
  // doesn't do any garbage collection which allows us to save/restore
  // the registers without worrying about which of them contain
  // pointers. This seems a bit fragile.
  __ stm(db_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kNotifyOSR, 0);
  }
  __ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
  __ Ret();
}


void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
  CpuFeatures::TryForceFeatureScope scope(VFP3);
  if (!CpuFeatures::IsSupported(VFP3)) {
    __ Abort("Unreachable code: Cannot optimize without VFP3 support.");
    return;
  }

  // Lookup the function in the JavaScript frame and push it as an
  // argument to the on-stack replacement function.
  __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(r0);
    __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
  }

  // If the result was -1 it means that we couldn't optimize the
  // function. Just return and continue in the unoptimized version.
  Label skip;
  __ cmp(r0, Operand(Smi::FromInt(-1)));
  __ b(ne, &skip);
  __ Ret();

  __ bind(&skip);
  // Untag the AST id and push it on the stack.
  __ SmiUntag(r0);
  __ push(r0);

  // Generate the code for doing the frame-to-frame translation using
  // the deoptimizer infrastructure.
  Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
  generator.Generate();
}


void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
  // 1. Make sure we have at least one argument.
  // r0: actual number of arguments
  { Label done;
    __ cmp(r0, Operand(0));
    __ b(ne, &done);
    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
    __ push(r2);
    __ add(r0, r0, Operand(1));
    __ bind(&done);
  }

  // 2. Get the function to call (passed as receiver) from the stack, check
  //    if it is a function.
  // r0: actual number of arguments
  Label slow, non_function;
  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
  __ JumpIfSmi(r1, &non_function);
  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
  __ b(ne, &slow);

  // 3a. Patch the first argument if necessary when calling a function.
  // r0: actual number of arguments
  // r1: function
  Label shift_arguments;
  __ mov(r4, Operand(0, RelocInfo::NONE));  // indicate regular JS_FUNCTION
  { Label convert_to_object, use_global_receiver, patch_receiver;
    // Change context eagerly in case we need the global receiver.
    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));

    // Do not transform the receiver for strict mode functions.
    __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
    __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
    __ tst(r3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
                             kSmiTagSize)));
    __ b(ne, &shift_arguments);

    // Do not transform the receiver for native (Compilerhints already in r3).
    __ tst(r3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
    __ b(ne, &shift_arguments);

    // Compute the receiver in non-strict mode.
    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
    __ ldr(r2, MemOperand(r2, -kPointerSize));
    // r0: actual number of arguments
    // r1: function
    // r2: first argument
    __ JumpIfSmi(r2, &convert_to_object);

    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
    __ cmp(r2, r3);
    __ b(eq, &use_global_receiver);
    __ LoadRoot(r3, Heap::kNullValueRootIndex);
    __ cmp(r2, r3);
    __ b(eq, &use_global_receiver);

    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CompareObjectType(r2, r3, r3, FIRST_SPEC_OBJECT_TYPE);
    __ b(ge, &shift_arguments);

    __ bind(&convert_to_object);

    {
      // Enter an internal frame in order to preserve argument count.
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
      __ push(r0);

      __ push(r2);
      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
      __ mov(r2, r0);

      __ pop(r0);
      __ mov(r0, Operand(r0, ASR, kSmiTagSize));

      // Exit the internal frame.
    }

    // Restore the function to r1, and the flag to r4.
    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
    __ mov(r4, Operand(0, RelocInfo::NONE));
    __ jmp(&patch_receiver);

    // Use the global receiver object from the called function as the
    // receiver.
    __ bind(&use_global_receiver);
    const int kGlobalIndex =
        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));

    __ bind(&patch_receiver);
    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
    __ str(r2, MemOperand(r3, -kPointerSize));

    __ jmp(&shift_arguments);
  }

  // 3b. Check for function proxy.
  __ bind(&slow);
  __ mov(r4, Operand(1, RelocInfo::NONE));  // indicate function proxy
  __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
  __ b(eq, &shift_arguments);
  __ bind(&non_function);
  __ mov(r4, Operand(2, RelocInfo::NONE));  // indicate non-function

  // 3c. Patch the first argument when calling a non-function.  The
  //     CALL_NON_FUNCTION builtin expects the non-function callee as
  //     receiver, so overwrite the first argument which will ultimately
  //     become the receiver.
  // r0: actual number of arguments
  // r1: function
  // r4: call type (0: JS function, 1: function proxy, 2: non-function)
  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
  __ str(r1, MemOperand(r2, -kPointerSize));

  // 4. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  // r0: actual number of arguments
  // r1: function
  // r4: call type (0: JS function, 1: function proxy, 2: non-function)
  __ bind(&shift_arguments);
  { Label loop;
    // Calculate the copy start address (destination). Copy end address is sp.
    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));

