summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/utils.h
blob: f116c14db3f4a00b7109ed6f131c4fcbd198b169 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_UTILS_H_
#define V8_UTILS_H_

#include <stdlib.h>
#include <string.h>
#include <climits>

#include "globals.h"
#include "checks.h"
#include "allocation.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// General helper functions

#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)

// Returns true iff x is a power of 2 (or zero). Cannot be used with the
// maximally negative value of the type T (the -1 overflows).
template <typename T>
inline bool IsPowerOf2(T x) {
  return IS_POWER_OF_TWO(x);
}


// X must be a power of 2.  Returns the number of trailing zeros.
inline int WhichPowerOf2(uint32_t x) {
  ASSERT(IsPowerOf2(x));
  ASSERT(x != 0);
  int bits = 0;
#ifdef DEBUG
  int original_x = x;
#endif
  if (x >= 0x10000) {
    bits += 16;
    x >>= 16;
  }
  if (x >= 0x100) {
    bits += 8;
    x >>= 8;
  }
  if (x >= 0x10) {
    bits += 4;
    x >>= 4;
  }
  switch (x) {
    default: UNREACHABLE();
    case 8: bits++;  // Fall through.
    case 4: bits++;  // Fall through.
    case 2: bits++;  // Fall through.
    case 1: break;
  }
  ASSERT_EQ(1 << bits, original_x);
  return bits;
  return 0;
}


// Magic numbers for integer division.
// These are kind of 2's complement reciprocal of the divisors.
// Details and proofs can be found in:
// - Hacker's Delight, Henry S. Warren, Jr.
// - The PowerPC Compiler Writer’s Guide
// and probably many others.
// See details in the implementation of the algorithm in
// lithium-codegen-arm.cc : LCodeGen::TryEmitSignedIntegerDivisionByConstant().
struct DivMagicNumbers {
  unsigned M;
  unsigned s;
};

const DivMagicNumbers InvalidDivMagicNumber= {0, 0};
const DivMagicNumbers DivMagicNumberFor3   = {0x55555556, 0};
const DivMagicNumbers DivMagicNumberFor5   = {0x66666667, 1};
const DivMagicNumbers DivMagicNumberFor7   = {0x92492493, 2};
const DivMagicNumbers DivMagicNumberFor9   = {0x38e38e39, 1};
const DivMagicNumbers DivMagicNumberFor11  = {0x2e8ba2e9, 1};
const DivMagicNumbers DivMagicNumberFor25  = {0x51eb851f, 3};
const DivMagicNumbers DivMagicNumberFor125 = {0x10624dd3, 3};
const DivMagicNumbers DivMagicNumberFor625 = {0x68db8bad, 8};

const DivMagicNumbers DivMagicNumberFor(int32_t divisor);


// The C++ standard leaves the semantics of '>>' undefined for
// negative signed operands. Most implementations do the right thing,
// though.
inline int ArithmeticShiftRight(int x, int s) {
  return x >> s;
}


// Compute the 0-relative offset of some absolute value x of type T.
// This allows conversion of Addresses and integral types into
// 0-relative int offsets.
template <typename T>
inline intptr_t OffsetFrom(T x) {
  return x - static_cast<T>(0);
}


// Compute the absolute value of type T for some 0-relative offset x.
// This allows conversion of 0-relative int offsets into Addresses and
// integral types.
template <typename T>
inline T AddressFrom(intptr_t x) {
  return static_cast<T>(static_cast<T>(0) + x);
}


// Return the largest multiple of m which is <= x.
template <typename T>
inline T RoundDown(T x, intptr_t m) {
  ASSERT(IsPowerOf2(m));
  return AddressFrom<T>(OffsetFrom(x) & -m);
}


// Return the smallest multiple of m which is >= x.
template <typename T>
inline T RoundUp(T x, intptr_t m) {
  return RoundDown<T>(static_cast<T>(x + m - 1), m);
}


template <typename T>
int Compare(const T& a, const T& b) {
  if (a == b)
    return 0;
  else if (a < b)
    return -1;
  else
    return 1;
}


template <typename T>
int PointerValueCompare(const T* a, const T* b) {
  return Compare<T>(*a, *b);
}


// Compare function to compare the object pointer value of two
// handlified objects. The handles are passed as pointers to the
// handles.
template<typename T> class Handle;  // Forward declaration.
template <typename T>
int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
  return Compare<T*>(*(*a), *(*b));
}


