summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/handles.cc
blob: a6192d8d6ea24b42b04c6405eb7b490e66b8f014 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "compiler.h"
#include "debug.h"
#include "execution.h"
#include "global-handles.h"
#include "natives.h"
#include "runtime.h"
#include "string-search.h"
#include "stub-cache.h"
#include "vm-state-inl.h"

namespace v8 {
namespace internal {


int HandleScope::NumberOfHandles() {
  Isolate* isolate = Isolate::Current();
  HandleScopeImplementer* impl = isolate->handle_scope_implementer();
  int n = impl->blocks()->length();
  if (n == 0) return 0;
  return ((n - 1) * kHandleBlockSize) + static_cast<int>(
      (isolate->handle_scope_data()->next - impl->blocks()->last()));
}


Object** HandleScope::Extend() {
  Isolate* isolate = Isolate::Current();
  v8::ImplementationUtilities::HandleScopeData* current =
      isolate->handle_scope_data();

  Object** result = current->next;

  ASSERT(result == current->limit);
  // Make sure there's at least one scope on the stack and that the
  // top of the scope stack isn't a barrier.
  if (current->level == 0) {
    Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
                            "Cannot create a handle without a HandleScope");
    return NULL;
  }
  HandleScopeImplementer* impl = isolate->handle_scope_implementer();
  // If there's more room in the last block, we use that. This is used
  // for fast creation of scopes after scope barriers.
  if (!impl->blocks()->is_empty()) {
    Object** limit = &impl->blocks()->last()[kHandleBlockSize];
    if (current->limit != limit) {
      current->limit = limit;
      ASSERT(limit - current->next < kHandleBlockSize);
    }
  }

  // If we still haven't found a slot for the handle, we extend the
  // current handle scope by allocating a new handle block.
  if (result == current->limit) {
    // If there's a spare block, use it for growing the current scope.
    result = impl->GetSpareOrNewBlock();
    // Add the extension to the global list of blocks, but count the
    // extension as part of the current scope.
    impl->blocks()->Add(result);
    current->limit = &result[kHandleBlockSize];
  }

  return result;
}


void HandleScope::DeleteExtensions(Isolate* isolate) {
  ASSERT(isolate == Isolate::Current());
  v8::ImplementationUtilities::HandleScopeData* current =
      isolate->handle_scope_data();
  isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
}


void HandleScope::ZapRange(Object** start, Object** end) {
  ASSERT(end - start <= kHandleBlockSize);
  for (Object** p = start; p != end; p++) {
    *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
  }
}


Address HandleScope::current_level_address() {
  return reinterpret_cast<Address>(
      &Isolate::Current()->handle_scope_data()->level);
}


Address HandleScope::current_next_address() {
  return reinterpret_cast<Address>(
      &Isolate::Current()->handle_scope_data()->next);
}


Address HandleScope::current_limit_address() {
  return reinterpret_cast<Address>(
      &Isolate::Current()->handle_scope_data()->limit);
}


Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
                                      Handle<JSArray> array) {
  CALL_HEAP_FUNCTION(content->GetIsolate(),
                     content->AddKeysFromJSArray(*array), FixedArray);
}


Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
                               Handle<FixedArray> second) {
  CALL_HEAP_FUNCTION(first->GetIsolate(),
                     first->UnionOfKeys(*second), FixedArray);
}


Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
    Handle<JSFunction> constructor,
    Handle<JSGlobalProxy> global) {
  CALL_HEAP_FUNCTION(
      constructor->GetIsolate(),
      constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
      JSGlobalProxy);
}


void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
  // If objects constructed from this function exist then changing
  // 'estimated_nof_properties' is dangerous since the previous value might
  // have been compiled into the fast construct stub. More over, the inobject
  // slack tracking logic might have adjusted the previous value, so even
  // passing the same value is risky.
  if (func->shared()->live_objects_may_exist()) return;

  func->shared()->set_expected_nof_properties(nof);
  if (func->has_initial_map()) {
    Handle<Map> new_initial_map =
        func->GetIsolate()->factory()->CopyMap(
            Handle<Map>(func->initial_map()));
    new_initial_map->set_unused_property_fields(nof);
    func->set_initial_map(*new_initial_map);
  }
}


void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
  CALL_HEAP_FUNCTION_VOID(func->GetIsolate(),
                          func->SetPrototype(*value));
}


static int ExpectedNofPropertiesFromEstimate(int estimate) {
  // If no properties are added in the constructor, they are more likely
  // to be added later.
  if (estimate == 0) estimate = 2;

  // We do not shrink objects that go into a snapshot (yet), so we adjust
  // the estimate conservatively.
  if (Serializer::enabled()) return estimate + 2;

  // Inobject slack tracking will reclaim redundant inobject space later,
  // so we can afford to adjust the estimate generously.
  if (FLAG_clever_optimizations) {
    return estimate + 8;
  } else {
    return estimate + 3;
  }
}


void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
                                          int estimate) {
  // See the comment in SetExpectedNofProperties.
  if (shared->live_objects_may_exist()) return;

  shared->set_expected_nof_properties(
      ExpectedNofPropertiesFromEstimate(estimate));
}


void FlattenString(Handle<String> string) {
  CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
}


Handle<String> FlattenGetString(Handle<String> string) {
  CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
}


Handle<Object> SetPrototype(Handle<JSFunction> function,
                            Handle<Object> prototype) {
  ASSERT(function->should_have_prototype());
  CALL_HEAP_FUNCTION(function->GetIsolate(),
                     Accessors::FunctionSetPrototype(*function,
                                                     *prototype,
                                                     NULL),
                     Object);
}


Handle<Object> SetProperty(Handle<Object> object,
                           Handle<Object> key,
                           Handle<Object> value,
                           PropertyAttributes attributes,
                           StrictModeFlag strict_mode) {
  Isolate* isolate = Isolate::Current();
  CALL_HEAP_FUNCTION(
      isolate,
      Runtime::SetObjectProperty(
          isolate, object, key, value, attributes, strict_mode),
      Object);
}


Handle<Object> ForceSetProperty(Handle<JSObject> object,
                                Handle<Object> key,
                                Handle<Object> value,
                                PropertyAttributes attributes) {
  Isolate* isolate = object->GetIsolate();
  CALL_HEAP_FUNCTION(
      isolate,
      Runtime::ForceSetObjectProperty(
          isolate, object, key, value, attributes),
      Object);
}


Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
                                   Handle<Object> key) {
  Isolate* isolate = object->GetIsolate();
  CALL_HEAP_FUNCTION(isolate,
                     Runtime::ForceDeleteObjectProperty(isolate, object, key),
                     Object);
}


Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
                                          Handle<String> key,
                                          Handle<Object> value,
                                          PropertyAttributes attributes,
                                          StrictModeFlag strict_mode) {
  CALL_HEAP_FUNCTION(object->GetIsolate(),
                     object->SetPropertyWithInterceptor(*key,
                                                        *value,
                                                        attributes,
                                                        strict_mode),
                     Object);
}


Handle<Object> GetProperty(Handle<JSReceiver> obj,
                           const char* name) {
  Isolate* isolate = obj->GetIsolate();
  Handle<String> str = isolate->factory()->LookupAsciiSymbol(name);
  CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
}


Handle<Object> GetProperty(Handle<Object> obj,
                           Handle<Object> key) {
  Isolate* isolate = Isolate::Current();
  CALL_HEAP_FUNCTION(isolate,
                     Runtime::GetObjectProperty(isolate, obj, key), Object);
}


Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
                                          Handle<JSObject> holder,
                                          Handle<String> name,
                                          PropertyAttributes* attributes) {
  Isolate* isolate = receiver->GetIsolate();
  CALL_HEAP_FUNCTION(isolate,
                     holder->GetPropertyWithInterceptor(*receiver,
                                                        *name,
                                                        attributes),
                     Object);
}


Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) {
  const bool skip_hidden_prototypes = false;
  CALL_HEAP_FUNCTION(obj->GetIsolate(),
                     obj->SetPrototype(*value, skip_hidden_prototypes), Object);
}


Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
  Isolate* isolate = Isolate::Current();
  CALL_HEAP_FUNCTION(
      isolate,
      isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
}


Handle<String> SubString(Handle<String> str,
                         int start,
                         int end,
                         PretenureFlag pretenure) {
  CALL_HEAP_FUNCTION(str->GetIsolate(),
                     str->SubString(start, end, pretenure), String);
}


Handle<JSObject> Copy(Handle<JSObject> obj) {
  Isolate* isolate = obj->GetIsolate();
  CALL_HEAP_FUNCTION(isolate,
                     isolate->heap()->CopyJSObject(*obj), JSObject);
}


Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
  CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object);
}


// Wrappers for scripts are kept alive and cached in weak global
// handles referred from foreign objects held by the scripts as long as
// they are used. When they are not used anymore, the garbage
// collector will call the weak callback on the global handle
// associated with the wrapper and get rid of both the wrapper and the
// handle.
static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
  Handle<Object> cache = Utils::OpenHandle(*handle);
  JSValue* wrapper = JSValue::cast(*cache);
  Foreign* foreign = Script::cast(wrapper->value())->wrapper();
  ASSERT(foreign->foreign_address() ==
         reinterpret_cast<Address>(cache.location()));
  foreign->set_foreign_address(0);
  Isolate* isolate = Isolate::Current();
  isolate->global_handles()->Destroy(cache.location());
  isolate->counters()->script_wrappers()->Decrement();
}


Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
  if (script->wrapper()->foreign_address() != NULL) {
    // Return the script wrapper directly from the cache.
    return Handle<JSValue>(
        reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
  }
  Isolate* isolate = Isolate::Current();
  // Construct a new script wrapper.
  isolate->counters()->script_wrappers()->Increment();
  Handle<JSFunction> constructor = isolate->script_function();
  Handle<JSValue> result =
      Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
  result->set_value(*script);

  // Create a new weak global handle and use it to cache the wrapper
  // for future use. The cache will automatically be cleared by the
  // garbage collector when it is not used anymore.
  Handle<Object> handle = isolate->global_handles()->Create(*result);
  isolate->global_handles()->MakeWeak(handle.location(), NULL,
                                      &ClearWrapperCache);
  script->wrapper()->set_foreign_address(
      reinterpret_cast<Address>(handle.location()));
  return result;
}


// Init line_ends array with code positions of line ends inside script
// source.
void InitScriptLineEnds(Handle<Script> script) {
  if (!script->line_ends()->IsUndefined()) return;

  Isolate* isolate = script->GetIsolate();

  if (!script->source()->IsString()) {
    ASSERT(script->source()->IsUndefined());
    Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
    script->set_line_ends(*empty);
    ASSERT(script->line_ends()->IsFixedArray());
    return;
  }

  Handle<String> src(String::cast(script->source()), isolate);

  Handle<FixedArray> array = CalculateLineEnds(src, true);

  if (*array != isolate->heap()->empty_fixed_array()) {
    array->set_map(isolate->heap()->fixed_cow_array_map());
  }

  script->set_line_ends(*array);
  ASSERT(script->line_ends()->IsFixedArray());
}


template <typename SourceChar>
static void CalculateLineEnds(Isolate* isolate,
                              List<int>* line_ends,
                              Vector<const SourceChar> src,
                              bool with_last_line) {
  const int src_len = src.length();
  StringSearch<char, SourceChar> search(isolate, CStrVector("\n"));

