summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/arm/code-stubs-arm.h
blob: 38ed476cc1e831b65354a9b64cee739355eb7693 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_ARM_CODE_STUBS_ARM_H_
#define V8_ARM_CODE_STUBS_ARM_H_

#include "ic-inl.h"

namespace v8 {
namespace internal {


// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
 public:
  enum ArgumentType {
    TAGGED = 0 << TranscendentalCache::kTranscendentalTypeBits,
    UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
  };

  TranscendentalCacheStub(TranscendentalCache::Type type,
                          ArgumentType argument_type)
      : type_(type), argument_type_(argument_type) { }
  void Generate(MacroAssembler* masm);
 private:
  TranscendentalCache::Type type_;
  ArgumentType argument_type_;
  void GenerateCallCFunction(MacroAssembler* masm, Register scratch);

  Major MajorKey() { return TranscendentalCache; }
  int MinorKey() { return type_ | argument_type_; }
  Runtime::FunctionId RuntimeFunction();
};


class StoreBufferOverflowStub: public CodeStub {
 public:
  explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp)
      : save_doubles_(save_fp) { }

  void Generate(MacroAssembler* masm);

  virtual bool IsPregenerated();
  static void GenerateFixedRegStubsAheadOfTime();
  virtual bool SometimesSetsUpAFrame() { return false; }

 private:
  SaveFPRegsMode save_doubles_;

  Major MajorKey() { return StoreBufferOverflow; }
  int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
};


class UnaryOpStub: public CodeStub {
 public:
  UnaryOpStub(Token::Value op,
              UnaryOverwriteMode mode,
              UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
      : op_(op),
        mode_(mode),
        operand_type_(operand_type) {
  }

 private:
  Token::Value op_;
  UnaryOverwriteMode mode_;

  // Operand type information determined at runtime.
  UnaryOpIC::TypeInfo operand_type_;

  virtual void PrintName(StringStream* stream);

  class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
  class OpBits: public BitField<Token::Value, 1, 7> {};
  class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};

  Major MajorKey() { return UnaryOp; }
  int MinorKey() {
    return ModeBits::encode(mode_)
           | OpBits::encode(op_)
           | OperandTypeInfoBits::encode(operand_type_);
  }

  // Note: A lot of the helper functions below will vanish when we use virtual
  // function instead of switch more often.
  void Generate(MacroAssembler* masm);

  void GenerateTypeTransition(MacroAssembler* masm);

  void GenerateSmiStub(MacroAssembler* masm);
  void GenerateSmiStubSub(MacroAssembler* masm);
  void GenerateSmiStubBitNot(MacroAssembler* masm);
  void GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow);
  void GenerateSmiCodeBitNot(MacroAssembler* masm, Label* slow);

  void GenerateHeapNumberStub(MacroAssembler* masm);
  void GenerateHeapNumberStubSub(MacroAssembler* masm);
  void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
  void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
  void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);

  void GenerateGenericStub(MacroAssembler* masm);
  void GenerateGenericStubSub(MacroAssembler* masm);
  void GenerateGenericStubBitNot(MacroAssembler* masm);
  void GenerateGenericCodeFallback(MacroAssembler* masm);

  virtual int GetCodeKind() { return Code::UNARY_OP_IC; }

  virtual InlineCacheState GetICState() {
    return UnaryOpIC::ToState(operand_type_);
  }

  virtual void FinishCode(Handle<Code> code) {
    code->set_unary_op_type(operand_type_);
  }
};


class BinaryOpStub: public CodeStub {
 public:
  BinaryOpStub(Token::Value op, OverwriteMode mode)
      : op_(op),
        mode_(mode),
        operands_type_(BinaryOpIC::UNINITIALIZED),
        result_type_(BinaryOpIC::UNINITIALIZED) {
    use_vfp3_ = CpuFeatures::IsSupported(VFP3);
    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
  }

  BinaryOpStub(
      int key,
      BinaryOpIC::TypeInfo operands_type,
      BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED)
      : op_(OpBits::decode(key)),
        mode_(ModeBits::decode(key)),
        use_vfp3_(VFP3Bits::decode(key)),
        operands_type_(operands_type),
        result_type_(result_type) { }

 private:
  enum SmiCodeGenerateHeapNumberResults {
    ALLOW_HEAPNUMBER_RESULTS,
    NO_HEAPNUMBER_RESULTS
  };

  Token::Value op_;
  OverwriteMode mode_;
  bool use_vfp3_;

