summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/assembler/ARMAssembler.h
blob: ebab46d98a30a501efec5a9cf0e1a9e4b291fecd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
/*
 * Copyright (C) 2009, 2010 University of Szeged
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef ARMAssembler_h
#define ARMAssembler_h

#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)

#include "AssemblerBufferWithConstantPool.h"
#include "JITCompilationEffort.h"
#include <wtf/Assertions.h>
namespace JSC {

    typedef uint32_t ARMWord;

    namespace ARMRegisters {
        typedef enum {
            r0 = 0,
            r1,
            r2,
            r3, S0 = r3, /* Same as thumb assembler. */
            r4,
            r5,
            r6,
            r7,
            r8,
            r9,
            r10,
            r11,
            r12, S1 = r12,
            r13, sp = r13,
            r14, lr = r14,
            r15, pc = r15
        } RegisterID;

        typedef enum {
            d0,
            d1,
            d2,
            d3,
            d4,
            d5,
            d6,
            d7, SD0 = d7, /* Same as thumb assembler. */
            d8,
            d9,
            d10,
            d11,
            d12,
            d13,
            d14,
            d15,
            d16,
            d17,
            d18,
            d19,
            d20,
            d21,
            d22,
            d23,
            d24,
            d25,
            d26,
            d27,
            d28,
            d29,
            d30,
            d31
        } FPRegisterID;

    } // namespace ARMRegisters

    class ARMAssembler {
    public:
        typedef ARMRegisters::RegisterID RegisterID;
        typedef ARMRegisters::FPRegisterID FPRegisterID;
        typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer;
        typedef SegmentedVector<AssemblerLabel, 64> Jumps;

        ARMAssembler()
            : m_indexOfTailOfLastWatchpoint(1)
        {
        }

        // ARM conditional constants
        typedef enum {
            EQ = 0x00000000, // Zero
            NE = 0x10000000, // Non-zero
            CS = 0x20000000,
            CC = 0x30000000,
            MI = 0x40000000,
            PL = 0x50000000,
            VS = 0x60000000,
            VC = 0x70000000,
            HI = 0x80000000,
            LS = 0x90000000,
            GE = 0xa0000000,
            LT = 0xb0000000,
            GT = 0xc0000000,
            LE = 0xd0000000,
            AL = 0xe0000000
        } Condition;

        // ARM instruction constants
        enum {
            AND = (0x0 << 21),
            EOR = (0x1 << 21),
            SUB = (0x2 << 21),
            RSB = (0x3 << 21),
            ADD = (0x4 << 21),
            ADC = (0x5 << 21),
            SBC = (0x6 << 21),
            RSC = (0x7 << 21),
            TST = (0x8 << 21),
            TEQ = (0x9 << 21),
            CMP = (0xa << 21),
            CMN = (0xb << 21),
            ORR = (0xc << 21),
            MOV = (0xd << 21),
            BIC = (0xe << 21),
            MVN = (0xf << 21),
            MUL = 0x00000090,
            MULL = 0x00c00090,
            VMOV_F64 = 0x0eb00b40,
            VADD_F64 = 0x0e300b00,
            VDIV_F64 = 0x0e800b00,
            VSUB_F64 = 0x0e300b40,
            VMUL_F64 = 0x0e200b00,
            VCMP_F64 = 0x0eb40b40,
            VSQRT_F64 = 0x0eb10bc0,
            VABS_F64 = 0x0eb00bc0,
            VNEG_F64 = 0x0eb10b40,
            STMDB = 0x09200000,
            LDMIA = 0x08b00000,
            B = 0x0a000000,
            BL = 0x0b000000,
            BX = 0x012fff10,
            VMOV_VFP64 = 0x0c400a10,
            VMOV_ARM64 = 0x0c500a10,
            VMOV_VFP32 = 0x0e000a10,
            VMOV_ARM32 = 0x0e100a10,
            VCVT_F64_S32 = 0x0eb80bc0,
            VCVT_S32_F64 = 0x0ebd0b40,
            VCVT_U32_F64 = 0x0ebc0b40,
            VCVT_F32_F64 = 0x0eb70bc0,
            VCVT_F64_F32 = 0x0eb70ac0,
            VMRS_APSR = 0x0ef1fa10,
            CLZ = 0x016f0f10,
            BKPT = 0xe1200070,
            BLX = 0x012fff30,
#if WTF_ARM_ARCH_AT_LEAST(7)
            MOVW = 0x03000000,
            MOVT = 0x03400000,
#endif
            NOP = 0xe1a00000,
        };

