summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/assembler.h
blob: 037799d6062ba434bcef8993071ea0ea937ca285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

#ifndef V8_ASSEMBLER_H_
#define V8_ASSEMBLER_H_

#include "v8.h"

#include "allocation.h"
#include "builtins.h"
#include "gdb-jit.h"
#include "isolate.h"
#include "runtime.h"
#include "token.h"

namespace v8 {

class ApiFunction;

namespace internal {

struct StatsCounter;
// -----------------------------------------------------------------------------
// Platform independent assembler base class.

class AssemblerBase: public Malloced {
 public:
  explicit AssemblerBase(Isolate* isolate);

  Isolate* isolate() const { return isolate_; }
  int jit_cookie() const { return jit_cookie_; }

  bool emit_debug_code() const { return emit_debug_code_; }
  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }

  bool predictable_code_size() const { return predictable_code_size_; }
  void set_predictable_code_size(bool value) { predictable_code_size_ = value; }

  // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
  // cross-snapshotting.
  static void QuietNaN(HeapObject* nan) { }

 private:
  Isolate* isolate_;
  int jit_cookie_;
  bool emit_debug_code_;
  bool predictable_code_size_;
};


// Avoids using instructions that vary in size in unpredictable ways between the
// snapshot and the running VM.
class PredictableCodeSizeScope {
 public:
  explicit PredictableCodeSizeScope(AssemblerBase* assembler)
      : assembler_(assembler) {
    old_value_ = assembler_->predictable_code_size();
    assembler_->set_predictable_code_size(true);
  }

  ~PredictableCodeSizeScope() {
    assembler_->set_predictable_code_size(old_value_);
  }

 private:
  AssemblerBase* assembler_;
  bool old_value_;
};


// -----------------------------------------------------------------------------
// Labels represent pc locations; they are typically jump or call targets.
// After declaration, a label can be freely used to denote known or (yet)
// unknown pc location. Assembler::bind() is used to bind a label to the
// current pc. A label can be bound only once.

class Label BASE_EMBEDDED {
 public:
  enum Distance {
    kNear, kFar
  };

  INLINE(Label()) {
    Unuse();
    UnuseNear();
  }

  INLINE(~Label()) {
    ASSERT(!is_linked());
    ASSERT(!is_near_linked());
  }

  INLINE(void Unuse()) { pos_ = 0; }
  INLINE(void UnuseNear()) { near_link_pos_ = 0; }

  INLINE(bool is_bound() const) { return pos_ <  0; }
  INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
  INLINE(bool is_linked() const) { return pos_ >  0; }
  INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }

  // Returns the position of bound or linked labels. Cannot be used
  // for unused labels.
  int pos() const;
  int near_link_pos() const { return near_link_pos_ - 1; }

 private:
  // pos_ encodes both the binding state (via its sign)
  // and the binding position (via its value) of a label.
  //
  // pos_ <  0  bound label, pos() returns the jump target position
  // pos_ == 0  unused label
  // pos_ >  0  linked label, pos() returns the last reference position
  int pos_;

  // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
  int near_link_pos_;

  void bind_to(int pos)  {
    pos_ = -pos - 1;
    ASSERT(is_bound());
  }
  void link_to(int pos, Distance distance = kFar) {
    if (distance == kNear) {
      near_link_pos_ = pos + 1;
      ASSERT(is_near_linked());
    } else {
      pos_ = pos + 1;
      ASSERT(is_linked());
    }
  }

  friend class Assembler;
  friend class RegexpAssembler;
  friend class Displacement;
  friend class RegExpMacroAssemblerIrregexp;
};


enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };


// -----------------------------------------------------------------------------
// Relocation information


// Relocation information consists of the address (pc) of the datum
// to which the relocation information applies, the relocation mode
// (rmode), and an optional data field. The relocation mode may be
// "descriptive" and not indicate a need for relocation, but simply
// describe a property of the datum. Such rmodes are useful for GC
// and nice disassembly output.