  // Operand type information determined at runtime.
  BinaryOpIC::TypeInfo operands_type_;
  BinaryOpIC::TypeInfo result_type_;

  virtual void PrintName(StringStream* stream);

  // Minor key encoding in 16 bits RRRTTTVOOOOOOOMM.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 7> {};
  class VFP3Bits: public BitField<bool, 9, 1> {};
  class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 10, 3> {};
  class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 13, 3> {};

  Major MajorKey() { return BinaryOp; }
  int MinorKey() {
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | VFP3Bits::encode(use_vfp3_)
           | OperandTypeInfoBits::encode(operands_type_)
           | ResultTypeInfoBits::encode(result_type_);
  }

  void Generate(MacroAssembler* masm);
  void GenerateGeneric(MacroAssembler* masm);
  void GenerateSmiSmiOperation(MacroAssembler* masm);
  void GenerateFPOperation(MacroAssembler* masm,
                           bool smi_operands,
                           Label* not_numbers,
                           Label* gc_required);
  void GenerateSmiCode(MacroAssembler* masm,
                       Label* use_runtime,
                       Label* gc_required,
                       SmiCodeGenerateHeapNumberResults heapnumber_results);
  void GenerateLoadArguments(MacroAssembler* masm);
  void GenerateReturn(MacroAssembler* masm);
  void GenerateUninitializedStub(MacroAssembler* masm);
  void GenerateSmiStub(MacroAssembler* masm);
  void GenerateInt32Stub(MacroAssembler* masm);
  void GenerateHeapNumberStub(MacroAssembler* masm);
  void GenerateOddballStub(MacroAssembler* masm);
  void GenerateStringStub(MacroAssembler* masm);
  void GenerateBothStringStub(MacroAssembler* masm);
  void GenerateGenericStub(MacroAssembler* masm);
  void GenerateAddStrings(MacroAssembler* masm);
  void GenerateCallRuntime(MacroAssembler* masm);

  void GenerateHeapResultAllocation(MacroAssembler* masm,
                                    Register result,
                                    Register heap_number_map,
                                    Register scratch1,
                                    Register scratch2,
                                    Label* gc_required);
  void GenerateRegisterArgsPush(MacroAssembler* masm);
  void GenerateTypeTransition(MacroAssembler* masm);
  void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);

  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }

  virtual InlineCacheState GetICState() {
    return BinaryOpIC::ToState(operands_type_);
  }

  virtual void FinishCode(Handle<Code> code) {
    code->set_binary_op_type(operands_type_);
    code->set_binary_op_result_type(result_type_);
  }

  friend class CodeGenerator;
};


class StringHelper : public AllStatic {
 public:
  // Generate code for copying characters using a simple loop. This should only
  // be used in places where the number of characters is small and the
  // additional setup and checking in GenerateCopyCharactersLong adds too much
  // overhead. Copying of overlapping regions is not supported.
  // Dest register ends at the position after the last character written.
  static void GenerateCopyCharacters(MacroAssembler* masm,
                                     Register dest,
                                     Register src,
                                     Register count,
                                     Register scratch,
                                     bool ascii);

  // Generate code for copying a large number of characters. This function
  // is allowed to spend extra time setting up conditions to make copying
  // faster. Copying of overlapping regions is not supported.
  // Dest register ends at the position after the last character written.
  static void GenerateCopyCharactersLong(MacroAssembler* masm,
                                         Register dest,
                                         Register src,
                                         Register count,
                                         Register scratch1,
                                         Register scratch2,
                                         Register scratch3,
                                         Register scratch4,
                                         Register scratch5,
                                         int flags);


  // Probe the symbol table for a two character string. If the string is
  // not found by probing a jump to the label not_found is performed. This jump
  // does not guarantee that the string is not in the symbol table. If the
  // string is found the code falls through with the string in register r0.
  // Contents of both c1 and c2 registers are modified. At the exit c1 is
  // guaranteed to contain halfword with low and high bytes equal to
  // initial contents of c1 and c2 respectively.
  static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
                                                   Register c1,
                                                   Register c2,
                                                   Register scratch1,
                                                   Register scratch2,
                                                   Register scratch3,
                                                   Register scratch4,
                                                   Register scratch5,
                                                   Label* not_found);

  // Generate string hash.
  static void GenerateHashInit(MacroAssembler* masm,
                               Register hash,
                               Register character);

  static void GenerateHashAddCharacter(MacroAssembler* masm,
                                       Register hash,
                                       Register character);

  static void GenerateHashGetHash(MacroAssembler* masm,
                                  Register hash);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};


// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
  NO_STRING_ADD_FLAGS = 0,
  // Omit left string check in stub (left is definitely a string).
  NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
  // Omit right string check in stub (right is definitely a string).
  NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
  // Omit both string checks in stub.
  NO_STRING_CHECK_IN_STUB =
      NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
};


class StringAddStub: public CodeStub {
 public:
  explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}

 private:
  Major MajorKey() { return StringAdd; }
  int MinorKey() { return flags_; }

  void Generate(MacroAssembler* masm);

  void GenerateConvertArgument(MacroAssembler* masm,
                               int stack_offset,
                               Register arg,
                               Register scratch1,
                               Register scratch2,
                               Register scratch3,
                               Register scratch4,
                               Label* slow);

  const StringAddFlags flags_;
};


class SubStringStub: public CodeStub {
 public:
  SubStringStub() {}

 private:
  Major MajorKey() { return SubString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};



class StringCompareStub: public CodeStub {
 public:
  StringCompareStub() { }

  // Compares two flat ASCII strings and returns result in r0.
  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                              Register left,
                                              Register right,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              Register scratch4);

  // Compares two flat ASCII strings for equality and returns result
  // in r0.
  static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
                                            Register left,
                                            Register right,
                                            Register scratch1,
                                            Register scratch2,
                                            Register scratch3);

 private:
  virtual Major MajorKey() { return StringCompare; }
  virtual int MinorKey() { return 0; }
  virtual void Generate(MacroAssembler* masm);

  static void GenerateAsciiCharsCompareLoop(MacroAssembler* masm,
                                            Register left,
                                            Register right,
                                            Register length,
                                            Register scratch1,
                                            Register scratch2,
                                            Label* chars_not_equal);
};


// This stub can convert a signed int32 to a heap number (double).  It does
// not work for int32s that are in Smi range!  No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public CodeStub {
 public:
  WriteInt32ToHeapNumberStub(Register the_int,
                             Register the_heap_number,
                             Register scratch)
      : the_int_(the_int),
        the_heap_number_(the_heap_number),
        scratch_(scratch) { }

  bool IsPregenerated();
  static void GenerateFixedRegStubsAheadOfTime();

 private:
  Register the_int_;
  Register the_heap_number_;
  Register scratch_;

  // Minor key encoding in 16 bits.
  class IntRegisterBits: public BitField<int, 0, 4> {};
  class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
  class ScratchRegisterBits: public BitField<int, 8, 4> {};

  Major MajorKey() { return WriteInt32ToHeapNumber; }
  int MinorKey() {
    // Encode the parameters in a unique 16 bit value.
    return IntRegisterBits::encode(the_int_.code())
           | HeapNumberRegisterBits::encode(the_heap_number_.code())
           | ScratchRegisterBits::encode(scratch_.code());
  }

  void Generate(MacroAssembler* masm);
};


class NumberToStringStub: public CodeStub {
 public:
  NumberToStringStub() { }

  // Generate code to do a lookup in the number string cache. If the number in
  // the register object is found in the cache the generated code falls through
  // with the result in the result register. The object and the result register
  // can be the same. If the number is not found in the cache the code jumps to
  // the label not_found with only the content of register object unchanged.
  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
                                              Register object,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              bool object_is_smi,
                                              Label* not_found);

 private:
  Major MajorKey() { return NumberToString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


class RecordWriteStub: public CodeStub {
 public:
  RecordWriteStub(Register object,
                  Register value,
                  Register address,
                  RememberedSetAction remembered_set_action,
                  SaveFPRegsMode fp_mode)
      : object_(object),
        value_(value),
        address_(address),
        remembered_set_action_(remembered_set_action),
        save_fp_regs_mode_(fp_mode),
        regs_(object,   // An input reg.
              address,  // An input reg.
              value) {  // One scratch reg.
  }

  enum Mode {
    STORE_BUFFER_ONLY,
    INCREMENTAL,
    INCREMENTAL_COMPACTION
  };

  virtual bool IsPregenerated();
  static void GenerateFixedRegStubsAheadOfTime();
  virtual bool SometimesSetsUpAFrame() { return false; }

  static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
    masm->instr_at_put(pos, (masm->instr_at(pos) & ~B27) | (B24 | B20));
    ASSERT(Assembler::IsTstImmediate(masm->instr_at(pos)));
  }

  static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
    masm->instr_at_put(pos, (masm->instr_at(pos) & ~(B24 | B20)) | B27);
    ASSERT(Assembler::IsBranch(masm->instr_at(pos)));
  }

  static Mode GetMode(Code* stub) {
    Instr first_instruction = Assembler::instr_at(stub->instruction_start());
    Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
                                                   Assembler::kInstrSize);

    if (Assembler::IsBranch(first_instruction)) {
      return INCREMENTAL;
    }

    ASSERT(Assembler::IsTstImmediate(first_instruction));

    if (Assembler::IsBranch(second_instruction)) {
      return INCREMENTAL_COMPACTION;
    }

