summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/lithium-allocator.h
blob: f5ab055ab328140b019e3c833abf2f2a84624d92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_LITHIUM_ALLOCATOR_H_
#define V8_LITHIUM_ALLOCATOR_H_

#include "v8.h"

#include "allocation.h"
#include "lithium.h"
#include "zone.h"

namespace v8 {
namespace internal {

// Forward declarations.
class HBasicBlock;
class HGraph;
class HInstruction;
class HPhi;
class HTracer;
class HValue;
class BitVector;
class StringStream;

class LArgument;
class LChunk;
class LOperand;
class LUnallocated;
class LConstantOperand;
class LGap;
class LParallelMove;
class LPointerMap;
class LStackSlot;
class LRegister;


// This class represents a single point of a LOperand's lifetime.
// For each lithium instruction there are exactly two lifetime positions:
// the beginning and the end of the instruction. Lifetime positions for
// different lithium instructions are disjoint.
class LifetimePosition {
 public:
  // Return the lifetime position that corresponds to the beginning of
  // the instruction with the given index.
  static LifetimePosition FromInstructionIndex(int index) {
    return LifetimePosition(index * kStep);
  }

  // Returns a numeric representation of this lifetime position.
  int Value() const {
    return value_;
  }

  // Returns the index of the instruction to which this lifetime position
  // corresponds.
  int InstructionIndex() const {
    ASSERT(IsValid());
    return value_ / kStep;
  }

  // Returns true if this lifetime position corresponds to the instruction
  // start.
  bool IsInstructionStart() const {
    return (value_ & (kStep - 1)) == 0;
  }

  // Returns the lifetime position for the start of the instruction which
  // corresponds to this lifetime position.
  LifetimePosition InstructionStart() const {
    ASSERT(IsValid());
    return LifetimePosition(value_ & ~(kStep - 1));
  }

  // Returns the lifetime position for the end of the instruction which
  // corresponds to this lifetime position.
  LifetimePosition InstructionEnd() const {
    ASSERT(IsValid());
    return LifetimePosition(InstructionStart().Value() + kStep/2);
  }

  // Returns the lifetime position for the beginning of the next instruction.
  LifetimePosition NextInstruction() const {
    ASSERT(IsValid());
    return LifetimePosition(InstructionStart().Value() + kStep);
  }

  // Returns the lifetime position for the beginning of the previous
  // instruction.
  LifetimePosition PrevInstruction() const {
    ASSERT(IsValid());
    ASSERT(value_ > 1);
    return LifetimePosition(InstructionStart().Value() - kStep);
  }

  // Constructs the lifetime position which does not correspond to any
  // instruction.
  LifetimePosition() : value_(-1) {}

  // Returns true if this lifetime positions corrensponds to some
  // instruction.
  bool IsValid() const { return value_ != -1; }

  static inline LifetimePosition Invalid() { return LifetimePosition(); }

  static inline LifetimePosition MaxPosition() {
    // We have to use this kind of getter instead of static member due to
    // crash bug in GDB.
    return LifetimePosition(kMaxInt);
  }

 private:
  static const int kStep = 2;

  // Code relies on kStep being a power of two.
  STATIC_ASSERT(IS_POWER_OF_TWO(kStep));

  explicit LifetimePosition(int value) : value_(value) { }

  int value_;
};


enum RegisterKind {
  GENERAL_REGISTERS,
  DOUBLE_REGISTERS
};


// A register-allocator view of a Lithium instruction. It contains the id of
// the output operand and a list of input operand uses.

class LInstruction;
class LEnvironment;

// Iterator for non-null temp operands.
class TempIterator BASE_EMBEDDED {
 public:
  inline explicit TempIterator(LInstruction* instr);
  inline bool Done();
  inline LOperand* Current();
  inline void Advance();

 private:
  inline void SkipUninteresting();
  LInstruction* instr_;
  int limit_;
  int current_;
};


// Iterator for non-constant input operands.
class InputIterator BASE_EMBEDDED {
 public:
  inline explicit InputIterator(LInstruction* instr);
  inline bool Done();
  inline LOperand* Current();
  inline void Advance();

 private:
  inline void SkipUninteresting();
  LInstruction* instr_;
  int limit_;
  int current_;
};


class UseIterator BASE_EMBEDDED {
 public:
  inline explicit UseIterator(LInstruction* instr);
  inline bool Done();
  inline LOperand* Current();
  inline void Advance();

 private:
  InputIterator input_iterator_;
  DeepIterator env_iterator_;
};