class RelocInfo BASE_EMBEDDED {
 public:
  // The constant kNoPosition is used with the collecting of source positions
  // in the relocation information. Two types of source positions are collected
  // "position" (RelocMode position) and "statement position" (RelocMode
  // statement_position). The "position" is collected at places in the source
  // code which are of interest when making stack traces to pin-point the source
  // location of a stack frame as close as possible. The "statement position" is
  // collected at the beginning at each statement, and is used to indicate
  // possible break locations. kNoPosition is used to indicate an
  // invalid/uninitialized position value.
  static const int kNoPosition = -1;

  // This string is used to add padding comments to the reloc info in cases
  // where we are not sure to have enough space for patching in during
  // lazy deoptimization. This is the case if we have indirect calls for which
  // we do not normally record relocation info.
  static const char* const kFillerCommentString;

  // The minimum size of a comment is equal to three bytes for the extra tagged
  // pc + the tag for the data, and kPointerSize for the actual pointer to the
  // comment.
  static const int kMinRelocCommentSize = 3 + kPointerSize;

  // The maximum size for a call instruction including pc-jump.
  static const int kMaxCallSize = 6;

  // The maximum pc delta that will use the short encoding.
  static const int kMaxSmallPCDelta;

  enum Mode {
    // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    CODE_TARGET,  // Code target which is not any of the above.
    CODE_TARGET_WITH_ID,
    CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
    CODE_TARGET_CONTEXT,  // Code target used for contextual loads and stores.
    DEBUG_BREAK,  // Code target for the debugger statement.
    EMBEDDED_OBJECT,
    GLOBAL_PROPERTY_CELL,

    // Everything after runtime_entry (inclusive) is not GC'ed.
    RUNTIME_ENTRY,
    JS_RETURN,  // Marks start of the ExitJSFrame code.
    COMMENT,
    POSITION,  // See comment for kNoPosition above.
    STATEMENT_POSITION,  // See comment for kNoPosition above.
    DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
    EXTERNAL_REFERENCE,  // The address of an external C++ function.
    INTERNAL_REFERENCE,  // An address inside the same function.

    // Marks a constant pool. Only used on ARM.
    // It uses a custom noncompact encoding.
    CONST_POOL,

    // add more as needed
    // Pseudo-types
    NUMBER_OF_MODES,  // There are at most 15 modes with noncompact encoding.
    NONE,  // never recorded
    CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
                        // code aging.
    FIRST_REAL_RELOC_MODE = CODE_TARGET,
    LAST_REAL_RELOC_MODE = CONST_POOL,
    FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
    LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
    LAST_CODE_ENUM = DEBUG_BREAK,
    LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL,
    // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
    LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
    LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
  };


  RelocInfo() {}

  RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
      : pc_(pc), rmode_(rmode), data_(data), host_(host) {
  }

  static inline bool IsRealRelocMode(Mode mode) {
    return mode >= FIRST_REAL_RELOC_MODE &&
        mode <= LAST_REAL_RELOC_MODE;
  }
  static inline bool IsPseudoRelocMode(Mode mode) {
    ASSERT(!IsRealRelocMode(mode));
    return mode >= FIRST_PSEUDO_RELOC_MODE &&
        mode <= LAST_PSEUDO_RELOC_MODE;
  }
  static inline bool IsConstructCall(Mode mode) {
    return mode == CONSTRUCT_CALL;
  }
  static inline bool IsCodeTarget(Mode mode) {
    return mode <= LAST_CODE_ENUM;
  }
  static inline bool IsEmbeddedObject(Mode mode) {
    return mode == EMBEDDED_OBJECT;
  }
  // Is the relocation mode affected by GC?
  static inline bool IsGCRelocMode(Mode mode) {
    return mode <= LAST_GCED_ENUM;
  }
  static inline bool IsJSReturn(Mode mode) {
    return mode == JS_RETURN;
  }
  static inline bool IsComment(Mode mode) {
    return mode == COMMENT;
  }
  static inline bool IsConstPool(Mode mode) {
    return mode == CONST_POOL;
  }
  static inline bool IsPosition(Mode mode) {
    return mode == POSITION || mode == STATEMENT_POSITION;
  }
  static inline bool IsStatementPosition(Mode mode) {
    return mode == STATEMENT_POSITION;
  }
  static inline bool IsExternalReference(Mode mode) {
    return mode == EXTERNAL_REFERENCE;
  }
  static inline bool IsInternalReference(Mode mode) {
    return mode == INTERNAL_REFERENCE;
  }
  static inline bool IsDebugBreakSlot(Mode mode) {
    return mode == DEBUG_BREAK_SLOT;
  }
  static inline bool IsCodeAgeSequence(Mode mode) {
    return mode == CODE_AGE_SEQUENCE;
  }
  static inline int ModeMask(Mode mode) { return 1 << mode; }