        enum {
            Op2Immediate = (1 << 25),
            ImmediateForHalfWordTransfer = (1 << 22),
            Op2InvertedImmediate = (1 << 26),
            SetConditionalCodes = (1 << 20),
            Op2IsRegisterArgument = (1 << 25),
            // Data transfer flags.
            DataTransferUp = (1 << 23),
            DataTransferWriteBack = (1 << 21),
            DataTransferPostUpdate = (1 << 24),
            DataTransferLoad = (1 << 20),
            ByteDataTransfer = (1 << 22),
        };

        enum DataTransferTypeA {
            LoadUint32 = 0x05000000 | DataTransferLoad,
            LoadUint8 = 0x05400000 | DataTransferLoad,
            StoreUint32 = 0x05000000,
            StoreUint8 = 0x05400000,
        };

        enum DataTransferTypeB {
            LoadUint16 = 0x010000b0 | DataTransferLoad,
            LoadInt16 = 0x010000f0 | DataTransferLoad,
            LoadInt8 = 0x010000d0 | DataTransferLoad,
            StoreUint16 = 0x010000b0,
        };

        enum DataTransferTypeFloat {
            LoadFloat = 0x0d000a00 | DataTransferLoad,
            LoadDouble = 0x0d000b00 | DataTransferLoad,
            StoreFloat = 0x0d000a00,
            StoreDouble = 0x0d000b00,
        };

        // Masks of ARM instructions
        enum {
            BranchOffsetMask = 0x00ffffff,
            ConditionalFieldMask = 0xf0000000,
            DataTransferOffsetMask = 0xfff,
        };

        enum {
            MinimumBranchOffsetDistance = -0x00800000,
            MaximumBranchOffsetDistance = 0x007fffff,
        };

        enum {
            padForAlign8  = 0x00,
            padForAlign16 = 0x0000,
            padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction.
        };

        static const ARMWord InvalidImmediate = 0xf0000000;
        static const ARMWord InvalidBranchTarget = 0xffffffff;
        static const int DefaultPrefetchOffset = 2;

        static const ARMWord BlxInstructionMask = 0x012fff30;
        static const ARMWord LdrOrAddInstructionMask = 0x0ff00000;
        static const ARMWord LdrPcImmediateInstructionMask = 0x0f7f0000;

        static const ARMWord AddImmediateInstruction = 0x02800000;
        static const ARMWord BlxInstruction = 0x012fff30;
        static const ARMWord LdrImmediateInstruction = 0x05900000;
        static const ARMWord LdrPcImmediateInstruction = 0x051f0000;

        // Instruction formating

        void emitInstruction(ARMWord op, int rd, int rn, ARMWord op2)
        {
            ASSERT(((op2 & ~Op2Immediate) <= 0xfff) || (((op2 & ~ImmediateForHalfWordTransfer) <= 0xfff)));
            m_buffer.putInt(op | RN(rn) | RD(rd) | op2);
        }

        void emitDoublePrecisionInstruction(ARMWord op, int dd, int dn, int dm)
        {
            ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31));
            m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4))
                               | ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4))
                               | (dm & 0xf) | ((dm & 0x10) << (5 - 4)));
        }

        void emitSinglePrecisionInstruction(ARMWord op, int sd, int sn, int sm)
        {
            ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31));
            m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22)
                               | ((sn >> 1) << 16) | ((sn & 0x1) << 7)
                               | (sm >> 1) | ((sm & 0x1) << 5));
        }

        void bitAnd(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | AND, rd, rn, op2);
        }

        void bitAnds(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | AND | SetConditionalCodes, rd, rn, op2);
        }

        void eor(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | EOR, rd, rn, op2);
        }

        void eors(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | EOR | SetConditionalCodes, rd, rn, op2);
        }

        void sub(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | SUB, rd, rn, op2);
        }

        void subs(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | SUB | SetConditionalCodes, rd, rn, op2);
        }

        void rsb(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | RSB, rd, rn, op2);
        }

        void rsbs(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | RSB | SetConditionalCodes, rd, rn, op2);
        }

        void add(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | ADD, rd, rn, op2);
        }

        void adds(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | ADD | SetConditionalCodes, rd, rn, op2);
        }