// Returns the smallest power of two which is >= x. If you pass in a
// number that is already a power of two, it is returned as is.
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
// figure 3-3, page 48, where the function is called clp2.
inline uint32_t RoundUpToPowerOf2(uint32_t x) {
  ASSERT(x <= 0x80000000u);
  x = x - 1;
  x = x | (x >> 1);
  x = x | (x >> 2);
  x = x | (x >> 4);
  x = x | (x >> 8);
  x = x | (x >> 16);
  return x + 1;
}


inline uint32_t RoundDownToPowerOf2(uint32_t x) {
  uint32_t rounded_up = RoundUpToPowerOf2(x);
  if (rounded_up > x) return rounded_up >> 1;
  return rounded_up;
}


template <typename T, typename U>
inline bool IsAligned(T value, U alignment) {
  return (value & (alignment - 1)) == 0;
}


// Returns true if (addr + offset) is aligned.
inline bool IsAddressAligned(Address addr,
                             intptr_t alignment,
                             int offset = 0) {
  intptr_t offs = OffsetFrom(addr + offset);
  return IsAligned(offs, alignment);
}


// Returns the maximum of the two parameters.
template <typename T>
T Max(T a, T b) {
  return a < b ? b : a;
}


// Returns the minimum of the two parameters.
template <typename T>
T Min(T a, T b) {
  return a < b ? a : b;
}


inline int StrLength(const char* string) {
  size_t length = strlen(string);
  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
  return static_cast<int>(length);
}


// ----------------------------------------------------------------------------
// BitField is a help template for encoding and decode bitfield with
// unsigned content.
template<class T, int shift, int size>
class BitField {
 public:
  // A uint32_t mask of bit field.  To use all bits of a uint32 in a
  // bitfield without compiler warnings we have to compute 2^32 without
  // using a shift count of 32.
  static const uint32_t kMask = ((1U << shift) << size) - (1U << shift);

  // Value for the field with all bits set.
  static const T kMax = static_cast<T>((1U << size) - 1);

  // Tells whether the provided value fits into the bit field.
  static bool is_valid(T value) {
    return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0;
  }

  // Returns a uint32_t with the bit field value encoded.
  static uint32_t encode(T value) {
    ASSERT(is_valid(value));
    return static_cast<uint32_t>(value) << shift;
  }

  // Returns a uint32_t with the bit field value updated.
  static uint32_t update(uint32_t previous, T value) {
    return (previous & ~kMask) | encode(value);
  }

  // Extracts the bit field from the value.
  static T decode(uint32_t value) {
    return static_cast<T>((value & kMask) >> shift);
  }
};


// ----------------------------------------------------------------------------
// Hash function.

static const uint32_t kZeroHashSeed = 0;

// Thomas Wang, Integer Hash Functions.
// http://www.concentric.net/~Ttwang/tech/inthash.htm
inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
  uint32_t hash = key;
  hash = hash ^ seed;
  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
  hash = hash ^ (hash >> 12);
  hash = hash + (hash << 2);
  hash = hash ^ (hash >> 4);
  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
  hash = hash ^ (hash >> 16);
  return hash;
}


inline uint32_t ComputeLongHash(uint64_t key) {
  uint64_t hash = key;
  hash = ~hash + (hash << 18);  // hash = (hash << 18) - hash - 1;
  hash = hash ^ (hash >> 31);
  hash = hash * 21;  // hash = (hash + (hash << 2)) + (hash << 4);
  hash = hash ^ (hash >> 11);
  hash = hash + (hash << 6);
  hash = hash ^ (hash >> 22);
  return (uint32_t) hash;
}


inline uint32_t ComputePointerHash(void* ptr) {
  return ComputeIntegerHash(
      static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
      v8::internal::kZeroHashSeed);
}


// ----------------------------------------------------------------------------
// Miscellaneous

// A static resource holds a static instance that can be reserved in
// a local scope using an instance of Access.  Attempts to re-reserve
// the instance will cause an error.
template <typename T>
class StaticResource {
 public:
  StaticResource() : is_reserved_(false)  {}

 private:
  template <typename S> friend class Access;
  T instance_;
  bool is_reserved_;
};


// Locally scoped access to a static resource.
template <typename T>
class Access {
 public:
  explicit Access(StaticResource<T>* resource)
    : resource_(resource)
    , instance_(&resource->instance_) {
    ASSERT(!resource->is_reserved_);
    resource->is_reserved_ = true;
  }