  // Accessors
  byte* pc() const { return pc_; }
  void set_pc(byte* pc) { pc_ = pc; }
  Mode rmode() const {  return rmode_; }
  intptr_t data() const { return data_; }
  Code* host() const { return host_; }

  // Apply a relocation by delta bytes
  INLINE(void apply(intptr_t delta));

  // Is the pointer this relocation info refers to coded like a plain pointer
  // or is it strange in some way (e.g. relative or patched into a series of
  // instructions).
  bool IsCodedSpecially();

  // Read/modify the code target in the branch/call instruction
  // this relocation applies to;
  // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
  INLINE(Address target_address());
  INLINE(void set_target_address(Address target,
                                 WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
  INLINE(Object* target_object());
  INLINE(Handle<Object> target_object_handle(Assembler* origin));
  INLINE(Object** target_object_address());
  INLINE(void set_target_object(Object* target,
                                WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
  INLINE(JSGlobalPropertyCell* target_cell());
  INLINE(Handle<JSGlobalPropertyCell> target_cell_handle());
  INLINE(void set_target_cell(JSGlobalPropertyCell* cell,
                              WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
  INLINE(Code* code_age_stub());
  INLINE(void set_code_age_stub(Code* stub));

  // Read the address of the word containing the target_address in an
  // instruction stream.  What this means exactly is architecture-independent.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.  Architecture-independent code shouldn't
  // dereference the pointer it gets back from this.
  INLINE(Address target_address_address());
  // This indicates how much space a target takes up when deserializing a code
  // stream.  For most architectures this is just the size of a pointer.  For
  // an instruction like movw/movt where the target bits are mixed into the
  // instruction bits the size of the target will be zero, indicating that the
  // serializer should not step forwards in memory after a target is resolved
  // and written.  In this case the target_address_address function above
  // should return the end of the instructions to be patched, allowing the
  // deserializer to deserialize the instructions as raw bytes and put them in
  // place, ready to be patched with the target.
  INLINE(int target_address_size());

  // Read/modify the reference in the instruction this relocation
  // applies to; can only be called if rmode_ is external_reference
  INLINE(Address* target_reference_address());

  // Read/modify the address of a call instruction. This is used to relocate
  // the break points where straight-line code is patched with a call
  // instruction.
  INLINE(Address call_address());
  INLINE(void set_call_address(Address target));
  INLINE(Object* call_object());
  INLINE(void set_call_object(Object* target));
  INLINE(Object** call_object_address());

  template<typename StaticVisitor> inline void Visit(Heap* heap);
  inline void Visit(ObjectVisitor* v);

  // Patch the code with some other code.
  void PatchCode(byte* instructions, int instruction_count);

  // Patch the code with a call.
  void PatchCodeWithCall(Address target, int guard_bytes);

  // Check whether this return sequence has been patched
  // with a call to the debugger.
  INLINE(bool IsPatchedReturnSequence());

  // Check whether this debug break slot has been patched with a call to the
  // debugger.
  INLINE(bool IsPatchedDebugBreakSlotSequence());

#ifdef ENABLE_DISASSEMBLER
  // Printing
  static const char* RelocModeName(Mode rmode);
  void Print(FILE* out);
#endif  // ENABLE_DISASSEMBLER
#ifdef VERIFY_HEAP
  void Verify();
#endif

  static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
  static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
  static const int kDataMask =
      (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
  static const int kApplyMask;  // Modes affected by apply. Depends on arch.