  // Find and record line ends.
  int position = 0;
  while (position != -1 && position < src_len) {
    position = search.Search(src, position);
    if (position != -1) {
      line_ends->Add(position);
      position++;
    } else if (with_last_line) {
      // Even if the last line misses a line end, it is counted.
      line_ends->Add(src_len);
      return;
    }
  }
}


Handle<FixedArray> CalculateLineEnds(Handle<String> src,
                                     bool with_last_line) {
  src = FlattenGetString(src);
  // Rough estimate of line count based on a roughly estimated average
  // length of (unpacked) code.
  int line_count_estimate = src->length() >> 4;
  List<int> line_ends(line_count_estimate);
  Isolate* isolate = src->GetIsolate();
  {
    AssertNoAllocation no_heap_allocation;  // ensure vectors stay valid.
    // Dispatch on type of strings.
    String::FlatContent content = src->GetFlatContent();
    ASSERT(content.IsFlat());
    if (content.IsAscii()) {
      CalculateLineEnds(isolate,
                        &line_ends,
                        content.ToAsciiVector(),
                        with_last_line);
    } else {
      CalculateLineEnds(isolate,
                        &line_ends,
                        content.ToUC16Vector(),
                        with_last_line);
    }
  }
  int line_count = line_ends.length();
  Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
  for (int i = 0; i < line_count; i++) {
    array->set(i, Smi::FromInt(line_ends[i]));
  }
  return array;
}


// Convert code position into line number.
int GetScriptLineNumber(Handle<Script> script, int code_pos) {
  InitScriptLineEnds(script);
  AssertNoAllocation no_allocation;
  FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
  const int line_ends_len = line_ends_array->length();

  if (!line_ends_len) return -1;

  if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
    return script->line_offset()->value();
  }

  int left = 0;
  int right = line_ends_len;
  while (int half = (right - left) / 2) {
    if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
      right -= half;
    } else {
      left += half;
    }
  }
  return right + script->line_offset()->value();
}

// Convert code position into column number.
int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
  int line_number = GetScriptLineNumber(script, code_pos);
  if (line_number == -1) return -1;

  AssertNoAllocation no_allocation;
  FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
  line_number = line_number - script->line_offset()->value();
  if (line_number == 0) return code_pos + script->column_offset()->value();
  int prev_line_end_pos =
      Smi::cast(line_ends_array->get(line_number - 1))->value();
  return code_pos - (prev_line_end_pos + 1);
}

int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
  AssertNoAllocation no_allocation;
  if (!script->line_ends()->IsUndefined()) {
    return GetScriptLineNumber(script, code_pos);
  }
  // Slow mode: we do not have line_ends. We have to iterate through source.
  if (!script->source()->IsString()) {
    return -1;
  }
  String* source = String::cast(script->source());
  int line = 0;
  int len = source->length();
  for (int pos = 0; pos < len; pos++) {
    if (pos == code_pos) {
      break;
    }
    if (source->Get(pos) == '\n') {
      line++;
    }
  }
  return line;
}


void CustomArguments::IterateInstance(ObjectVisitor* v) {
  v->VisitPointers(values_, values_ + ARRAY_SIZE(values_));
}


// Compute the property keys from the interceptor.
v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
                                                 Handle<JSObject> object) {
  Isolate* isolate = receiver->GetIsolate();
  Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
  CustomArguments args(isolate, interceptor->data(), *receiver, *object);
  v8::AccessorInfo info(args.end());
  v8::Handle<v8::Array> result;
  if (!interceptor->enumerator()->IsUndefined()) {
    v8::NamedPropertyEnumerator enum_fun =
        v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
    LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
    {
      // Leaving JavaScript.
      VMState state(isolate, EXTERNAL);
      result = enum_fun(info);
    }
  }
#if ENABLE_EXTRA_CHECKS
  CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
#endif
  return result;
}