  ~Access() {
    resource_->is_reserved_ = false;
    resource_ = NULL;
    instance_ = NULL;
  }

  T* value()  { return instance_; }
  T* operator -> ()  { return instance_; }

 private:
  StaticResource<T>* resource_;
  T* instance_;
};


template <typename T>
class Vector {
 public:
  Vector() : start_(NULL), length_(0) {}
  Vector(T* data, int length) : start_(data), length_(length) {
    ASSERT(length == 0 || (length > 0 && data != NULL));
  }

  static Vector<T> New(int length) {
    return Vector<T>(NewArray<T>(length), length);
  }

  // Returns a vector using the same backing storage as this one,
  // spanning from and including 'from', to but not including 'to'.
  Vector<T> SubVector(int from, int to) {
    ASSERT(to <= length_);
    ASSERT(from < to);
    ASSERT(0 <= from);
    return Vector<T>(start() + from, to - from);
  }

  // Returns the length of the vector.
  int length() const { return length_; }

  // Returns whether or not the vector is empty.
  bool is_empty() const { return length_ == 0; }

  // Returns the pointer to the start of the data in the vector.
  T* start() const { return start_; }

  // Access individual vector elements - checks bounds in debug mode.
  T& operator[](int index) const {
    ASSERT(0 <= index && index < length_);
    return start_[index];
  }

  const T& at(int index) const { return operator[](index); }

  T& first() { return start_[0]; }

  T& last() { return start_[length_ - 1]; }

  // Returns a clone of this vector with a new backing store.
  Vector<T> Clone() const {
    T* result = NewArray<T>(length_);
    for (int i = 0; i < length_; i++) result[i] = start_[i];
    return Vector<T>(result, length_);
  }

  void Sort(int (*cmp)(const T*, const T*)) {
    typedef int (*RawComparer)(const void*, const void*);
    qsort(start(),
          length(),
          sizeof(T),
          reinterpret_cast<RawComparer>(cmp));
  }

  void Sort() {
    Sort(PointerValueCompare<T>);
  }

  void Truncate(int length) {
    ASSERT(length <= length_);
    length_ = length;
  }

  // Releases the array underlying this vector. Once disposed the
  // vector is empty.
  void Dispose() {
    DeleteArray(start_);
    start_ = NULL;
    length_ = 0;
  }

  inline Vector<T> operator+(int offset) {
    ASSERT(offset < length_);
    return Vector<T>(start_ + offset, length_ - offset);
  }

  // Factory method for creating empty vectors.
  static Vector<T> empty() { return Vector<T>(NULL, 0); }

  template<typename S>
  static Vector<T> cast(Vector<S> input) {
    return Vector<T>(reinterpret_cast<T*>(input.start()),
                     input.length() * sizeof(S) / sizeof(T));
  }

 protected:
  void set_start(T* start) { start_ = start; }

 private:
  T* start_;
  int length_;
};


// A pointer that can only be set once and doesn't allow NULL values.
template<typename T>
class SetOncePointer {
 public:
  SetOncePointer() : pointer_(NULL) { }

  bool is_set() const { return pointer_ != NULL; }

  T* get() const {
    ASSERT(pointer_ != NULL);
    return pointer_;
  }

  void set(T* value) {
    ASSERT(pointer_ == NULL && value != NULL);
    pointer_ = value;
  }

 private:
  T* pointer_;
};


template <typename T, int kSize>
class EmbeddedVector : public Vector<T> {
 public:
  EmbeddedVector() : Vector<T>(buffer_, kSize) { }

  explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
    for (int i = 0; i < kSize; ++i) {
      buffer_[i] = initial_value;
    }
  }

  // When copying, make underlying Vector to reference our buffer.
  EmbeddedVector(const EmbeddedVector& rhs)
      : Vector<T>(rhs) {
    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
    set_start(buffer_);
  }

  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
    if (this == &rhs) return *this;
    Vector<T>::operator=(rhs);
    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
    this->set_start(buffer_);
    return *this;
  }

 private:
  T buffer_[kSize];
};


template <typename T>
class ScopedVector : public Vector<T> {
 public:
  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
  ~ScopedVector() {
    DeleteArray(this->start());
  }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
};


inline Vector<const char> CStrVector(const char* data) {
  return Vector<const char>(data, StrLength(data));
}

inline Vector<char> MutableCStrVector(char* data) {
  return Vector<char>(data, StrLength(data));
}

inline Vector<char> MutableCStrVector(char* data, int max) {
  int length = StrLength(data);
  return Vector<char>(data, (length < max) ? length : max);
}