 private:
  // On ARM, note that pc_ is the address of the constant pool entry
  // to be relocated and not the address of the instruction
  // referencing the constant pool entry (except when rmode_ ==
  // comment).
  byte* pc_;
  Mode rmode_;
  intptr_t data_;
  Code* host_;
  // Code and Embedded Object pointers on some platforms are stored split
  // across two consecutive 32-bit instructions. Heap management
  // routines expect to access these pointers indirectly. The following
  // location provides a place for these pointers to exist naturally
  // when accessed via the Iterator.
  Object* reconstructed_obj_ptr_;
  // External-reference pointers are also split across instruction-pairs
  // on some platforms, but are accessed via indirect pointers. This location
  // provides a place for that pointer to exist naturally. Its address
  // is returned by RelocInfo::target_reference_address().
  Address reconstructed_adr_ptr_;
  friend class RelocIterator;
};


// RelocInfoWriter serializes a stream of relocation info. It writes towards
// lower addresses.
class RelocInfoWriter BASE_EMBEDDED {
 public:
  RelocInfoWriter() : pos_(NULL),
                      last_pc_(NULL),
                      last_id_(0),
                      last_position_(0) {}
  RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
                                         last_pc_(pc),
                                         last_id_(0),
                                         last_position_(0) {}

  byte* pos() const { return pos_; }
  byte* last_pc() const { return last_pc_; }

  void Write(const RelocInfo* rinfo);

  // Update the state of the stream after reloc info buffer
  // and/or code is moved while the stream is active.
  void Reposition(byte* pos, byte* pc) {
    pos_ = pos;
    last_pc_ = pc;
  }

  // Max size (bytes) of a written RelocInfo. Longest encoding is
  // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
  // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
  // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
  // Here we use the maximum of the two.
  static const int kMaxSize = 16;

 private:
  inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
  inline void WriteTaggedPC(uint32_t pc_delta, int tag);
  inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
  inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
  inline void WriteExtraTaggedConstPoolData(int data);
  inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
  inline void WriteTaggedData(intptr_t data_delta, int tag);
  inline void WriteExtraTag(int extra_tag, int top_tag);

  byte* pos_;
  byte* last_pc_;
  int last_id_;
  int last_position_;
  DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
};


// A RelocIterator iterates over relocation information.
// Typical use:
//
//   for (RelocIterator it(code); !it.done(); it.next()) {
//     // do something with it.rinfo() here
//   }
//
// A mask can be specified to skip unwanted modes.
class RelocIterator: public Malloced {
 public:
  // Create a new iterator positioned at
  // the beginning of the reloc info.
  // Relocation information with mode k is included in the
  // iteration iff bit k of mode_mask is set.
  explicit RelocIterator(Code* code, int mode_mask = -1);
  explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);

  // Iteration
  bool done() const { return done_; }
  void next();

  // Return pointer valid until next next().
  RelocInfo* rinfo() {
    ASSERT(!done());
    return &rinfo_;
  }

 private:
  // Advance* moves the position before/after reading.
  // *Read* reads from current byte(s) into rinfo_.
  // *Get* just reads and returns info on current byte.
  void Advance(int bytes = 1) { pos_ -= bytes; }
  int AdvanceGetTag();
  int GetExtraTag();
  int GetTopTag();
  void ReadTaggedPC();
  void AdvanceReadPC();
  void AdvanceReadId();
  void AdvanceReadConstPoolData();
  void AdvanceReadPosition();
  void AdvanceReadData();
  void AdvanceReadVariableLengthPCJump();
  int GetLocatableTypeTag();
  void ReadTaggedId();
  void ReadTaggedPosition();

  // If the given mode is wanted, set it in rinfo_ and return true.
  // Else return false. Used for efficiently skipping unwanted modes.
  bool SetMode(RelocInfo::Mode mode) {
    return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
  }

  byte* pos_;
  byte* end_;
  byte* code_age_sequence_;
  RelocInfo rinfo_;
  bool done_;
  int mode_mask_;
  int last_id_;
  int last_position_;
  DISALLOW_COPY_AND_ASSIGN(RelocIterator);
};


//------------------------------------------------------------------------------
// External function

//----------------------------------------------------------------------------
class IC_Utility;
class SCTableReference;
#ifdef ENABLE_DEBUGGER_SUPPORT
class Debug_Address;
#endif


// An ExternalReference represents a C++ address used in the generated
// code. All references to C++ functions and variables must be encapsulated in
// an ExternalReference instance. This is done in order to track the origin of
// all external references in the code so that they can be bound to the correct
// addresses when deserializing a heap.
class ExternalReference BASE_EMBEDDED {
 public:
  // Used in the simulator to support different native api calls.
  enum Type {
    // Builtin call.
    // MaybeObject* f(v8::internal::Arguments).
    BUILTIN_CALL,  // default