    ASSERT(Assembler::IsTstImmediate(second_instruction));

    return STORE_BUFFER_ONLY;
  }

  static void Patch(Code* stub, Mode mode) {
    MacroAssembler masm(NULL,
                        stub->instruction_start(),
                        stub->instruction_size());
    switch (mode) {
      case STORE_BUFFER_ONLY:
        ASSERT(GetMode(stub) == INCREMENTAL ||
               GetMode(stub) == INCREMENTAL_COMPACTION);
        PatchBranchIntoNop(&masm, 0);
        PatchBranchIntoNop(&masm, Assembler::kInstrSize);
        break;
      case INCREMENTAL:
        ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
        PatchNopIntoBranch(&masm, 0);
        break;
      case INCREMENTAL_COMPACTION:
        ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
        PatchNopIntoBranch(&masm, Assembler::kInstrSize);
        break;
    }
    ASSERT(GetMode(stub) == mode);
    CPU::FlushICache(stub->instruction_start(), 2 * Assembler::kInstrSize);
  }

 private:
  // This is a helper class for freeing up 3 scratch registers.  The input is
  // two registers that must be preserved and one scratch register provided by
  // the caller.
  class RegisterAllocation {
   public:
    RegisterAllocation(Register object,
                       Register address,
                       Register scratch0)
        : object_(object),
          address_(address),
          scratch0_(scratch0) {
      ASSERT(!AreAliased(scratch0, object, address, no_reg));
      scratch1_ = GetRegThatIsNotOneOf(object_, address_, scratch0_);
    }

    void Save(MacroAssembler* masm) {
      ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_));
      // We don't have to save scratch0_ because it was given to us as
      // a scratch register.
      masm->push(scratch1_);
    }

    void Restore(MacroAssembler* masm) {
      masm->pop(scratch1_);
    }

    // If we have to call into C then we need to save and restore all caller-
    // saved registers that were not already preserved.  The scratch registers
    // will be restored by other means so we don't bother pushing them here.
    void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
      masm->stm(db_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
      if (mode == kSaveFPRegs) {
        CpuFeatures::Scope scope(VFP3);
        masm->sub(sp,
                  sp,
                  Operand(kDoubleSize * (DwVfpRegister::kNumRegisters - 1)));
        // Save all VFP registers except d0.
        for (int i = DwVfpRegister::kNumRegisters - 1; i > 0; i--) {
          DwVfpRegister reg = DwVfpRegister::from_code(i);
          masm->vstr(reg, MemOperand(sp, (i - 1) * kDoubleSize));
        }
      }
    }

    inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
                                           SaveFPRegsMode mode) {
      if (mode == kSaveFPRegs) {
        CpuFeatures::Scope scope(VFP3);
        // Restore all VFP registers except d0.
        for (int i = DwVfpRegister::kNumRegisters - 1; i > 0; i--) {
          DwVfpRegister reg = DwVfpRegister::from_code(i);
          masm->vldr(reg, MemOperand(sp, (i - 1) * kDoubleSize));
        }
        masm->add(sp,
                  sp,
                  Operand(kDoubleSize * (DwVfpRegister::kNumRegisters - 1)));
      }
      masm->ldm(ia_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
    }

    inline Register object() { return object_; }
    inline Register address() { return address_; }
    inline Register scratch0() { return scratch0_; }
    inline Register scratch1() { return scratch1_; }

   private:
    Register object_;
    Register address_;
    Register scratch0_;
    Register scratch1_;