        void adc(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | ADC, rd, rn, op2);
        }

        void adcs(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | ADC | SetConditionalCodes, rd, rn, op2);
        }

        void sbc(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | SBC, rd, rn, op2);
        }

        void sbcs(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | SBC | SetConditionalCodes, rd, rn, op2);
        }

        void rsc(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | RSC, rd, rn, op2);
        }

        void rscs(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | RSC | SetConditionalCodes, rd, rn, op2);
        }

        void tst(int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | TST | SetConditionalCodes, 0, rn, op2);
        }

        void teq(int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | TEQ | SetConditionalCodes, 0, rn, op2);
        }

        void cmp(int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | CMP | SetConditionalCodes, 0, rn, op2);
        }

        void cmn(int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | CMN | SetConditionalCodes, 0, rn, op2);
        }

        void orr(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | ORR, rd, rn, op2);
        }

        void orrs(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | ORR | SetConditionalCodes, rd, rn, op2);
        }

        void mov(int rd, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | MOV, rd, ARMRegisters::r0, op2);
        }

#if WTF_ARM_ARCH_AT_LEAST(7)
        void movw(int rd, ARMWord op2, Condition cc = AL)
        {
            ASSERT((op2 | 0xf0fff) == 0xf0fff);
            m_buffer.putInt(toARMWord(cc) | MOVW | RD(rd) | op2);
        }

        void movt(int rd, ARMWord op2, Condition cc = AL)
        {
            ASSERT((op2 | 0xf0fff) == 0xf0fff);
            m_buffer.putInt(toARMWord(cc) | MOVT | RD(rd) | op2);
        }
#endif

        void movs(int rd, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | MOV | SetConditionalCodes, rd, ARMRegisters::r0, op2);
        }

        static void revertJump(void* instructionStart, RegisterID rd, ARMWord imm)
        {
            ARMWord* insn = reinterpret_cast<ARMWord*>(instructionStart);
            ARMWord* address = getLdrImmAddress(insn);
            *address = imm;
        }

        void bic(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | BIC, rd, rn, op2);
        }

        void bics(int rd, int rn, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | BIC | SetConditionalCodes, rd, rn, op2);
        }

        void mvn(int rd, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | MVN, rd, ARMRegisters::r0, op2);
        }

        void mvns(int rd, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | MVN | SetConditionalCodes, rd, ARMRegisters::r0, op2);
        }

        void mul(int rd, int rn, int rm, Condition cc = AL)
        {
            m_buffer.putInt(toARMWord(cc) | MUL | RN(rd) | RS(rn) | RM(rm));
        }

        void muls(int rd, int rn, int rm, Condition cc = AL)
        {
            m_buffer.putInt(toARMWord(cc) | MUL | SetConditionalCodes | RN(rd) | RS(rn) | RM(rm));
        }

        void mull(int rdhi, int rdlo, int rn, int rm, Condition cc = AL)
        {
            m_buffer.putInt(toARMWord(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm));
        }

        void vmov_f64(int dd, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VMOV_F64, dd, 0, dm);
        }

        void vadd_f64(int dd, int dn, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VADD_F64, dd, dn, dm);
        }

        void vdiv_f64(int dd, int dn, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VDIV_F64, dd, dn, dm);
        }

        void vsub_f64(int dd, int dn, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VSUB_F64, dd, dn, dm);
        }

        void vmul_f64(int dd, int dn, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VMUL_F64, dd, dn, dm);
        }

        void vcmp_f64(int dd, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VCMP_F64, dd, 0, dm);
        }

        void vsqrt_f64(int dd, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VSQRT_F64, dd, 0, dm);
        }

        void vabs_f64(int dd, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VABS_F64, dd, 0, dm);
        }

        void vneg_f64(int dd, int dm, Condition cc = AL)
        {
            emitDoublePrecisionInstruction(toARMWord(cc) | VNEG_F64, dd, 0, dm);
        }

        void ldrImmediate(int rd, ARMWord imm, Condition cc = AL)
        {
            m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm, true);
        }

        void ldrUniqueImmediate(int rd, ARMWord imm, Condition cc = AL)
        {
            m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm);
        }

        void dtrUp(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
        }

        void dtrUpRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType | DataTransferUp | Op2IsRegisterArgument, rd, rb, rm);
        }