// Compute the element keys from the interceptor.
v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
                                                   Handle<JSObject> object) {
  Isolate* isolate = receiver->GetIsolate();
  Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
  CustomArguments args(isolate, interceptor->data(), *receiver, *object);
  v8::AccessorInfo info(args.end());
  v8::Handle<v8::Array> result;
  if (!interceptor->enumerator()->IsUndefined()) {
    v8::IndexedPropertyEnumerator enum_fun =
        v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
    LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
    {
      // Leaving JavaScript.
      VMState state(isolate, EXTERNAL);
      result = enum_fun(info);
#if ENABLE_EXTRA_CHECKS
      CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
#endif
    }
  }
  return result;
}


Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script) {
  Isolate* isolate = script->GetIsolate();
  Handle<String> name_or_source_url_key =
      isolate->factory()->LookupAsciiSymbol("nameOrSourceURL");
  Handle<JSValue> script_wrapper = GetScriptWrapper(script);
  Handle<Object> property = GetProperty(script_wrapper,
                                        name_or_source_url_key);
  ASSERT(property->IsJSFunction());
  Handle<JSFunction> method = Handle<JSFunction>::cast(property);
  bool caught_exception;
  Handle<Object> result = Execution::TryCall(method, script_wrapper, 0,
                                             NULL, &caught_exception);
  if (caught_exception) {
    result = isolate->factory()->undefined_value();
  }
  return result;
}


static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
  int len = array->length();
  for (int i = 0; i < len; i++) {
    Object* e = array->get(i);
    if (!(e->IsString() || e->IsNumber())) return false;
  }
  return true;
}


Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
                                          KeyCollectionType type,
                                          bool* threw) {
  USE(ContainsOnlyValidKeys);
  Isolate* isolate = object->GetIsolate();
  Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
  Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
      isolate->context()->native_context()->arguments_boilerplate(),
      isolate);
  Handle<JSFunction> arguments_function = Handle<JSFunction>(
      JSFunction::cast(arguments_boilerplate->map()->constructor()),
      isolate);

  // Only collect keys if access is permitted.
  for (Handle<Object> p = object;
       *p != isolate->heap()->null_value();
       p = Handle<Object>(p->GetPrototype(), isolate)) {
    if (p->IsJSProxy()) {
      Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
      Handle<Object> args[] = { proxy };
      Handle<Object> names = Execution::Call(
          isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw);
      if (*threw) return content;
      content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
      break;
    }

    Handle<JSObject> current(JSObject::cast(*p), isolate);

    // Check access rights if required.
    if (current->IsAccessCheckNeeded() &&
        !isolate->MayNamedAccess(*current,
                                 isolate->heap()->undefined_value(),
                                 v8::ACCESS_KEYS)) {
      isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
      break;
    }

    // Compute the element keys.
    Handle<FixedArray> element_keys =
        isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
    current->GetEnumElementKeys(*element_keys);
    content = UnionOfKeys(content, element_keys);
    ASSERT(ContainsOnlyValidKeys(content));

    // Add the element keys from the interceptor.
    if (current->HasIndexedInterceptor()) {
      v8::Handle<v8::Array> result =
          GetKeysForIndexedInterceptor(object, current);
      if (!result.IsEmpty())
        content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
      ASSERT(ContainsOnlyValidKeys(content));
    }

    // We can cache the computed property keys if access checks are
    // not needed and no interceptors are involved.
    //
    // We do not use the cache if the object has elements and
    // therefore it does not make sense to cache the property names
    // for arguments objects.  Arguments objects will always have
    // elements.
    // Wrapped strings have elements, but don't have an elements
    // array or dictionary.  So the fast inline test for whether to
    // use the cache says yes, so we should not create a cache.
    bool cache_enum_keys =
        ((current->map()->constructor() != *arguments_function) &&
         !current->IsJSValue() &&
         !current->IsAccessCheckNeeded() &&
         !current->HasNamedInterceptor() &&
         !current->HasIndexedInterceptor());
    // Compute the property keys and cache them if possible.
    content =
        UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
    ASSERT(ContainsOnlyValidKeys(content));

