summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/x64/codegen-x64.cc
blob: a8d39b25f666e7a9dc36de34d46a9f7044a26335 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_X64)

#include "codegen.h"
#include "macro-assembler.h"

namespace v8 {
namespace internal {

// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  ASSERT(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  ASSERT(masm->has_frame());
  masm->set_has_frame(false);
}


#define __ masm.


UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
  size_t actual_size;
  // Allocate buffer in executable space.
  byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
                                                 &actual_size,
                                                 true));
  if (buffer == NULL) {
    // Fallback to library function if function cannot be created.
    switch (type) {
      case TranscendentalCache::SIN: return &sin;
      case TranscendentalCache::COS: return &cos;
      case TranscendentalCache::TAN: return &tan;
      case TranscendentalCache::LOG: return &log;
      default: UNIMPLEMENTED();
    }
  }

  MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
  // xmm0: raw double input.
  // Move double input into registers.
  __ push(rbx);
  __ push(rdi);
  __ movq(rbx, xmm0);
  __ push(rbx);
  __ fld_d(Operand(rsp, 0));
  TranscendentalCacheStub::GenerateOperation(&masm, type);
  // The return value is expected to be in xmm0.
  __ fstp_d(Operand(rsp, 0));
  __ pop(rbx);
  __ movq(xmm0, rbx);
  __ pop(rdi);
  __ pop(rbx);
  __ Ret();

  CodeDesc desc;
  masm.GetCode(&desc);
  ASSERT(desc.reloc_size == 0);

  CPU::FlushICache(buffer, actual_size);
  OS::ProtectCode(buffer, actual_size);
  return FUNCTION_CAST<UnaryMathFunction>(buffer);
}


UnaryMathFunction CreateSqrtFunction() {
  size_t actual_size;
  // Allocate buffer in executable space.
  byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
                                                 &actual_size,
                                                 true));
  if (buffer == NULL) return &sqrt;

  MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
  // xmm0: raw double input.
  // Move double input into registers.
  __ sqrtsd(xmm0, xmm0);
  __ Ret();

  CodeDesc desc;
  masm.GetCode(&desc);
  ASSERT(desc.reloc_size == 0);

  CPU::FlushICache(buffer, actual_size);
  OS::ProtectCode(buffer, actual_size);
  return FUNCTION_CAST<UnaryMathFunction>(buffer);
}


#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Define custom fmod implementation.
ModuloFunction CreateModuloFunction() {
  size_t actual_size;
  byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
                                                 &actual_size,
                                                 true));
  CHECK(buffer);
  Assembler masm(NULL, buffer, static_cast<int>(actual_size));
  // Generated code is put into a fixed, unmovable, buffer, and not into
  // the V8 heap. We can't, and don't, refer to any relocatable addresses
  // (e.g. the JavaScript nan-object).

  // Windows 64 ABI passes double arguments in xmm0, xmm1 and
  // returns result in xmm0.
  // Argument backing space is allocated on the stack above
  // the return address.

  // Compute x mod y.
  // Load y and x (use argument backing store as temporary storage).
  __ movsd(Operand(rsp, kPointerSize * 2), xmm1);
  __ movsd(Operand(rsp, kPointerSize), xmm0);
  __ fld_d(Operand(rsp, kPointerSize * 2));
  __ fld_d(Operand(rsp, kPointerSize));

  // Clear exception flags before operation.
  {
    Label no_exceptions;
    __ fwait();
    __ fnstsw_ax();
    // Clear if Illegal Operand or Zero Division exceptions are set.
    __ testb(rax, Immediate(5));
    __ j(zero, &no_exceptions);
    __ fnclex();
    __ bind(&no_exceptions);
  }

  // Compute st(0) % st(1)
  {
    Label partial_remainder_loop;
    __ bind(&partial_remainder_loop);
    __ fprem();
    __ fwait();
    __ fnstsw_ax();
    __ testl(rax, Immediate(0x400 /* C2 */));
    // If C2 is set, computation only has partial result. Loop to
    // continue computation.
    __ j(not_zero, &partial_remainder_loop);
  }