/*
 * A class that collects values into a backing store.
 * Specialized versions of the class can allow access to the backing store
 * in different ways.
 * There is no guarantee that the backing store is contiguous (and, as a
 * consequence, no guarantees that consecutively added elements are adjacent
 * in memory). The collector may move elements unless it has guaranteed not
 * to.
 */
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class Collector {
 public:
  explicit Collector(int initial_capacity = kMinCapacity)
      : index_(0), size_(0) {
    current_chunk_ = Vector<T>::New(initial_capacity);
  }

  virtual ~Collector() {
    // Free backing store (in reverse allocation order).
    current_chunk_.Dispose();
    for (int i = chunks_.length() - 1; i >= 0; i--) {
      chunks_.at(i).Dispose();
    }
  }

  // Add a single element.
  inline void Add(T value) {
    if (index_ >= current_chunk_.length()) {
      Grow(1);
    }
    current_chunk_[index_] = value;
    index_++;
    size_++;
  }

  // Add a block of contiguous elements and return a Vector backed by the
  // memory area.
  // A basic Collector will keep this vector valid as long as the Collector
  // is alive.
  inline Vector<T> AddBlock(int size, T initial_value) {
    ASSERT(size > 0);
    if (size > current_chunk_.length() - index_) {
      Grow(size);
    }
    T* position = current_chunk_.start() + index_;
    index_ += size;
    size_ += size;
    for (int i = 0; i < size; i++) {
      position[i] = initial_value;
    }
    return Vector<T>(position, size);
  }


  // Add a contiguous block of elements and return a vector backed
  // by the added block.
  // A basic Collector will keep this vector valid as long as the Collector
  // is alive.
  inline Vector<T> AddBlock(Vector<const T> source) {
    if (source.length() > current_chunk_.length() - index_) {
      Grow(source.length());
    }
    T* position = current_chunk_.start() + index_;
    index_ += source.length();
    size_ += source.length();
    for (int i = 0; i < source.length(); i++) {
      position[i] = source[i];
    }
    return Vector<T>(position, source.length());
  }


  // Write the contents of the collector into the provided vector.
  void WriteTo(Vector<T> destination) {
    ASSERT(size_ <= destination.length());
    int position = 0;
    for (int i = 0; i < chunks_.length(); i++) {
      Vector<T> chunk = chunks_.at(i);
      for (int j = 0; j < chunk.length(); j++) {
        destination[position] = chunk[j];
        position++;
      }
    }
    for (int i = 0; i < index_; i++) {
      destination[position] = current_chunk_[i];
      position++;
    }
  }

  // Allocate a single contiguous vector, copy all the collected
  // elements to the vector, and return it.
  // The caller is responsible for freeing the memory of the returned
  // vector (e.g., using Vector::Dispose).
  Vector<T> ToVector() {
    Vector<T> new_store = Vector<T>::New(size_);
    WriteTo(new_store);
    return new_store;
  }

  // Resets the collector to be empty.
  virtual void Reset();

  // Total number of elements added to collector so far.
  inline int size() { return size_; }

 protected:
  static const int kMinCapacity = 16;
  List<Vector<T> > chunks_;
  Vector<T> current_chunk_;  // Block of memory currently being written into.
  int index_;  // Current index in current chunk.
  int size_;  // Total number of elements in collector.

  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
  void Grow(int min_capacity) {
    ASSERT(growth_factor > 1);
    int new_capacity;
    int current_length = current_chunk_.length();
    if (current_length < kMinCapacity) {
      // The collector started out as empty.
      new_capacity = min_capacity * growth_factor;
      if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
    } else {
      int growth = current_length * (growth_factor - 1);
      if (growth > max_growth) {
        growth = max_growth;
      }
      new_capacity = current_length + growth;
      if (new_capacity < min_capacity) {
        new_capacity = min_capacity + growth;
      }
    }
    NewChunk(new_capacity);
    ASSERT(index_ + min_capacity <= current_chunk_.length());
  }