    // Add the property keys from the interceptor.
    if (current->HasNamedInterceptor()) {
      v8::Handle<v8::Array> result =
          GetKeysForNamedInterceptor(object, current);
      if (!result.IsEmpty())
        content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
      ASSERT(ContainsOnlyValidKeys(content));
    }

    // If we only want local properties we bail out after the first
    // iteration.
    if (type == LOCAL_ONLY)
      break;
  }
  return content;
}


Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
  Isolate* isolate = object->GetIsolate();
  isolate->counters()->for_in()->Increment();
  Handle<FixedArray> elements =
      GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
  return isolate->factory()->NewJSArrayWithElements(elements);
}


Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
  ASSERT(array->length() >= length);
  if (array->length() == length) return array;

  Handle<FixedArray> new_array =
      array->GetIsolate()->factory()->NewFixedArray(length);
  for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
  return new_array;
}


Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
                                       bool cache_result) {
  Isolate* isolate = object->GetIsolate();
  if (object->HasFastProperties()) {
    if (object->map()->instance_descriptors()->HasEnumCache()) {
      int own_property_count = object->map()->EnumLength();
      // If we have an enum cache, but the enum length of the given map is set
      // to kInvalidEnumCache, this means that the map itself has never used the
      // present enum cache. The first step to using the cache is to set the
      // enum length of the map by counting the number of own descriptors that
      // are not DONT_ENUM.
      if (own_property_count == Map::kInvalidEnumCache) {
        own_property_count = object->map()->NumberOfDescribedProperties(
            OWN_DESCRIPTORS, DONT_ENUM);

        if (cache_result) object->map()->SetEnumLength(own_property_count);
      }

      DescriptorArray* desc = object->map()->instance_descriptors();
      Handle<FixedArray> keys(desc->GetEnumCache(), isolate);

      // In case the number of properties required in the enum are actually
      // present, we can reuse the enum cache. Otherwise, this means that the
      // enum cache was generated for a previous (smaller) version of the
      // Descriptor Array. In that case we regenerate the enum cache.
      if (own_property_count <= keys->length()) {
        isolate->counters()->enum_cache_hits()->Increment();
        return ReduceFixedArrayTo(keys, own_property_count);
      }
    }

    Handle<Map> map(object->map());

    if (map->instance_descriptors()->IsEmpty()) {
      isolate->counters()->enum_cache_hits()->Increment();
      if (cache_result) map->SetEnumLength(0);
      return isolate->factory()->empty_fixed_array();
    }

    isolate->counters()->enum_cache_misses()->Increment();
    int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_ENUM);

    Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
    Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);

    Handle<DescriptorArray> descs =
        Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);

    int real_size = map->NumberOfOwnDescriptors();
    int enum_size = 0;
    int index = 0;

    for (int i = 0; i < descs->number_of_descriptors(); i++) {
      PropertyDetails details = descs->GetDetails(i);
      if (!details.IsDontEnum()) {
        if (i < real_size) ++enum_size;
        storage->set(index, descs->GetKey(i));
        if (!indices.is_null()) {
          if (details.type() != FIELD) {
            indices = Handle<FixedArray>();
          } else {
            int field_index = Descriptor::IndexFromValue(descs->GetValue(i));
            if (field_index >= map->inobject_properties()) {
              field_index = -(field_index - map->inobject_properties() + 1);
            }
            indices->set(index, Smi::FromInt(field_index));
          }
        }
        index++;
      }
    }
    ASSERT(index == storage->length());

    Handle<FixedArray> bridge_storage =
        isolate->factory()->NewFixedArray(
            DescriptorArray::kEnumCacheBridgeLength);
    DescriptorArray* desc = object->map()->instance_descriptors();
    desc->SetEnumCache(*bridge_storage,
                       *storage,
                       indices.is_null() ? Object::cast(Smi::FromInt(0))
                                         : Object::cast(*indices));
    if (cache_result) {
      object->map()->SetEnumLength(enum_size);
    }

    return ReduceFixedArrayTo(storage, enum_size);
  } else {
    Handle<StringDictionary> dictionary(object->property_dictionary());

    int length = dictionary->NumberOfElements();
    if (length == 0) {
      return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
    }