    // Builtin that takes float arguments and returns an int.
    // int f(double, double).
    BUILTIN_COMPARE_CALL,

    // Builtin call that returns floating point.
    // double f(double, double).
    BUILTIN_FP_FP_CALL,

    // Builtin call that returns floating point.
    // double f(double).
    BUILTIN_FP_CALL,

    // Builtin call that returns floating point.
    // double f(double, int).
    BUILTIN_FP_INT_CALL,

    // Direct call to API function callback.
    // Handle<Value> f(v8::Arguments&)
    DIRECT_API_CALL,

    // Direct call to accessor getter callback.
    // Handle<value> f(Local<String> property, AccessorInfo& info)
    DIRECT_GETTER_CALL
  };

  static void SetUp();

  typedef void* ExternalReferenceRedirector(void* original, Type type);

  ExternalReference(Builtins::CFunctionId id, Isolate* isolate);

  ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);

  ExternalReference(Builtins::Name name, Isolate* isolate);

  ExternalReference(Runtime::FunctionId id, Isolate* isolate);

  ExternalReference(const Runtime::Function* f, Isolate* isolate);

  ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);

#ifdef ENABLE_DEBUGGER_SUPPORT
  ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
#endif

  explicit ExternalReference(StatsCounter* counter);

  ExternalReference(Isolate::AddressId id, Isolate* isolate);

  explicit ExternalReference(const SCTableReference& table_ref);

  // Isolate::Current() as an external reference.
  static ExternalReference isolate_address();

  // One-of-a-kind references. These references are not part of a general
  // pattern. This means that they have to be added to the
  // ExternalReferenceTable in serialize.cc manually.

  static ExternalReference incremental_marking_record_write_function(
      Isolate* isolate);
  static ExternalReference incremental_evacuation_record_write_function(
      Isolate* isolate);
  static ExternalReference store_buffer_overflow_function(
      Isolate* isolate);
  static ExternalReference flush_icache_function(Isolate* isolate);
  static ExternalReference perform_gc_function(Isolate* isolate);
  static ExternalReference fill_heap_number_with_random_function(
      Isolate* isolate);
  static ExternalReference random_uint32_function(Isolate* isolate);
  static ExternalReference transcendental_cache_array_address(Isolate* isolate);
  static ExternalReference delete_handle_scope_extensions(Isolate* isolate);

  static ExternalReference get_date_field_function(Isolate* isolate);
  static ExternalReference date_cache_stamp(Isolate* isolate);

  static ExternalReference get_make_code_young_function(Isolate* isolate);

  // Deoptimization support.
  static ExternalReference new_deoptimizer_function(Isolate* isolate);
  static ExternalReference compute_output_frames_function(Isolate* isolate);

  // Static data in the keyed lookup cache.
  static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
  static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);

  // Static variable Heap::roots_array_start()
  static ExternalReference roots_array_start(Isolate* isolate);

  // Static variable StackGuard::address_of_jslimit()
  static ExternalReference address_of_stack_limit(Isolate* isolate);

  // Static variable StackGuard::address_of_real_jslimit()
  static ExternalReference address_of_real_stack_limit(Isolate* isolate);

  // Static variable RegExpStack::limit_address()
  static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);

  // Static variables for RegExp.
  static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
  static ExternalReference address_of_regexp_stack_memory_address(
      Isolate* isolate);
  static ExternalReference address_of_regexp_stack_memory_size(
      Isolate* isolate);

  // Static variable Heap::NewSpaceStart()
  static ExternalReference new_space_start(Isolate* isolate);
  static ExternalReference new_space_mask(Isolate* isolate);
  static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
  static ExternalReference new_space_mark_bits(Isolate* isolate);

  // Write barrier.
  static ExternalReference store_buffer_top(Isolate* isolate);