  // Before replacing the current chunk, give a subclass the option to move
  // some of the current data into the new chunk. The function may update
  // the current index_ value to represent data no longer in the current chunk.
  // Returns the initial index of the new chunk (after copied data).
  virtual void NewChunk(int new_capacity)  {
    Vector<T> new_chunk = Vector<T>::New(new_capacity);
    if (index_ > 0) {
      chunks_.Add(current_chunk_.SubVector(0, index_));
    } else {
      current_chunk_.Dispose();
    }
    current_chunk_ = new_chunk;
    index_ = 0;
  }
};


/*
 * A collector that allows sequences of values to be guaranteed to
 * stay consecutive.
 * If the backing store grows while a sequence is active, the current
 * sequence might be moved, but after the sequence is ended, it will
 * not move again.
 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
 * as well, if inside an active sequence where another element is added.
 */
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
 public:
  explicit SequenceCollector(int initial_capacity)
      : Collector<T, growth_factor, max_growth>(initial_capacity),
        sequence_start_(kNoSequence) { }

  virtual ~SequenceCollector() {}

  void StartSequence() {
    ASSERT(sequence_start_ == kNoSequence);
    sequence_start_ = this->index_;
  }

  Vector<T> EndSequence() {
    ASSERT(sequence_start_ != kNoSequence);
    int sequence_start = sequence_start_;
    sequence_start_ = kNoSequence;
    if (sequence_start == this->index_) return Vector<T>();
    return this->current_chunk_.SubVector(sequence_start, this->index_);
  }

  // Drops the currently added sequence, and all collected elements in it.
  void DropSequence() {
    ASSERT(sequence_start_ != kNoSequence);
    int sequence_length = this->index_ - sequence_start_;
    this->index_ = sequence_start_;
    this->size_ -= sequence_length;
    sequence_start_ = kNoSequence;
  }

  virtual void Reset() {
    sequence_start_ = kNoSequence;
    this->Collector<T, growth_factor, max_growth>::Reset();
  }

 private:
  static const int kNoSequence = -1;
  int sequence_start_;

  // Move the currently active sequence to the new chunk.
  virtual void NewChunk(int new_capacity) {
    if (sequence_start_ == kNoSequence) {
      // Fall back on default behavior if no sequence has been started.
      this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
      return;
    }
    int sequence_length = this->index_ - sequence_start_;
    Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
    ASSERT(sequence_length < new_chunk.length());
    for (int i = 0; i < sequence_length; i++) {
      new_chunk[i] = this->current_chunk_[sequence_start_ + i];
    }
    if (sequence_start_ > 0) {
      this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
    } else {
      this->current_chunk_.Dispose();
    }
    this->current_chunk_ = new_chunk;
    this->index_ = sequence_length;
    sequence_start_ = 0;
  }
};


// Compare ASCII/16bit chars to ASCII/16bit chars.
template <typename lchar, typename rchar>
inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
  const lchar* limit = lhs + chars;
#ifdef V8_HOST_CAN_READ_UNALIGNED
  if (sizeof(*lhs) == sizeof(*rhs)) {
    // Number of characters in a uintptr_t.
    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
    while (lhs <= limit - kStepSize) {
      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
          *reinterpret_cast<const uintptr_t*>(rhs)) {
        break;
      }
      lhs += kStepSize;
      rhs += kStepSize;
    }
  }
#endif
  while (lhs < limit) {
    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
    if (r != 0) return r;
    ++lhs;
    ++rhs;
  }
  return 0;
}


// Calculate 10^exponent.
inline int TenToThe(int exponent) {
  ASSERT(exponent <= 9);
  ASSERT(exponent >= 1);
  int answer = 10;
  for (int i = 1; i < exponent; i++) answer *= 10;
  return answer;
}


// The type-based aliasing rule allows the compiler to assume that pointers of
// different types (for some definition of different) never alias each other.
// Thus the following code does not work:
//
// float f = foo();
// int fbits = *(int*)(&f);
//
// The compiler 'knows' that the int pointer can't refer to f since the types
// don't match, so the compiler may cache f in a register, leaving random data
// in fbits.  Using C++ style casts makes no difference, however a pointer to
// char data is assumed to alias any other pointer.  This is the 'memcpy
// exception'.
//
// Bit_cast uses the memcpy exception to move the bits from a variable of one
// type of a variable of another type.  Of course the end result is likely to
// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
// will completely optimize BitCast away.
//
// There is an additional use for BitCast.
// Recent gccs will warn when they see casts that may result in breakage due to
// the type-based aliasing rule.  If you have checked that there is no breakage
// you can use BitCast to cast one pointer type to another.  This confuses gcc
// enough that it can no longer see that you have cast one pointer type to
// another thus avoiding the warning.