        void dtrDown(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
        }

        void dtrDownRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType | Op2IsRegisterArgument, rd, rb, rm);
        }

        void halfDtrUp(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2);
        }

        void halfDtrUpRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rn, rm);
        }

        void halfDtrDown(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType, rd, rb, op2);
        }

        void halfDtrDownRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | transferType, rd, rn, rm);
        }

        void doubleDtrUp(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
        {
            ASSERT(op2 <= 0xff && rd <= 15);
            /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
            m_buffer.putInt(toARMWord(cc) | DataTransferUp | type | (rd << 12) | RN(rb) | op2);
        }

        void doubleDtrDown(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL)
        {
            ASSERT(op2 <= 0xff && rd <= 15);
            /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */
            m_buffer.putInt(toARMWord(cc) | type | (rd << 12) | RN(rb) | op2);
        }

        void push(int reg, Condition cc = AL)
        {
            ASSERT(ARMWord(reg) <= 0xf);
            m_buffer.putInt(toARMWord(cc) | StoreUint32 | DataTransferWriteBack | RN(ARMRegisters::sp) | RD(reg) | 0x4);
        }

        void pop(int reg, Condition cc = AL)
        {
            ASSERT(ARMWord(reg) <= 0xf);
            m_buffer.putInt(toARMWord(cc) | (LoadUint32 ^ DataTransferPostUpdate) | DataTransferUp | RN(ARMRegisters::sp) | RD(reg) | 0x4);
        }

        inline void poke(int reg, Condition cc = AL)
        {
            dtrDown(StoreUint32, ARMRegisters::sp, 0, reg, cc);
        }

        inline void peek(int reg, Condition cc = AL)
        {
            dtrUp(LoadUint32, reg, ARMRegisters::sp, 0, cc);
        }

        void vmov_vfp64(int sm, int rt, int rt2, Condition cc = AL)
        {
            ASSERT(rt != rt2);
            m_buffer.putInt(toARMWord(cc) | VMOV_VFP64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
        }

        void vmov_arm64(int rt, int rt2, int sm, Condition cc = AL)
        {
            ASSERT(rt != rt2);
            m_buffer.putInt(toARMWord(cc) | VMOV_ARM64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4)));
        }

        void vmov_vfp32(int sn, int rt, Condition cc = AL)
        {
            ASSERT(rt <= 15);
            emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_VFP32, rt << 1, sn, 0);
        }

        void vmov_arm32(int rt, int sn, Condition cc = AL)
        {
            ASSERT(rt <= 15);
            emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_ARM32, rt << 1, sn, 0);
        }

        void vcvt_f64_s32(int dd, int sm, Condition cc = AL)
        {
            ASSERT(!(sm & 0x1)); // sm must be divisible by 2
            emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_S32, dd, 0, (sm >> 1));
        }

        void vcvt_s32_f64(int sd, int dm, Condition cc = AL)
        {
            ASSERT(!(sd & 0x1)); // sd must be divisible by 2
            emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_S32_F64, (sd >> 1), 0, dm);
        }

        void vcvt_u32_f64(int sd, int dm, Condition cc = AL)
        {
            ASSERT(!(sd & 0x1)); // sd must be divisible by 2
            emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_U32_F64, (sd >> 1), 0, dm);
        }

        void vcvt_f64_f32(int dd, int sm, Condition cc = AL)
        {
            ASSERT(dd <= 15 && sm <= 15);
            emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_F32, dd, 0, sm);
        }

        void vcvt_f32_f64(int dd, int sm, Condition cc = AL)
        {
            ASSERT(dd <= 15 && sm <= 15);
            emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F32_F64, dd, 0, sm);
        }

        void vmrs_apsr(Condition cc = AL)
        {
            m_buffer.putInt(toARMWord(cc) | VMRS_APSR);
        }

        void clz(int rd, int rm, Condition cc = AL)
        {
            m_buffer.putInt(toARMWord(cc) | CLZ | RD(rd) | RM(rm));
        }

        void bkpt(ARMWord value)
        {
            m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf));
        }

        void nop()
        {
            m_buffer.putInt(NOP);
        }

        void bx(int rm, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | BX, 0, 0, RM(rm));
        }