    Register GetRegThatIsNotOneOf(Register r1,
                                  Register r2,
                                  Register r3) {
      for (int i = 0; i < Register::kNumAllocatableRegisters; i++) {
        Register candidate = Register::FromAllocationIndex(i);
        if (candidate.is(r1)) continue;
        if (candidate.is(r2)) continue;
        if (candidate.is(r3)) continue;
        return candidate;
      }
      UNREACHABLE();
      return no_reg;
    }
    friend class RecordWriteStub;
  };

  enum OnNoNeedToInformIncrementalMarker {
    kReturnOnNoNeedToInformIncrementalMarker,
    kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
  };

  void Generate(MacroAssembler* masm);
  void GenerateIncremental(MacroAssembler* masm, Mode mode);
  void CheckNeedsToInformIncrementalMarker(
      MacroAssembler* masm,
      OnNoNeedToInformIncrementalMarker on_no_need,
      Mode mode);
  void InformIncrementalMarker(MacroAssembler* masm, Mode mode);

  Major MajorKey() { return RecordWrite; }

  int MinorKey() {
    return ObjectBits::encode(object_.code()) |
        ValueBits::encode(value_.code()) |
        AddressBits::encode(address_.code()) |
        RememberedSetActionBits::encode(remembered_set_action_) |
        SaveFPRegsModeBits::encode(save_fp_regs_mode_);
  }

  void Activate(Code* code) {
    code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
  }

  class ObjectBits: public BitField<int, 0, 4> {};
  class ValueBits: public BitField<int, 4, 4> {};
  class AddressBits: public BitField<int, 8, 4> {};
  class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {};
  class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {};

  Register object_;
  Register value_;
  Register address_;
  RememberedSetAction remembered_set_action_;
  SaveFPRegsMode save_fp_regs_mode_;
  Label slow_;
  RegisterAllocation regs_;
};


// Enter C code from generated RegExp code in a way that allows
// the C code to fix the return address in case of a GC.
// Currently only needed on ARM.
class RegExpCEntryStub: public CodeStub {
 public:
  RegExpCEntryStub() {}
  virtual ~RegExpCEntryStub() {}
  void Generate(MacroAssembler* masm);

 private:
  Major MajorKey() { return RegExpCEntry; }
  int MinorKey() { return 0; }

  bool NeedsImmovableCode() { return true; }
};


// Trampoline stub to call into native code. To call safely into native code
// in the presence of compacting GC (which can move code objects) we need to
// keep the code which called into native pinned in the memory. Currently the
// simplest approach is to generate such stub early enough so it can never be
// moved by GC
class DirectCEntryStub: public CodeStub {
 public:
  DirectCEntryStub() {}
  void Generate(MacroAssembler* masm);
  void GenerateCall(MacroAssembler* masm, ExternalReference function);
  void GenerateCall(MacroAssembler* masm, Register target);

 private:
  Major MajorKey() { return DirectCEntry; }
  int MinorKey() { return 0; }

  bool NeedsImmovableCode() { return true; }
};


class FloatingPointHelper : public AllStatic {
 public:
  enum Destination {
    kVFPRegisters,
    kCoreRegisters
  };


  // Loads smis from r0 and r1 (right and left in binary operations) into
  // floating point registers. Depending on the destination the values ends up
  // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
  // floating point registers VFP3 must be supported. If core registers are
  // requested when VFP3 is supported d6 and d7 will be scratched.
  static void LoadSmis(MacroAssembler* masm,
                       Destination destination,
                       Register scratch1,
                       Register scratch2);

  // Loads objects from r0 and r1 (right and left in binary operations) into
  // floating point registers. Depending on the destination the values ends up
  // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
  // floating point registers VFP3 must be supported. If core registers are
  // requested when VFP3 is supported d6 and d7 will still be scratched. If
  // either r0 or r1 is not a number (not smi and not heap number object) the
  // not_number label is jumped to with r0 and r1 intact.
  static void LoadOperands(MacroAssembler* masm,
                           FloatingPointHelper::Destination destination,
                           Register heap_number_map,
                           Register scratch1,
                           Register scratch2,
                           Label* not_number);

  // Convert the smi or heap number in object to an int32 using the rules
  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
  // and brought into the range -2^31 .. +2^31 - 1.
  static void ConvertNumberToInt32(MacroAssembler* masm,
                                   Register object,
                                   Register dst,
                                   Register heap_number_map,
                                   Register scratch1,
                                   Register scratch2,
                                   Register scratch3,
                                   DwVfpRegister double_scratch,
                                   Label* not_int32);

  // Converts the integer (untagged smi) in |int_scratch| to a double, storing
  // the result either in |double_dst| or |dst2:dst1|, depending on
  // |destination|.
  // Warning: The value in |int_scratch| will be changed in the process!
  static void ConvertIntToDouble(MacroAssembler* masm,
                                 Register int_scratch,
                                 Destination destination,
                                 DwVfpRegister double_dst,
                                 Register dst1,
                                 Register dst2,
                                 Register scratch2,
                                 SwVfpRegister single_scratch);