// Representation of the non-empty interval [start,end[.
class UseInterval: public ZoneObject {
 public:
  UseInterval(LifetimePosition start, LifetimePosition end)
      : start_(start), end_(end), next_(NULL) {
    ASSERT(start.Value() < end.Value());
  }

  LifetimePosition start() const { return start_; }
  LifetimePosition end() const { return end_; }
  UseInterval* next() const { return next_; }

  // Split this interval at the given position without effecting the
  // live range that owns it. The interval must contain the position.
  void SplitAt(LifetimePosition pos, Zone* zone);

  // If this interval intersects with other return smallest position
  // that belongs to both of them.
  LifetimePosition Intersect(const UseInterval* other) const {
    if (other->start().Value() < start_.Value()) return other->Intersect(this);
    if (other->start().Value() < end_.Value()) return other->start();
    return LifetimePosition::Invalid();
  }

  bool Contains(LifetimePosition point) const {
    return start_.Value() <= point.Value() && point.Value() < end_.Value();
  }

 private:
  void set_start(LifetimePosition start) { start_ = start; }
  void set_next(UseInterval* next) { next_ = next; }

  LifetimePosition start_;
  LifetimePosition end_;
  UseInterval* next_;

  friend class LiveRange;  // Assigns to start_.
};

// Representation of a use position.
class UsePosition: public ZoneObject {
 public:
  UsePosition(LifetimePosition pos, LOperand* operand);

  LOperand* operand() const { return operand_; }
  bool HasOperand() const { return operand_ != NULL; }

  LOperand* hint() const { return hint_; }
  void set_hint(LOperand* hint) { hint_ = hint; }
  bool HasHint() const;
  bool RequiresRegister() const;
  bool RegisterIsBeneficial() const;

  LifetimePosition pos() const { return pos_; }
  UsePosition* next() const { return next_; }

 private:
  void set_next(UsePosition* next) { next_ = next; }

  LOperand* operand_;
  LOperand* hint_;
  LifetimePosition pos_;
  UsePosition* next_;
  bool requires_reg_;
  bool register_beneficial_;

  friend class LiveRange;
};

// Representation of SSA values' live ranges as a collection of (continuous)
// intervals over the instruction ordering.
class LiveRange: public ZoneObject {
 public:
  static const int kInvalidAssignment = 0x7fffffff;

  LiveRange(int id, Zone* zone);

  UseInterval* first_interval() const { return first_interval_; }
  UsePosition* first_pos() const { return first_pos_; }
  LiveRange* parent() const { return parent_; }
  LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
  LiveRange* next() const { return next_; }
  bool IsChild() const { return parent() != NULL; }
  int id() const { return id_; }
  bool IsFixed() const { return id_ < 0; }
  bool IsEmpty() const { return first_interval() == NULL; }
  LOperand* CreateAssignedOperand(Zone* zone);
  int assigned_register() const { return assigned_register_; }
  int spill_start_index() const { return spill_start_index_; }
  void set_assigned_register(int reg,
                             RegisterKind register_kind,
                             Zone* zone);
  void MakeSpilled(Zone* zone);

  // Returns use position in this live range that follows both start
  // and last processed use position.
  // Modifies internal state of live range!
  UsePosition* NextUsePosition(LifetimePosition start);

  // Returns use position for which register is required in this live
  // range and which follows both start and last processed use position
  // Modifies internal state of live range!
  UsePosition* NextRegisterPosition(LifetimePosition start);

  // Returns use position for which register is beneficial in this live
  // range and which follows both start and last processed use position
  // Modifies internal state of live range!
  UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);

  // Can this live range be spilled at this position.
  bool CanBeSpilled(LifetimePosition pos);

  // Split this live range at the given position which must follow the start of
  // the range.
  // All uses following the given position will be moved from this
  // live range to the result live range.
  void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);

  bool IsDouble() const { return is_double_; }
  bool HasRegisterAssigned() const {
    return assigned_register_ != kInvalidAssignment;
  }
  bool IsSpilled() const { return spilled_; }
  UsePosition* FirstPosWithHint() const;

  LOperand* FirstHint() const {
    UsePosition* pos = FirstPosWithHint();
    if (pos != NULL) return pos->hint();
    return NULL;
  }

  LifetimePosition Start() const {
    ASSERT(!IsEmpty());
    return first_interval()->start();
  }

  LifetimePosition End() const {
    ASSERT(!IsEmpty());
    return last_interval_->end();
  }

  bool HasAllocatedSpillOperand() const;
  LOperand* GetSpillOperand() const { return spill_operand_; }
  void SetSpillOperand(LOperand* operand);

  void SetSpillStartIndex(int start) {
    spill_start_index_ = Min(start, spill_start_index_);
  }

  bool ShouldBeAllocatedBefore(const LiveRange* other) const;
  bool CanCover(LifetimePosition position) const;
  bool Covers(LifetimePosition position);
  LifetimePosition FirstIntersection(LiveRange* other);