        AssemblerLabel blx(int rm, Condition cc = AL)
        {
            emitInstruction(toARMWord(cc) | BLX, 0, 0, RM(rm));
            return m_buffer.label();
        }

        static ARMWord lsl(int reg, ARMWord value)
        {
            ASSERT(reg <= ARMRegisters::pc);
            ASSERT(value <= 0x1f);
            return reg | (value << 7) | 0x00;
        }

        static ARMWord lsr(int reg, ARMWord value)
        {
            ASSERT(reg <= ARMRegisters::pc);
            ASSERT(value <= 0x1f);
            return reg | (value << 7) | 0x20;
        }

        static ARMWord asr(int reg, ARMWord value)
        {
            ASSERT(reg <= ARMRegisters::pc);
            ASSERT(value <= 0x1f);
            return reg | (value << 7) | 0x40;
        }

        static ARMWord lslRegister(int reg, int shiftReg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            ASSERT(shiftReg <= ARMRegisters::pc);
            return reg | (shiftReg << 8) | 0x10;
        }

        static ARMWord lsrRegister(int reg, int shiftReg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            ASSERT(shiftReg <= ARMRegisters::pc);
            return reg | (shiftReg << 8) | 0x30;
        }

        static ARMWord asrRegister(int reg, int shiftReg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            ASSERT(shiftReg <= ARMRegisters::pc);
            return reg | (shiftReg << 8) | 0x50;
        }

        // General helpers

        size_t codeSize() const
        {
            return m_buffer.codeSize();
        }

        void ensureSpace(int insnSpace, int constSpace)
        {
            m_buffer.ensureSpace(insnSpace, constSpace);
        }

        int sizeOfConstantPool()
        {
            return m_buffer.sizeOfConstantPool();
        }

        AssemblerLabel labelIgnoringWatchpoints()
        {
            m_buffer.ensureSpaceForAnyInstruction();
            return m_buffer.label();
        }

        AssemblerLabel labelForWatchpoint()
        {
            m_buffer.ensureSpaceForAnyInstruction(maxJumpReplacementSize() / sizeof(ARMWord));
            AssemblerLabel result = m_buffer.label();
            if (result.m_offset != (m_indexOfTailOfLastWatchpoint - maxJumpReplacementSize()))
                result = label();
            m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
            return label();
        }

        AssemblerLabel label()
        {
            AssemblerLabel result = labelIgnoringWatchpoints();
            while (result.m_offset + 1 < m_indexOfTailOfLastWatchpoint) {
                nop();
                // The available number of instructions are ensured by labelForWatchpoint.
                result = m_buffer.label();
            }
            return result;
        }

        AssemblerLabel align(int alignment)
        {
            while (!m_buffer.isAligned(alignment))
                mov(ARMRegisters::r0, ARMRegisters::r0);

            return label();
        }

        AssemblerLabel loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0)
        {
            ensureSpace(sizeof(ARMWord), sizeof(ARMWord));
            m_jumps.append(m_buffer.codeSize() | (useConstantPool & 0x1));
            ldrUniqueImmediate(rd, InvalidBranchTarget, cc);
            return m_buffer.label();
        }

        AssemblerLabel jmp(Condition cc = AL, int useConstantPool = 0)
        {
            return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool);
        }

        PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData&, void* ownerUID, JITCompilationEffort);

        unsigned debugOffset() { return m_buffer.debugOffset(); }

        // DFG assembly helpers for moving data between fp and registers.
        void vmov(RegisterID rd1, RegisterID rd2, FPRegisterID rn)
        {
            vmov_arm64(rd1, rd2, rn);
        }

        void vmov(FPRegisterID rd, RegisterID rn1, RegisterID rn2)
        {
            vmov_vfp64(rd, rn1, rn2);
        }

        // Patching helpers

        static ARMWord* getLdrImmAddress(ARMWord* insn)
        {
            // Check for call
            if ((*insn & LdrPcImmediateInstructionMask) != LdrPcImmediateInstruction) {
                // Must be BLX
                ASSERT((*insn & BlxInstructionMask) == BlxInstruction);
                insn--;
            }

            // Must be an ldr ..., [pc +/- imm]
            ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);

            ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetchOffset * sizeof(ARMWord);
            if (*insn & DataTransferUp)
                return reinterpret_cast<ARMWord*>(addr + (*insn & DataTransferOffsetMask));
            return reinterpret_cast<ARMWord*>(addr - (*insn & DataTransferOffsetMask));
        }

        static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool)
        {
            // Must be an ldr ..., [pc +/- imm]
            ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction);

            if (*insn & 0x1)
                return reinterpret_cast<ARMWord*>(constPool + ((*insn & DataTransferOffsetMask) >> 1));
            return getLdrImmAddress(insn);
        }

        static void patchPointerInternal(intptr_t from, void* to)
        {
            ARMWord* insn = reinterpret_cast<ARMWord*>(from);
            ARMWord* addr = getLdrImmAddress(insn);
            *addr = reinterpret_cast<ARMWord>(to);
        }

        static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value)
        {
            value = (value << 1) + 1;
            ASSERT(!(value & ~DataTransferOffsetMask));
            return (load & ~DataTransferOffsetMask) | value;
        }

        static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr);

        // Read pointers
        static void* readPointer(void* from)
        {
            ARMWord* instruction = reinterpret_cast<ARMWord*>(from);
            ARMWord* address = getLdrImmAddress(instruction);
            return *reinterpret_cast<void**>(address);
        }

        // Patch pointers

        static void linkPointer(void* code, AssemblerLabel from, void* to)
        {
            patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to);
        }

        static void repatchInt32(void* where, int32_t to)
        {
            patchPointerInternal(reinterpret_cast<intptr_t>(where), reinterpret_cast<void*>(to));
        }

        static void repatchCompact(void* where, int32_t value)
        {
            ARMWord* instruction = reinterpret_cast<ARMWord*>(where);
            ASSERT((*instruction & 0x0f700000) == LoadUint32);
            if (value >= 0)
                *instruction = (*instruction & 0xff7ff000) | DataTransferUp | value;
            else
                *instruction = (*instruction & 0xff7ff000) | -value;
            cacheFlush(instruction, sizeof(ARMWord));
        }

        static void repatchPointer(void* from, void* to)
        {
            patchPointerInternal(reinterpret_cast<intptr_t>(from), to);
        }

        // Linkers
        static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0)
        {
            return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord);
        }

        void linkJump(AssemblerLabel from, AssemblerLabel to)
        {
            ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset));
            ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress());
            *addr = toARMWord(to.m_offset);
        }

        static void linkJump(void* code, AssemblerLabel from, void* to)
        {
            patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
        }

        static void relinkJump(void* from, void* to)
        {
            patchPointerInternal(getAbsoluteJumpAddress(from), to);
        }

        static void linkCall(void* code, AssemblerLabel from, void* to)
        {
            patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
        }

        static void relinkCall(void* from, void* to)
        {
            patchPointerInternal(getAbsoluteJumpAddress(from), to);
        }

        static void* readCallTarget(void* from)
        {
            return reinterpret_cast<void*>(readPointer(reinterpret_cast<void*>(getAbsoluteJumpAddress(from))));
        }

        static void replaceWithJump(void* instructionStart, void* to)
        {
            ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart) - 1;
            intptr_t difference = reinterpret_cast<intptr_t>(to) - (reinterpret_cast<intptr_t>(instruction) + DefaultPrefetchOffset * sizeof(ARMWord));

            if (!(difference & 1)) {
                difference >>= 2;
                if ((difference <= MaximumBranchOffsetDistance && difference >= MinimumBranchOffsetDistance)) {
                     // Direct branch.
                     instruction[0] = B | AL | (difference & BranchOffsetMask);
                     cacheFlush(instruction, sizeof(ARMWord));
                     return;
                }
            }

            // Load target.
            instruction[0] = LoadUint32 | AL | RN(ARMRegisters::pc) | RD(ARMRegisters::pc) | 4;
            instruction[1] = reinterpret_cast<ARMWord>(to);
            cacheFlush(instruction, sizeof(ARMWord) * 2);
        }

        static ptrdiff_t maxJumpReplacementSize()
        {
            return sizeof(ARMWord) * 2;
        }

        static void replaceWithLoad(void* instructionStart)
        {
            ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
            cacheFlush(instruction, sizeof(ARMWord));

            ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
            if ((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction) {
                 *instruction = (*instruction & ~LdrOrAddInstructionMask) | LdrImmediateInstruction;
                 cacheFlush(instruction, sizeof(ARMWord));
            }
        }

        static void replaceWithAddressComputation(void* instructionStart)
        {
            ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart);
            cacheFlush(instruction, sizeof(ARMWord));

            ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction);
            if ((*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction) {
                 *instruction = (*instruction & ~LdrOrAddInstructionMask) | AddImmediateInstruction;
                 cacheFlush(instruction, sizeof(ARMWord));
            }
        }

        // Address operations

        static void* getRelocatedAddress(void* code, AssemblerLabel label)
        {
            return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
        }

        // Address differences

        static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
        {
            return b.m_offset - a.m_offset;
        }

        static unsigned getCallReturnOffset(AssemblerLabel call)
        {
            return call.m_offset;
        }

        // Handle immediates

        static ARMWord getOp2(ARMWord imm);

        // Fast case if imm is known to be between 0 and 0xff
        static ARMWord getOp2Byte(ARMWord imm)
        {
            ASSERT(imm <= 0xff);
            return Op2Immediate | imm;
        }

        static ARMWord getOp2Half(ARMWord imm)
        {
            ASSERT(imm <= 0xff);
            return ImmediateForHalfWordTransfer | (imm & 0x0f) | ((imm & 0xf0) << 4);
        }

#if WTF_ARM_ARCH_AT_LEAST(7)
        static ARMWord getImm16Op2(ARMWord imm)
        {
            if (imm <= 0xffff)
                return (imm & 0xf000) << 4 | (imm & 0xfff);
            return InvalidImmediate;
        }
#endif
        ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false);
        void moveImm(ARMWord imm, int dest);
        ARMWord encodeComplexImm(ARMWord imm, int dest);

        // Memory load/store helpers

        void dataTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, int32_t offset);
        void baseIndexTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
        void dataTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, int32_t offset);
        void baseIndexTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
        void dataTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, int32_t offset);
        void baseIndexTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);

        // Constant pool hnadlers

        static ARMWord placeConstantPoolBarrier(int offset)
        {
            offset = (offset - sizeof(ARMWord)) >> 2;
            ASSERT((offset <= MaximumBranchOffsetDistance && offset >= MinimumBranchOffsetDistance));
            return AL | B | (offset & BranchOffsetMask);
        }

#if OS(LINUX) && COMPILER(RVCT)
        static __asm void cacheFlush(void* code, size_t);
#else
        static void cacheFlush(void* code, size_t size)
        {
#if OS(LINUX) && COMPILER(GCC)
            uintptr_t currentPage = reinterpret_cast<uintptr_t>(code) & ~(pageSize() - 1);
            uintptr_t lastPage = (reinterpret_cast<uintptr_t>(code) + size) & ~(pageSize() - 1);
            do {
                asm volatile(
                    "push    {r7}\n"
                    "mov     r0, %0\n"
                    "mov     r1, %1\n"
                    "mov     r7, #0xf0000\n"
                    "add     r7, r7, #0x2\n"
                    "mov     r2, #0x0\n"
                    "svc     0x0\n"
                    "pop     {r7}\n"
                    :
                    : "r" (currentPage), "r" (currentPage + pageSize())
                    : "r0", "r1", "r2");
                currentPage += pageSize();
            } while (lastPage >= currentPage);
#elif OS(WINCE)
            CacheRangeFlush(code, size, CACHE_SYNC_ALL);
#elif OS(QNX) && ENABLE(ASSEMBLER_WX_EXCLUSIVE)
            UNUSED_PARAM(code);
            UNUSED_PARAM(size);
#elif OS(QNX)
            msync(code, size, MS_INVALIDATE_ICACHE);
#else
#error "The cacheFlush support is missing on this platform."
#endif
        }
#endif

    private:
        static ARMWord RM(int reg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            return reg;
        }

        static ARMWord RS(int reg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            return reg << 8;
        }

        static ARMWord RD(int reg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            return reg << 12;
        }

        static ARMWord RN(int reg)
        {
            ASSERT(reg <= ARMRegisters::pc);
            return reg << 16;
        }

        static ARMWord getConditionalField(ARMWord i)
        {
            return i & ConditionalFieldMask;
        }

        static ARMWord toARMWord(Condition cc)
        {
            return static_cast<ARMWord>(cc);
        }

        static ARMWord toARMWord(uint32_t u)
        {
            return static_cast<ARMWord>(u);
        }

        int genInt(int reg, ARMWord imm, bool positive);

        ARMBuffer m_buffer;
        Jumps m_jumps;
        uint32_t m_indexOfTailOfLastWatchpoint;
    };

} // namespace JSC

#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)

#endif // ARMAssembler_h