    __ bind(&loop);
    __ ldr(ip, MemOperand(r2, -kPointerSize));
    __ str(ip, MemOperand(r2));
    __ sub(r2, r2, Operand(kPointerSize));
    __ cmp(r2, sp);
    __ b(ne, &loop);
    // Adjust the actual number of arguments and remove the top element
    // (which is a copy of the last argument).
    __ sub(r0, r0, Operand(1));
    __ pop();
  }

  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
  //     or a function proxy via CALL_FUNCTION_PROXY.
  // r0: actual number of arguments
  // r1: function
  // r4: call type (0: JS function, 1: function proxy, 2: non-function)
  { Label function, non_proxy;
    __ tst(r4, r4);
    __ b(eq, &function);
    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
    __ mov(r2, Operand(0, RelocInfo::NONE));
    __ SetCallKind(r5, CALL_AS_METHOD);
    __ cmp(r4, Operand(1));
    __ b(ne, &non_proxy);

    __ push(r1);  // re-add proxy object as additional argument
    __ add(r0, r0, Operand(1));
    __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);

    __ bind(&non_proxy);
    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);
    __ bind(&function);
  }

  // 5b. Get the code to call from the function and check that the number of
  //     expected arguments matches what we're providing.  If so, jump
  //     (tail-call) to the code in register edx without checking arguments.
  // r0: actual number of arguments
  // r1: function
  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
  __ ldr(r2,
         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
  __ SetCallKind(r5, CALL_AS_METHOD);
  __ cmp(r2, r0);  // Check formal and actual parameter counts.
  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
          RelocInfo::CODE_TARGET,
          ne);

  ParameterCount expected(0);
  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION,
                NullCallWrapper(), CALL_AS_METHOD);
}


void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
  const int kIndexOffset    = -5 * kPointerSize;
  const int kLimitOffset    = -4 * kPointerSize;
  const int kArgsOffset     =  2 * kPointerSize;
  const int kRecvOffset     =  3 * kPointerSize;
  const int kFunctionOffset =  4 * kPointerSize;

  {
    FrameScope frame_scope(masm, StackFrame::INTERNAL);

    __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
    __ push(r0);
    __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
    __ push(r0);
    __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);

    // Check the stack for overflow. We are not trying to catch
    // interruptions (e.g. debug break and preemption) here, so the "real stack
    // limit" is checked.
    Label okay;
    __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
    // Make r2 the space we have left. The stack might already be overflowed
    // here which will cause r2 to become negative.
    __ sub(r2, sp, r2);
    // Check if the arguments will overflow the stack.
    __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
    __ b(gt, &okay);  // Signed comparison.

    // Out of stack space.
    __ ldr(r1, MemOperand(fp, kFunctionOffset));
    __ push(r1);
    __ push(r0);
    __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
    // End of stack check.

    // Push current limit and index.
    __ bind(&okay);
    __ push(r0);  // limit
    __ mov(r1, Operand(0, RelocInfo::NONE));  // initial index
    __ push(r1);

    // Get the receiver.
    __ ldr(r0, MemOperand(fp, kRecvOffset));

    // Check that the function is a JS function (otherwise it must be a proxy).
    Label push_receiver;
    __ ldr(r1, MemOperand(fp, kFunctionOffset));
    __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
    __ b(ne, &push_receiver);

    // Change context eagerly to get the right global object if necessary.
    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
    // Load the shared function info while the function is still in r1.
    __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));

    // Compute the receiver.
    // Do not transform the receiver for strict mode functions.
    Label call_to_object, use_global_receiver;
    __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
    __ tst(r2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
                             kSmiTagSize)));
    __ b(ne, &push_receiver);

    // Do not transform the receiver for strict mode functions.
    __ tst(r2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
    __ b(ne, &push_receiver);

    // Compute the receiver in non-strict mode.
    __ JumpIfSmi(r0, &call_to_object);
    __ LoadRoot(r1, Heap::kNullValueRootIndex);
    __ cmp(r0, r1);
    __ b(eq, &use_global_receiver);
    __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
    __ cmp(r0, r1);
    __ b(eq, &use_global_receiver);

    // Check if the receiver is already a JavaScript object.
    // r0: receiver
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
    __ b(ge, &push_receiver);

    // Convert the receiver to a regular object.
    // r0: receiver
    __ bind(&call_to_object);
    __ push(r0);
    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    __ b(&push_receiver);

    // Use the current global receiver object as the receiver.
    __ bind(&use_global_receiver);
    const int kGlobalOffset =
        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
    __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
    __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
    __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
    __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));

    // Push the receiver.
    // r0: receiver
    __ bind(&push_receiver);
    __ push(r0);

    // Copy all arguments from the array to the stack.
    Label entry, loop;
    __ ldr(r0, MemOperand(fp, kIndexOffset));
    __ b(&entry);