  // Used for fast allocation in generated code.
  static ExternalReference new_space_allocation_top_address(Isolate* isolate);
  static ExternalReference new_space_allocation_limit_address(Isolate* isolate);

  static ExternalReference double_fp_operation(Token::Value operation,
                                               Isolate* isolate);
  static ExternalReference compare_doubles(Isolate* isolate);
  static ExternalReference power_double_double_function(Isolate* isolate);
  static ExternalReference power_double_int_function(Isolate* isolate);

  static ExternalReference handle_scope_next_address();
  static ExternalReference handle_scope_limit_address();
  static ExternalReference handle_scope_level_address();

  static ExternalReference scheduled_exception_address(Isolate* isolate);
  static ExternalReference address_of_pending_message_obj(Isolate* isolate);
  static ExternalReference address_of_has_pending_message(Isolate* isolate);
  static ExternalReference address_of_pending_message_script(Isolate* isolate);

  // Static variables containing common double constants.
  static ExternalReference address_of_min_int();
  static ExternalReference address_of_one_half();
  static ExternalReference address_of_minus_zero();
  static ExternalReference address_of_zero();
  static ExternalReference address_of_uint8_max_value();
  static ExternalReference address_of_negative_infinity();
  static ExternalReference address_of_canonical_non_hole_nan();
  static ExternalReference address_of_the_hole_nan();

  static ExternalReference math_sin_double_function(Isolate* isolate);
  static ExternalReference math_cos_double_function(Isolate* isolate);
  static ExternalReference math_tan_double_function(Isolate* isolate);
  static ExternalReference math_log_double_function(Isolate* isolate);

  static ExternalReference page_flags(Page* page);

  Address address() const {return reinterpret_cast<Address>(address_);}

#ifdef ENABLE_DEBUGGER_SUPPORT
  // Function Debug::Break()
  static ExternalReference debug_break(Isolate* isolate);

  // Used to check if single stepping is enabled in generated code.
  static ExternalReference debug_step_in_fp_address(Isolate* isolate);
#endif

#ifndef V8_INTERPRETED_REGEXP
  // C functions called from RegExp generated code.

  // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
  static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);

  // Function RegExpMacroAssembler*::CheckStackGuardState()
  static ExternalReference re_check_stack_guard_state(Isolate* isolate);

  // Function NativeRegExpMacroAssembler::GrowStack()
  static ExternalReference re_grow_stack(Isolate* isolate);

  // byte NativeRegExpMacroAssembler::word_character_bitmap
  static ExternalReference re_word_character_map();

#endif

  // This lets you register a function that rewrites all external references.
  // Used by the ARM simulator to catch calls to external references.
  static void set_redirector(Isolate* isolate,
                             ExternalReferenceRedirector* redirector) {
    // We can't stack them.
    ASSERT(isolate->external_reference_redirector() == NULL);
    isolate->set_external_reference_redirector(
        reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
  }

 private:
  explicit ExternalReference(void* address)
      : address_(address) {}

  static void* Redirect(Isolate* isolate,
                        void* address,
                        Type type = ExternalReference::BUILTIN_CALL) {
    ExternalReferenceRedirector* redirector =
        reinterpret_cast<ExternalReferenceRedirector*>(
            isolate->external_reference_redirector());
    if (redirector == NULL) return address;
    void* answer = (*redirector)(address, type);
    return answer;
  }

  static void* Redirect(Isolate* isolate,
                        Address address_arg,
                        Type type = ExternalReference::BUILTIN_CALL) {
    ExternalReferenceRedirector* redirector =
        reinterpret_cast<ExternalReferenceRedirector*>(
            isolate->external_reference_redirector());
    void* address = reinterpret_cast<void*>(address_arg);
    void* answer = (redirector == NULL) ?
                   address :
                   (*redirector)(address, type);
    return answer;
  }

  void* address_;
};


// -----------------------------------------------------------------------------
// Position recording support

struct PositionState {
  PositionState() : current_position(RelocInfo::kNoPosition),
                    written_position(RelocInfo::kNoPosition),
                    current_statement_position(RelocInfo::kNoPosition),
                    written_statement_position(RelocInfo::kNoPosition) {}

  int current_position;
  int written_position;

  int current_statement_position;
  int written_statement_position;
};


class PositionsRecorder BASE_EMBEDDED {
 public:
  explicit PositionsRecorder(Assembler* assembler)
      : assembler_(assembler) {
#ifdef ENABLE_GDB_JIT_INTERFACE
    gdbjit_lineinfo_ = NULL;
#endif
  }