  Label valid_result;
  Label return_result;
  // If Invalid Operand or Zero Division exceptions are set,
  // return NaN.
  __ testb(rax, Immediate(5));
  __ j(zero, &valid_result);
  __ fstp(0);  // Drop result in st(0).
  int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000);
  __ movq(rcx, kNaNValue, RelocInfo::NONE);
  __ movq(Operand(rsp, kPointerSize), rcx);
  __ movsd(xmm0, Operand(rsp, kPointerSize));
  __ jmp(&return_result);

  // If result is valid, return that.
  __ bind(&valid_result);
  __ fstp_d(Operand(rsp, kPointerSize));
  __ movsd(xmm0, Operand(rsp, kPointerSize));

  // Clean up FPU stack and exceptions and return xmm0
  __ bind(&return_result);
  __ fstp(0);  // Unload y.

  Label clear_exceptions;
  __ testb(rax, Immediate(0x3f /* Any Exception*/));
  __ j(not_zero, &clear_exceptions);
  __ ret(0);
  __ bind(&clear_exceptions);
  __ fnclex();
  __ ret(0);

  CodeDesc desc;
  masm.GetCode(&desc);
  OS::ProtectCode(buffer, actual_size);
  // Call the function from C++ through this pointer.
  return FUNCTION_CAST<ModuloFunction>(buffer);
}

#endif

#undef __

// -------------------------------------------------------------------------
// Code generators

#define __ ACCESS_MASM(masm)

void ElementsTransitionGenerator::GenerateSmiOnlyToObject(
    MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rbx    : target map
  //  -- rcx    : key
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  // Set transitioned map.
  __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx);
  __ RecordWriteField(rdx,
                      HeapObject::kMapOffset,
                      rbx,
                      rdi,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


void ElementsTransitionGenerator::GenerateSmiOnlyToDouble(
    MacroAssembler* masm, Label* fail) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rbx    : target map
  //  -- rcx    : key
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  // The fail label is not actually used since we do not allocate.
  Label allocated, new_backing_store, only_change_map, done;

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ movq(r8, FieldOperand(rdx, JSObject::kElementsOffset));
  __ CompareRoot(r8, Heap::kEmptyFixedArrayRootIndex);
  __ j(equal, &only_change_map);

  // Check backing store for COW-ness.  For COW arrays we have to
  // allocate a new backing store.
  __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset));
  __ CompareRoot(FieldOperand(r8, HeapObject::kMapOffset),
                 Heap::kFixedCOWArrayMapRootIndex);
  __ j(equal, &new_backing_store);
  // Check if the backing store is in new-space. If not, we need to allocate
  // a new one since the old one is in pointer-space.
  // If in new space, we can reuse the old backing store because it is
  // the same size.
  __ JumpIfNotInNewSpace(r8, rdi, &new_backing_store);

  __ movq(r14, r8);  // Destination array equals source array.

  // r8 : source FixedArray
  // r9 : elements array length
  // r14: destination FixedDoubleArray
  // Set backing store's map
  __ LoadRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex);
  __ movq(FieldOperand(r14, HeapObject::kMapOffset), rdi);

  __ bind(&allocated);
  // Set transitioned map.
  __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx);
  __ RecordWriteField(rdx,
                      HeapObject::kMapOffset,
                      rbx,
                      rdi,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  // Convert smis to doubles and holes to hole NaNs.  The Array's length
  // remains unchanged.
  STATIC_ASSERT(FixedDoubleArray::kLengthOffset == FixedArray::kLengthOffset);
  STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);

  Label loop, entry, convert_hole;
  __ movq(r15, BitCast<int64_t, uint64_t>(kHoleNanInt64), RelocInfo::NONE);
  // r15: the-hole NaN
  __ jmp(&entry);