// We need different implementations of BitCast for pointer and non-pointer
// values. We use partial specialization of auxiliary struct to work around
// issues with template functions overloading.
template <class Dest, class Source>
struct BitCastHelper {
  STATIC_ASSERT(sizeof(Dest) == sizeof(Source));

  INLINE(static Dest cast(const Source& source)) {
    Dest dest;
    memcpy(&dest, &source, sizeof(dest));
    return dest;
  }
};

template <class Dest, class Source>
struct BitCastHelper<Dest, Source*> {
  INLINE(static Dest cast(Source* source)) {
    return BitCastHelper<Dest, uintptr_t>::
        cast(reinterpret_cast<uintptr_t>(source));
  }
};

template <class Dest, class Source>
INLINE(Dest BitCast(const Source& source));

template <class Dest, class Source>
inline Dest BitCast(const Source& source) {
  return BitCastHelper<Dest, Source>::cast(source);
}


template<typename ElementType, int NumElements>
class EmbeddedContainer {
 public:
  EmbeddedContainer() : elems_() { }

  int length() { return NumElements; }
  ElementType& operator[](int i) {
    ASSERT(i < length());
    return elems_[i];
  }

 private:
  ElementType elems_[NumElements];
};


template<typename ElementType>
class EmbeddedContainer<ElementType, 0> {
 public:
  int length() { return 0; }
  ElementType& operator[](int i) {
    UNREACHABLE();
    static ElementType t = 0;
    return t;
  }
};


// Helper class for building result strings in a character buffer. The
// purpose of the class is to use safe operations that checks the
// buffer bounds on all operations in debug mode.
// This simple base class does not allow formatted output.
class SimpleStringBuilder {
 public:
  // Create a string builder with a buffer of the given size. The
  // buffer is allocated through NewArray<char> and must be
  // deallocated by the caller of Finalize().
  explicit SimpleStringBuilder(int size);

  SimpleStringBuilder(char* buffer, int size)
      : buffer_(buffer, size), position_(0) { }

  ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }

  int size() const { return buffer_.length(); }

  // Get the current position in the builder.
  int position() const {
    ASSERT(!is_finalized());
    return position_;
  }

  // Reset the position.
  void Reset() { position_ = 0; }

  // Add a single character to the builder. It is not allowed to add
  // 0-characters; use the Finalize() method to terminate the string
  // instead.
  void AddCharacter(char c) {
    ASSERT(c != '\0');
    ASSERT(!is_finalized() && position_ < buffer_.length());
    buffer_[position_++] = c;
  }

  // Add an entire string to the builder. Uses strlen() internally to
  // compute the length of the input string.
  void AddString(const char* s);

  // Add the first 'n' characters of the given string 's' to the
  // builder. The input string must have enough characters.
  void AddSubstring(const char* s, int n);

  // Add character padding to the builder. If count is non-positive,
  // nothing is added to the builder.
  void AddPadding(char c, int count);

  // Add the decimal representation of the value.
  void AddDecimalInteger(int value);

  // Finalize the string by 0-terminating it and returning the buffer.
  char* Finalize();

 protected:
  Vector<char> buffer_;
  int position_;

  bool is_finalized() const { return position_ < 0; }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
};


// A poor man's version of STL's bitset: A bit set of enums E (without explicit
// values), fitting into an integral type T.
template <class E, class T = int>
class EnumSet {
 public:
  explicit EnumSet(T bits = 0) : bits_(bits) {}
  bool IsEmpty() const { return bits_ == 0; }
  bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
  bool ContainsAnyOf(const EnumSet& set) const {
    return (bits_ & set.bits_) != 0;
  }
  void Add(E element) { bits_ |= Mask(element); }
  void Add(const EnumSet& set) { bits_ |= set.bits_; }
  void Remove(E element) { bits_ &= ~Mask(element); }
  void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
  void RemoveAll() { bits_ = 0; }
  void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
  T ToIntegral() const { return bits_; }
  bool operator==(const EnumSet& set) { return bits_ == set.bits_; }

 private:
  T Mask(E element) const {
    // The strange typing in ASSERT is necessary to avoid stupid warnings, see:
    // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
    ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT));
    return 1 << element;
  }

  T bits_;
};

} }  // namespace v8::internal

#endif  // V8_UTILS_H_