#ifdef ENABLE_GDB_JIT_INTERFACE
  ~PositionsRecorder() {
    delete gdbjit_lineinfo_;
  }

  void StartGDBJITLineInfoRecording() {
    if (FLAG_gdbjit) {
      gdbjit_lineinfo_ = new GDBJITLineInfo();
    }
  }

  GDBJITLineInfo* DetachGDBJITLineInfo() {
    GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
    gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
    return lineinfo;
  }
#endif

  // Set current position to pos.
  void RecordPosition(int pos);

  // Set current statement position to pos.
  void RecordStatementPosition(int pos);

  // Write recorded positions to relocation information.
  bool WriteRecordedPositions();

  int current_position() const { return state_.current_position; }

  int current_statement_position() const {
    return state_.current_statement_position;
  }

 private:
  Assembler* assembler_;
  PositionState state_;
#ifdef ENABLE_GDB_JIT_INTERFACE
  GDBJITLineInfo* gdbjit_lineinfo_;
#endif

  friend class PreservePositionScope;

  DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
};


class PreservePositionScope BASE_EMBEDDED {
 public:
  explicit PreservePositionScope(PositionsRecorder* positions_recorder)
      : positions_recorder_(positions_recorder),
        saved_state_(positions_recorder->state_) {}

  ~PreservePositionScope() {
    positions_recorder_->state_ = saved_state_;
  }

 private:
  PositionsRecorder* positions_recorder_;
  const PositionState saved_state_;

  DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
};


// -----------------------------------------------------------------------------
// Utility functions

inline bool is_intn(int x, int n)  {
  return -(1 << (n-1)) <= x && x < (1 << (n-1));
}

inline bool is_int8(int x)  { return is_intn(x, 8); }
inline bool is_int16(int x)  { return is_intn(x, 16); }
inline bool is_int18(int x)  { return is_intn(x, 18); }
inline bool is_int24(int x)  { return is_intn(x, 24); }

inline bool is_uintn(int x, int n) {
  return (x & -(1 << n)) == 0;
}

inline bool is_uint2(int x)  { return is_uintn(x, 2); }
inline bool is_uint3(int x)  { return is_uintn(x, 3); }
inline bool is_uint4(int x)  { return is_uintn(x, 4); }
inline bool is_uint5(int x)  { return is_uintn(x, 5); }
inline bool is_uint6(int x)  { return is_uintn(x, 6); }
inline bool is_uint8(int x)  { return is_uintn(x, 8); }
inline bool is_uint10(int x)  { return is_uintn(x, 10); }
inline bool is_uint12(int x)  { return is_uintn(x, 12); }
inline bool is_uint16(int x)  { return is_uintn(x, 16); }
inline bool is_uint24(int x)  { return is_uintn(x, 24); }
inline bool is_uint26(int x)  { return is_uintn(x, 26); }
inline bool is_uint28(int x)  { return is_uintn(x, 28); }

inline int NumberOfBitsSet(uint32_t x) {
  unsigned int num_bits_set;
  for (num_bits_set = 0; x; x >>= 1) {
    num_bits_set += x & 1;
  }
  return num_bits_set;
}

bool EvalComparison(Token::Value op, double op1, double op2);

// Computes pow(x, y) with the special cases in the spec for Math.pow.
double power_double_int(double x, int y);
double power_double_double(double x, double y);

// Helper class for generating code or data associated with the code
// right after a call instruction. As an example this can be used to
// generate safepoint data after calls for crankshaft.
class CallWrapper {
 public:
  CallWrapper() { }
  virtual ~CallWrapper() { }
  // Called just before emitting a call. Argument is the size of the generated
  // call code.
  virtual void BeforeCall(int call_size) const = 0;
  // Called just after emitting a call, i.e., at the return site for the call.
  virtual void AfterCall() const = 0;
};

class NullCallWrapper : public CallWrapper {
 public:
  NullCallWrapper() { }
  virtual ~NullCallWrapper() { }
  virtual void BeforeCall(int call_size) const { }
  virtual void AfterCall() const { }
};

} }  // namespace v8::internal

#endif  // V8_ASSEMBLER_H_