    // Load the current argument from the arguments array and push it to the
    // stack.
    // r0: current argument index
    __ bind(&loop);
    __ ldr(r1, MemOperand(fp, kArgsOffset));
    __ push(r1);
    __ push(r0);

    // Call the runtime to access the property in the arguments array.
    __ CallRuntime(Runtime::kGetProperty, 2);
    __ push(r0);

    // Use inline caching to access the arguments.
    __ ldr(r0, MemOperand(fp, kIndexOffset));
    __ add(r0, r0, Operand(1 << kSmiTagSize));
    __ str(r0, MemOperand(fp, kIndexOffset));

    // Test if the copy loop has finished copying all the elements from the
    // arguments object.
    __ bind(&entry);
    __ ldr(r1, MemOperand(fp, kLimitOffset));
    __ cmp(r0, r1);
    __ b(ne, &loop);

    // Invoke the function.
    Label call_proxy;
    ParameterCount actual(r0);
    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
    __ ldr(r1, MemOperand(fp, kFunctionOffset));
    __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
    __ b(ne, &call_proxy);
    __ InvokeFunction(r1, actual, CALL_FUNCTION,
                      NullCallWrapper(), CALL_AS_METHOD);

    frame_scope.GenerateLeaveFrame();
    __ add(sp, sp, Operand(3 * kPointerSize));
    __ Jump(lr);

    // Invoke the function proxy.
    __ bind(&call_proxy);
    __ push(r1);  // add function proxy as last argument
    __ add(r0, r0, Operand(1));
    __ mov(r2, Operand(0, RelocInfo::NONE));
    __ SetCallKind(r5, CALL_AS_METHOD);
    __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
    __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);

    // Tear down the internal frame and remove function, receiver and args.
  }
  __ add(sp, sp, Operand(3 * kPointerSize));
  __ Jump(lr);
}


static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
  __ add(fp, sp, Operand(3 * kPointerSize));
}


static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r0 : result being passed through
  // -----------------------------------
  // Get the number of arguments passed (as a smi), tear down the frame and
  // then tear down the parameters.
  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
  __ mov(sp, fp);
  __ ldm(ia_w, sp, fp.bit() | lr.bit());
  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
}


void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r0 : actual number of arguments
  //  -- r1 : function (passed through to callee)
  //  -- r2 : expected number of arguments
  //  -- r3 : code entry to call
  //  -- r5 : call kind information
  // -----------------------------------

  Label invoke, dont_adapt_arguments;

  Label enough, too_few;
  __ cmp(r0, r2);
  __ b(lt, &too_few);
  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
  __ b(eq, &dont_adapt_arguments);

  {  // Enough parameters: actual >= expected
    __ bind(&enough);
    EnterArgumentsAdaptorFrame(masm);

    // Calculate copy start address into r0 and copy end address into r2.
    // r0: actual number of arguments as a smi
    // r1: function
    // r2: expected number of arguments
    // r3: code entry to call
    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
    // adjust for return address and receiver
    __ add(r0, r0, Operand(2 * kPointerSize));
    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));

    // Copy the arguments (including the receiver) to the new stack frame.
    // r0: copy start address
    // r1: function
    // r2: copy end address
    // r3: code entry to call

    Label copy;
    __ bind(&copy);
    __ ldr(ip, MemOperand(r0, 0));
    __ push(ip);
    __ cmp(r0, r2);  // Compare before moving to next argument.
    __ sub(r0, r0, Operand(kPointerSize));
    __ b(ne, &copy);

    __ b(&invoke);
  }

  {  // Too few parameters: Actual < expected
    __ bind(&too_few);
    EnterArgumentsAdaptorFrame(masm);

    // Calculate copy start address into r0 and copy end address is fp.
    // r0: actual number of arguments as a smi
    // r1: function
    // r2: expected number of arguments
    // r3: code entry to call
    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));

    // Copy the arguments (including the receiver) to the new stack frame.
    // r0: copy start address
    // r1: function
    // r2: expected number of arguments
    // r3: code entry to call
    Label copy;
    __ bind(&copy);
    // Adjust load for return address and receiver.
    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
    __ push(ip);
    __ cmp(r0, fp);  // Compare before moving to next argument.
    __ sub(r0, r0, Operand(kPointerSize));
    __ b(ne, &copy);

    // Fill the remaining expected arguments with undefined.
    // r1: function
    // r2: expected number of arguments
    // r3: code entry to call
    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.

    Label fill;
    __ bind(&fill);
    __ push(ip);
    __ cmp(sp, r2);
    __ b(ne, &fill);
  }

  // Call the entry point.
  __ bind(&invoke);
  __ Call(r3);

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());

  // Exit frame and return.
  LeaveArgumentsAdaptorFrame(masm);
  __ Jump(lr);


  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
  __ Jump(r3);
}


#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_ARM