    // The enumeration array is generated by allocating an array big enough to
    // hold all properties that have been seen, whether they are are deleted or
    // not. Subsequently all visible properties are added to the array. If some
    // properties were not visible, the array is trimmed so it only contains
    // visible properties. This improves over adding elements and sorting by
    // index by having linear complexity rather than n*log(n).

    // By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
    // we can predict the number of holes in the final array. If there will be
    // more than 50% holes, regenerate the enumeration indices to reduce the
    // number of holes to a minimum. This avoids allocating a large array if
    // many properties were added but subsequently deleted.
    int next_enumeration = dictionary->NextEnumerationIndex();
    if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
      StringDictionary::DoGenerateNewEnumerationIndices(dictionary);
      next_enumeration = dictionary->NextEnumerationIndex();
    }

    Handle<FixedArray> storage =
        isolate->factory()->NewFixedArray(next_enumeration);

    storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
    ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_ENUM));
    return storage;
  }
}


Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table,
                                       Handle<Object> key) {
  CALL_HEAP_FUNCTION(table->GetIsolate(),
                     table->Add(*key),
                     ObjectHashSet);
}


Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table,
                                          Handle<Object> key) {
  CALL_HEAP_FUNCTION(table->GetIsolate(),
                     table->Remove(*key),
                     ObjectHashSet);
}


Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table,
                                               Handle<Object> key,
                                               Handle<Object> value) {
  CALL_HEAP_FUNCTION(table->GetIsolate(),
                     table->Put(*key, *value),
                     ObjectHashTable);
}


// This method determines the type of string involved and then gets the UTF8
// length of the string.  It doesn't flatten the string and has log(n) recursion
// for a string of length n.  If the failure flag gets set, then we have to
// flatten the string and retry.  Failures are caused by surrogate pairs in deep
// cons strings.

// Single surrogate characters that are encountered in the UTF-16 character
// sequence of the input string get counted as 3 UTF-8 bytes, because that
// is the way that WriteUtf8 will encode them.  Surrogate pairs are counted and
// encoded as one 4-byte UTF-8 sequence.

// This function conceptually uses recursion on the two halves of cons strings.
// However, in order to avoid the recursion going too deep it recurses on the
// second string of the cons, but iterates on the first substring (by manually
// eliminating it as a tail recursion).  This means it counts the UTF-8 length
// from the end to the start, which makes no difference to the total.