  // Load the number from object into double_dst in the double format.
  // Control will jump to not_int32 if the value cannot be exactly represented
  // by a 32-bit integer.
  // Floating point value in the 32-bit integer range that are not exact integer
  // won't be loaded.
  static void LoadNumberAsInt32Double(MacroAssembler* masm,
                                      Register object,
                                      Destination destination,
                                      DwVfpRegister double_dst,
                                      Register dst1,
                                      Register dst2,
                                      Register heap_number_map,
                                      Register scratch1,
                                      Register scratch2,
                                      SwVfpRegister single_scratch,
                                      Label* not_int32);

  // Loads the number from object into dst as a 32-bit integer.
  // Control will jump to not_int32 if the object cannot be exactly represented
  // by a 32-bit integer.
  // Floating point value in the 32-bit integer range that are not exact integer
  // won't be converted.
  // scratch3 is not used when VFP3 is supported.
  static void LoadNumberAsInt32(MacroAssembler* masm,
                                Register object,
                                Register dst,
                                Register heap_number_map,
                                Register scratch1,
                                Register scratch2,
                                Register scratch3,
                                DwVfpRegister double_scratch,
                                Label* not_int32);

  // Generate non VFP3 code to check if a double can be exactly represented by a
  // 32-bit integer. This does not check for 0 or -0, which need
  // to be checked for separately.
  // Control jumps to not_int32 if the value is not a 32-bit integer, and falls
  // through otherwise.
  // src1 and src2 will be cloberred.
  //
  // Expected input:
  // - src1: higher (exponent) part of the double value.
  // - src2: lower (mantissa) part of the double value.
  // Output status:
  // - dst: 32 higher bits of the mantissa. (mantissa[51:20])
  // - src2: contains 1.
  // - other registers are clobbered.
  static void DoubleIs32BitInteger(MacroAssembler* masm,
                                   Register src1,
                                   Register src2,
                                   Register dst,
                                   Register scratch,
                                   Label* not_int32);

  // Generates code to call a C function to do a double operation using core
  // registers. (Used when VFP3 is not supported.)
  // This code never falls through, but returns with a heap number containing
  // the result in r0.
  // Register heapnumber_result must be a heap number in which the
  // result of the operation will be stored.
  // Requires the following layout on entry:
  // r0: Left value (least significant part of mantissa).
  // r1: Left value (sign, exponent, top of mantissa).
  // r2: Right value (least significant part of mantissa).
  // r3: Right value (sign, exponent, top of mantissa).
  static void CallCCodeForDoubleOperation(MacroAssembler* masm,
                                          Token::Value op,
                                          Register heap_number_result,
                                          Register scratch);

 private:
  static void LoadNumber(MacroAssembler* masm,
                         FloatingPointHelper::Destination destination,
                         Register object,
                         DwVfpRegister dst,
                         Register dst1,
                         Register dst2,
                         Register heap_number_map,
                         Register scratch1,
                         Register scratch2,
                         Label* not_number);
};


class StringDictionaryLookupStub: public CodeStub {
 public:
  enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };

  explicit StringDictionaryLookupStub(LookupMode mode) : mode_(mode) { }

  void Generate(MacroAssembler* masm);

  static void GenerateNegativeLookup(MacroAssembler* masm,
                                     Label* miss,
                                     Label* done,
                                     Register receiver,
                                     Register properties,
                                     Handle<String> name,
                                     Register scratch0);

  static void GeneratePositiveLookup(MacroAssembler* masm,
                                     Label* miss,
                                     Label* done,
                                     Register elements,
                                     Register name,
                                     Register r0,
                                     Register r1);

  virtual bool SometimesSetsUpAFrame() { return false; }

 private:
  static const int kInlinedProbes = 4;
  static const int kTotalProbes = 20;

  static const int kCapacityOffset =
      StringDictionary::kHeaderSize +
      StringDictionary::kCapacityIndex * kPointerSize;

  static const int kElementsStartOffset =
      StringDictionary::kHeaderSize +
      StringDictionary::kElementsStartIndex * kPointerSize;

  Major MajorKey() { return StringDictionaryLookup; }

  int MinorKey() {
    return LookupModeBits::encode(mode_);
  }

  class LookupModeBits: public BitField<LookupMode, 0, 1> {};

  LookupMode mode_;
};


} }  // namespace v8::internal

#endif  // V8_ARM_CODE_STUBS_ARM_H_