  // Add a new interval or a new use position to this live range.
  void EnsureInterval(LifetimePosition start,
                      LifetimePosition end,
                      Zone* zone);
  void AddUseInterval(LifetimePosition start,
                      LifetimePosition end,
                      Zone* zone);
  UsePosition* AddUsePosition(LifetimePosition pos,
                              LOperand* operand,
                              Zone* zone);

  // Shorten the most recently added interval by setting a new start.
  void ShortenTo(LifetimePosition start);

#ifdef DEBUG
  // True if target overlaps an existing interval.
  bool HasOverlap(UseInterval* target) const;
  void Verify() const;
#endif

 private:
  void ConvertOperands(Zone* zone);
  UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
  void AdvanceLastProcessedMarker(UseInterval* to_start_of,
                                  LifetimePosition but_not_past) const;

  int id_;
  bool spilled_;
  bool is_double_;
  int assigned_register_;
  UseInterval* last_interval_;
  UseInterval* first_interval_;
  UsePosition* first_pos_;
  LiveRange* parent_;
  LiveRange* next_;
  // This is used as a cache, it doesn't affect correctness.
  mutable UseInterval* current_interval_;
  UsePosition* last_processed_use_;
  LOperand* spill_operand_;
  int spill_start_index_;
};


class GrowableBitVector BASE_EMBEDDED {
 public:
  GrowableBitVector() : bits_(NULL) { }

  bool Contains(int value) const {
    if (!InBitsRange(value)) return false;
    return bits_->Contains(value);
  }

  void Add(int value, Zone* zone) {
    EnsureCapacity(value, zone);
    bits_->Add(value);
  }

 private:
  static const int kInitialLength = 1024;

  bool InBitsRange(int value) const {
    return bits_ != NULL && bits_->length() > value;
  }

  void EnsureCapacity(int value, Zone* zone) {
    if (InBitsRange(value)) return;
    int new_length = bits_ == NULL ? kInitialLength : bits_->length();
    while (new_length <= value) new_length *= 2;
    BitVector* new_bits = new(zone) BitVector(new_length, zone);
    if (bits_ != NULL) new_bits->CopyFrom(*bits_);
    bits_ = new_bits;
  }

  BitVector* bits_;
};


class LAllocator BASE_EMBEDDED {
 public:
  LAllocator(int first_virtual_register, HGraph* graph);

  static void TraceAlloc(const char* msg, ...);

  // Checks whether the value of a given virtual register is tagged.
  bool HasTaggedValue(int virtual_register) const;

  // Returns the register kind required by the given virtual register.
  RegisterKind RequiredRegisterKind(int virtual_register) const;

  bool Allocate(LChunk* chunk);

  const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
  const Vector<LiveRange*>* fixed_live_ranges() const {
    return &fixed_live_ranges_;
  }
  const Vector<LiveRange*>* fixed_double_live_ranges() const {
    return &fixed_double_live_ranges_;
  }

  LChunk* chunk() const { return chunk_; }
  HGraph* graph() const { return graph_; }

  int GetVirtualRegister() {
    if (next_virtual_register_ > LUnallocated::kMaxVirtualRegisters) {
      allocation_ok_ = false;
    }
    return next_virtual_register_++;
  }

  bool AllocationOk() { return allocation_ok_; }

  void MarkAsOsrEntry() {
    // There can be only one.
    ASSERT(!has_osr_entry_);
    // Simply set a flag to find and process instruction later.
    has_osr_entry_ = true;
  }

#ifdef DEBUG
  void Verify() const;
#endif

 private:
  void MeetRegisterConstraints();
  void ResolvePhis();
  void BuildLiveRanges();
  void AllocateGeneralRegisters();
  void AllocateDoubleRegisters();
  void ConnectRanges();
  void ResolveControlFlow();
  void PopulatePointerMaps();
  void ProcessOsrEntry();
  void AllocateRegisters();
  bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
  inline bool SafePointsAreInOrder() const;

  // Liveness analysis support.
  void InitializeLivenessAnalysis();
  BitVector* ComputeLiveOut(HBasicBlock* block);
  void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
  void ProcessInstructions(HBasicBlock* block, BitVector* live);
  void MeetRegisterConstraints(HBasicBlock* block);
  void MeetConstraintsBetween(LInstruction* first,
                              LInstruction* second,
                              int gap_index);
  void ResolvePhis(HBasicBlock* block);