// Surrogate pairs are recognized even if they are split across two sides of a
// cons, which complicates the implementation somewhat.  Therefore, too deep
// recursion cannot always be avoided.  This case is detected, and the failure
// flag is set, a signal to the caller that the string should be flattened and
// the operation retried.
int Utf8LengthHelper(String* input,
                     int from,
                     int to,
                     bool followed_by_surrogate,
                     int max_recursion,
                     bool* failure,
                     bool* starts_with_surrogate) {
  if (from == to) return 0;
  int total = 0;
  bool dummy;
  while (true) {
    if (input->IsAsciiRepresentation()) {
      *starts_with_surrogate = false;
      return total + to - from;
    }
    switch (StringShape(input).representation_tag()) {
      case kConsStringTag: {
        ConsString* str = ConsString::cast(input);
        String* first = str->first();
        String* second = str->second();
        int first_length = first->length();
        if (first_length - from > to - first_length) {
          if (first_length < to) {
            // Right hand side is shorter.  No need to check the recursion depth
            // since this can only happen log(n) times.
            bool right_starts_with_surrogate = false;
            total += Utf8LengthHelper(second,
                                      0,
                                      to - first_length,
                                      followed_by_surrogate,
                                      max_recursion - 1,
                                      failure,
                                      &right_starts_with_surrogate);
            if (*failure) return 0;
            followed_by_surrogate = right_starts_with_surrogate;
            input = first;
            to = first_length;
          } else {
            // We only need the left hand side.
            input = first;
          }
        } else {
          if (first_length > from) {
            // Left hand side is shorter.
            if (first->IsAsciiRepresentation()) {
              total += first_length - from;
              *starts_with_surrogate = false;
              starts_with_surrogate = &dummy;
              input = second;
              from = 0;
              to -= first_length;
            } else if (second->IsAsciiRepresentation()) {
              followed_by_surrogate = false;
              total += to - first_length;
              input = first;
              to = first_length;
            } else if (max_recursion > 0) {
              bool right_starts_with_surrogate = false;
              // Recursing on the long one.  This may fail.
              total += Utf8LengthHelper(second,
                                        0,
                                        to - first_length,
                                        followed_by_surrogate,
                                        max_recursion - 1,
                                        failure,
                                        &right_starts_with_surrogate);
              if (*failure) return 0;
              input = first;
              to = first_length;
              followed_by_surrogate = right_starts_with_surrogate;
            } else {
              *failure = true;
              return 0;
            }
          } else {
            // We only need the right hand side.
            input = second;
            from = 0;
            to -= first_length;
          }
        }
        continue;
      }
      case kExternalStringTag:
      case kSeqStringTag: {
        Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector();
        const uc16* p = vector.start();
        int previous = unibrow::Utf16::kNoPreviousCharacter;
        for (int i = from; i < to; i++) {
          uc16 c = p[i];
          total += unibrow::Utf8::Length(c, previous);
          previous = c;
        }
        if (to - from > 0) {
          if (unibrow::Utf16::IsLeadSurrogate(previous) &&
              followed_by_surrogate) {
            total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
          }
          if (unibrow::Utf16::IsTrailSurrogate(p[from])) {
            *starts_with_surrogate = true;
          }
        }
        return total;
      }
      case kSlicedStringTag: {
        SlicedString* str = SlicedString::cast(input);
        int offset = str->offset();
        input = str->parent();
        from += offset;
        to += offset;
        continue;
      }
      default:
        break;
    }
    UNREACHABLE();
    return 0;
  }
  return 0;
}


int Utf8Length(Handle<String> str) {
  bool dummy;
  bool failure;
  int len;
  const int kRecursionBudget = 100;
  do {
    failure = false;
    len = Utf8LengthHelper(
        *str, 0, str->length(), false, kRecursionBudget, &failure, &dummy);
    if (failure) FlattenString(str);
  } while (failure);
  return len;
}


DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
    : impl_(isolate->handle_scope_implementer()) {
  ASSERT(impl_->isolate() == Isolate::Current());
  impl_->BeginDeferredScope();
  v8::ImplementationUtilities::HandleScopeData* data =
      impl_->isolate()->handle_scope_data();
  Object** new_next = impl_->GetSpareOrNewBlock();
  Object** new_limit = &new_next[kHandleBlockSize];
  ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
  impl_->blocks()->Add(new_next);

#ifdef DEBUG
  prev_level_ = data->level;
#endif
  data->level++;
  prev_limit_ = data->limit;
  prev_next_ = data->next;
  data->next = new_next;
  data->limit = new_limit;
}


DeferredHandleScope::~DeferredHandleScope() {
  impl_->isolate()->handle_scope_data()->level--;
  ASSERT(handles_detached_);
  ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
}


DeferredHandles* DeferredHandleScope::Detach() {
  DeferredHandles* deferred = impl_->Detach(prev_limit_);
  v8::ImplementationUtilities::HandleScopeData* data =
      impl_->isolate()->handle_scope_data();
  data->next = prev_next_;
  data->limit = prev_limit_;
#ifdef DEBUG
  handles_detached_ = true;
#endif
  return deferred;
}


} }  // namespace v8::internal