  // Allocate new backing store.
  __ bind(&new_backing_store);
  __ lea(rdi, Operand(r9, times_pointer_size, FixedArray::kHeaderSize));
  __ AllocateInNewSpace(rdi, r14, r11, r15, fail, TAG_OBJECT);
  // Set backing store's map
  __ LoadRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex);
  __ movq(FieldOperand(r14, HeapObject::kMapOffset), rdi);
  // Set receiver's backing store.
  __ movq(FieldOperand(rdx, JSObject::kElementsOffset), r14);
  __ movq(r11, r14);
  __ RecordWriteField(rdx,
                      JSObject::kElementsOffset,
                      r11,
                      r15,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  // Set backing store's length.
  __ Integer32ToSmi(r11, r9);
  __ movq(FieldOperand(r14, FixedDoubleArray::kLengthOffset), r11);
  __ jmp(&allocated);

  __ bind(&only_change_map);
  // Set transitioned map.
  __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx);
  __ RecordWriteField(rdx,
                      HeapObject::kMapOffset,
                      rbx,
                      rdi,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ jmp(&done);

  // Conversion loop.
  __ bind(&loop);
  __ movq(rbx,
          FieldOperand(r8, r9, times_8, FixedArray::kHeaderSize));
  // r9 : current element's index
  // rbx: current element (smi-tagged)
  __ JumpIfNotSmi(rbx, &convert_hole);
  __ SmiToInteger32(rbx, rbx);
  __ cvtlsi2sd(xmm0, rbx);
  __ movsd(FieldOperand(r14, r9, times_8, FixedDoubleArray::kHeaderSize),
           xmm0);
  __ jmp(&entry);
  __ bind(&convert_hole);

  if (FLAG_debug_code) {
    __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
    __ Assert(equal, "object found in smi-only array");
  }

  __ movq(FieldOperand(r14, r9, times_8, FixedDoubleArray::kHeaderSize), r15);
  __ bind(&entry);
  __ decq(r9);
  __ j(not_sign, &loop);

  __ bind(&done);
}


void ElementsTransitionGenerator::GenerateDoubleToObject(
    MacroAssembler* masm, Label* fail) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rbx    : target map
  //  -- rcx    : key
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  Label loop, entry, convert_hole, gc_required, only_change_map;

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ movq(r8, FieldOperand(rdx, JSObject::kElementsOffset));
  __ CompareRoot(r8, Heap::kEmptyFixedArrayRootIndex);
  __ j(equal, &only_change_map);

  __ push(rax);

  __ movq(r8, FieldOperand(rdx, JSObject::kElementsOffset));
  __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset));
  // r8 : source FixedDoubleArray
  // r9 : number of elements
  __ lea(rdi, Operand(r9, times_pointer_size, FixedArray::kHeaderSize));
  __ AllocateInNewSpace(rdi, r11, r14, r15, &gc_required, TAG_OBJECT);
  // r11: destination FixedArray
  __ LoadRoot(rdi, Heap::kFixedArrayMapRootIndex);
  __ movq(FieldOperand(r11, HeapObject::kMapOffset), rdi);
  __ Integer32ToSmi(r14, r9);
  __ movq(FieldOperand(r11, FixedArray::kLengthOffset), r14);

  // Prepare for conversion loop.
  __ movq(rsi, BitCast<int64_t, uint64_t>(kHoleNanInt64), RelocInfo::NONE);
  __ LoadRoot(rdi, Heap::kTheHoleValueRootIndex);
  // rsi: the-hole NaN
  // rdi: pointer to the-hole
  __ jmp(&entry);

  // Call into runtime if GC is required.
  __ bind(&gc_required);
  __ pop(rax);
  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
  __ jmp(fail);

  // Box doubles into heap numbers.
  __ bind(&loop);
  __ movq(r14, FieldOperand(r8,
                            r9,
                            times_pointer_size,
                            FixedDoubleArray::kHeaderSize));
  // r9 : current element's index
  // r14: current element
  __ cmpq(r14, rsi);
  __ j(equal, &convert_hole);

  // Non-hole double, copy value into a heap number.
  __ AllocateHeapNumber(rax, r15, &gc_required);
  // rax: new heap number
  __ movq(FieldOperand(rax, HeapNumber::kValueOffset), r14);
  __ movq(FieldOperand(r11,
                       r9,
                       times_pointer_size,
                       FixedArray::kHeaderSize),
          rax);
  __ movq(r15, r9);
  __ RecordWriteArray(r11,
                      rax,
                      r15,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ jmp(&entry, Label::kNear);