  // Helper methods for building intervals.
  LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
  LiveRange* LiveRangeFor(LOperand* operand);
  void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
  void Use(LifetimePosition block_start,
           LifetimePosition position,
           LOperand* operand,
           LOperand* hint);
  void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);

  // Helper methods for updating the life range lists.
  void AddToActive(LiveRange* range);
  void AddToInactive(LiveRange* range);
  void AddToUnhandledSorted(LiveRange* range);
  void AddToUnhandledUnsorted(LiveRange* range);
  void SortUnhandled();
  bool UnhandledIsSorted();
  void ActiveToHandled(LiveRange* range);
  void ActiveToInactive(LiveRange* range);
  void InactiveToHandled(LiveRange* range);
  void InactiveToActive(LiveRange* range);
  void FreeSpillSlot(LiveRange* range);
  LOperand* TryReuseSpillSlot(LiveRange* range);

  // Helper methods for allocating registers.
  bool TryAllocateFreeReg(LiveRange* range);
  void AllocateBlockedReg(LiveRange* range);

  // Live range splitting helpers.

  // Split the given range at the given position.
  // If range starts at or after the given position then the
  // original range is returned.
  // Otherwise returns the live range that starts at pos and contains
  // all uses from the original range that follow pos. Uses at pos will
  // still be owned by the original range after splitting.
  LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);

  // Split the given range in a position from the interval [start, end].
  LiveRange* SplitBetween(LiveRange* range,
                          LifetimePosition start,
                          LifetimePosition end);

  // Find a lifetime position in the interval [start, end] which
  // is optimal for splitting: it is either header of the outermost
  // loop covered by this interval or the latest possible position.
  LifetimePosition FindOptimalSplitPos(LifetimePosition start,
                                       LifetimePosition end);

  // Spill the given life range after position pos.
  void SpillAfter(LiveRange* range, LifetimePosition pos);

  // Spill the given life range after position start and up to position end.
  void SpillBetween(LiveRange* range,
                    LifetimePosition start,
                    LifetimePosition end);

  void SplitAndSpillIntersecting(LiveRange* range);

  void Spill(LiveRange* range);
  bool IsBlockBoundary(LifetimePosition pos);

  // Helper methods for resolving control flow.
  void ResolveControlFlow(LiveRange* range,
                          HBasicBlock* block,
                          HBasicBlock* pred);

  // Return parallel move that should be used to connect ranges split at the
  // given position.
  LParallelMove* GetConnectingParallelMove(LifetimePosition pos);

  // Return the block which contains give lifetime position.
  HBasicBlock* GetBlock(LifetimePosition pos);

  // Helper methods for the fixed registers.
  int RegisterCount() const;
  static int FixedLiveRangeID(int index) { return -index - 1; }
  static int FixedDoubleLiveRangeID(int index);
  LiveRange* FixedLiveRangeFor(int index);
  LiveRange* FixedDoubleLiveRangeFor(int index);
  LiveRange* LiveRangeFor(int index);
  HPhi* LookupPhi(LOperand* operand) const;
  LGap* GetLastGap(HBasicBlock* block);

  const char* RegisterName(int allocation_index);

  inline bool IsGapAt(int index);

  inline LInstruction* InstructionAt(int index);

  inline LGap* GapAt(int index);

  Zone* zone_;

  LChunk* chunk_;

  // During liveness analysis keep a mapping from block id to live_in sets
  // for blocks already analyzed.
  ZoneList<BitVector*> live_in_sets_;

  // Liveness analysis results.
  ZoneList<LiveRange*> live_ranges_;

  // Lists of live ranges
  EmbeddedVector<LiveRange*, Register::kNumAllocatableRegisters>
      fixed_live_ranges_;
  EmbeddedVector<LiveRange*, DoubleRegister::kNumAllocatableRegisters>
      fixed_double_live_ranges_;
  ZoneList<LiveRange*> unhandled_live_ranges_;
  ZoneList<LiveRange*> active_live_ranges_;
  ZoneList<LiveRange*> inactive_live_ranges_;
  ZoneList<LiveRange*> reusable_slots_;

  // Next virtual register number to be assigned to temporaries.
  int next_virtual_register_;
  int first_artificial_register_;
  GrowableBitVector double_artificial_registers_;

  RegisterKind mode_;
  int num_registers_;

  HGraph* graph_;

  bool has_osr_entry_;

  // Indicates success or failure during register allocation.
  bool allocation_ok_;

  DISALLOW_COPY_AND_ASSIGN(LAllocator);
};


} }  // namespace v8::internal

#endif  // V8_LITHIUM_ALLOCATOR_H_