  // Replace the-hole NaN with the-hole pointer.
  __ bind(&convert_hole);
  __ movq(FieldOperand(r11,
                       r9,
                       times_pointer_size,
                       FixedArray::kHeaderSize),
          rdi);

  __ bind(&entry);
  __ decq(r9);
  __ j(not_sign, &loop);

  // Replace receiver's backing store with newly created and filled FixedArray.
  __ movq(FieldOperand(rdx, JSObject::kElementsOffset), r11);
  __ RecordWriteField(rdx,
                      JSObject::kElementsOffset,
                      r11,
                      r15,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ pop(rax);
  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));

  __ bind(&only_change_map);
  // Set transitioned map.
  __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx);
  __ RecordWriteField(rdx,
                      HeapObject::kMapOffset,
                      rbx,
                      rdi,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


void StringCharLoadGenerator::Generate(MacroAssembler* masm,
                                       Register string,
                                       Register index,
                                       Register result,
                                       Label* call_runtime) {
  // Fetch the instance type of the receiver into result register.
  __ movq(result, FieldOperand(string, HeapObject::kMapOffset));
  __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ testb(result, Immediate(kIsIndirectStringMask));
  __ j(zero, &check_sequential, Label::kNear);

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string;
  __ testb(result, Immediate(kSlicedNotConsMask));
  __ j(zero, &cons_string, Label::kNear);

  // Handle slices.
  Label indirect_string_loaded;
  __ SmiToInteger32(result, FieldOperand(string, SlicedString::kOffsetOffset));
  __ addq(index, result);
  __ movq(string, FieldOperand(string, SlicedString::kParentOffset));
  __ jmp(&indirect_string_loaded, Label::kNear);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset),
                 Heap::kEmptyStringRootIndex);
  __ j(not_equal, call_runtime);
  __ movq(string, FieldOperand(string, ConsString::kFirstOffset));

  __ bind(&indirect_string_loaded);
  __ movq(result, FieldOperand(string, HeapObject::kMapOffset));
  __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset));

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label seq_string;
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ testb(result, Immediate(kStringRepresentationMask));
  __ j(zero, &seq_string, Label::kNear);

  // Handle external strings.
  Label ascii_external, done;
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ testb(result, Immediate(kIsIndirectStringMask));
    __ Assert(zero, "external string expected, but not found");
  }
  // Rule out short external strings.
  STATIC_CHECK(kShortExternalStringTag != 0);
  __ testb(result, Immediate(kShortExternalStringTag));
  __ j(not_zero, call_runtime);
  // Check encoding.
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ testb(result, Immediate(kStringEncodingMask));
  __ movq(result, FieldOperand(string, ExternalString::kResourceDataOffset));
  __ j(not_equal, &ascii_external, Label::kNear);
  // Two-byte string.
  __ movzxwl(result, Operand(result, index, times_2, 0));
  __ jmp(&done, Label::kNear);
  __ bind(&ascii_external);
  // Ascii string.
  __ movzxbl(result, Operand(result, index, times_1, 0));
  __ jmp(&done, Label::kNear);

  // Dispatch on the encoding: ASCII or two-byte.
  Label ascii;
  __ bind(&seq_string);
  STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
  STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
  __ testb(result, Immediate(kStringEncodingMask));
  __ j(not_zero, &ascii, Label::kNear);

  // Two-byte string.
  // Load the two-byte character code into the result register.
  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
  __ movzxwl(result, FieldOperand(string,
                                  index,
                                  times_2,
                                  SeqTwoByteString::kHeaderSize));
  __ jmp(&done, Label::kNear);

  // ASCII string.
  // Load the byte into the result register.
  __ bind(&ascii);
  __ movzxbl(result, FieldOperand(string,
                                  index,
                                  times_1,
                                  SeqAsciiString::kHeaderSize));
  __ bind(&done);
}

#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_X64