summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/masm/yarr/YarrPattern.cpp
blob: 3ce0216e5fa4e073c1d857df93736494cf573454 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/*
 * Copyright (C) 2009, 2013 Apple Inc. All rights reserved.
 * Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "YarrPattern.h"

#include "Yarr.h"
#include "YarrCanonicalizeUCS2.h"
#include "YarrParser.h"
#include <wtf/Vector.h>

using namespace WTF;

namespace JSC { namespace Yarr {

#include "RegExpJitTables.h"

class CharacterClassConstructor {
public:
    CharacterClassConstructor(bool isCaseInsensitive = false)
        : m_isCaseInsensitive(isCaseInsensitive)
    {
    }
    
    void reset()
    {
        m_matches.clear();
        m_ranges.clear();
        m_matchesUnicode.clear();
        m_rangesUnicode.clear();
    }

    void append(const CharacterClass* other)
    {
        for (size_t i = 0; i < other->m_matches.size(); ++i)
            addSorted(m_matches, other->m_matches[i]);
        for (size_t i = 0; i < other->m_ranges.size(); ++i)
            addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
        for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
            addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
        for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
            addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
    }

    void putChar(UChar ch)
    {
        // Handle ascii cases.
        if (ch <= 0x7f) {
            if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
                addSorted(m_matches, toASCIIUpper(ch));
                addSorted(m_matches, toASCIILower(ch));
            } else
                addSorted(m_matches, ch);
            return;
        }

        // Simple case, not a case-insensitive match.
        if (!m_isCaseInsensitive) {
            addSorted(m_matchesUnicode, ch);
            return;
        }

        // Add multiple matches, if necessary.
        UCS2CanonicalizationRange* info = rangeInfoFor(ch);
        if (info->type == CanonicalizeUnique)
            addSorted(m_matchesUnicode, ch);
        else
            putUnicodeIgnoreCase(ch, info);
    }

    void putUnicodeIgnoreCase(UChar ch, UCS2CanonicalizationRange* info)
    {
        ASSERT(m_isCaseInsensitive);
        ASSERT(ch > 0x7f);
        ASSERT(ch >= info->begin && ch <= info->end);
        ASSERT(info->type != CanonicalizeUnique);
        if (info->type == CanonicalizeSet) {
            for (uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
                addSorted(m_matchesUnicode, ch);
        } else {
            addSorted(m_matchesUnicode, ch);
            addSorted(m_matchesUnicode, getCanonicalPair(info, ch));
        }
    }

    void putRange(UChar lo, UChar hi)
    {
        if (lo <= 0x7f) {
            char asciiLo = lo;
            char asciiHi = std::min(hi, (UChar)0x7f);
            addSortedRange(m_ranges, lo, asciiHi);
            
            if (m_isCaseInsensitive) {
                if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
                    addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
                if ((asciiLo <= 'z') && (asciiHi >= 'a'))
                    addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
            }
        }
        if (hi <= 0x7f)
            return;

        lo = std::max(lo, (UChar)0x80);
        addSortedRange(m_rangesUnicode, lo, hi);
        
        if (!m_isCaseInsensitive)
            return;

        UCS2CanonicalizationRange* info = rangeInfoFor(lo);
        while (true) {
            // Handle the range [lo .. end]
            UChar end = std::min<UChar>(info->end, hi);

            switch (info->type) {
            case CanonicalizeUnique:
                // Nothing to do - no canonical equivalents.
                break;
            case CanonicalizeSet: {
                UChar ch;
                for (uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
                    addSorted(m_matchesUnicode, ch);
                break;
            }
            case CanonicalizeRangeLo:
                addSortedRange(m_rangesUnicode, lo + info->value, end + info->value);
                break;
            case CanonicalizeRangeHi:
                addSortedRange(m_rangesUnicode, lo - info->value, end - info->value);
                break;
            case CanonicalizeAlternatingAligned:
                // Use addSortedRange since there is likely an abutting range to combine with.
                if (lo & 1)
                    addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
                if (!(end & 1))
                    addSortedRange(m_rangesUnicode, end + 1, end + 1);
                break;
            case CanonicalizeAlternatingUnaligned:
                // Use addSortedRange since there is likely an abutting range to combine with.
                if (!(lo & 1))
                    addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
                if (end & 1)
                    addSortedRange(m_rangesUnicode, end + 1, end + 1);
                break;
            }

            if (hi == end)
                return;

            ++info;
            lo = info->begin;
        };

    }

    PassOwnPtr<CharacterClass> charClass()
    {
        OwnPtr<CharacterClass> characterClass = adoptPtr(new CharacterClass);

        characterClass->m_matches.swap(m_matches);
        characterClass->m_ranges.swap(m_ranges);
        characterClass->m_matchesUnicode.swap(m_matchesUnicode);
        characterClass->m_rangesUnicode.swap(m_rangesUnicode);

        return characterClass.release();
    }

private:
    void addSorted(Vector<UChar>& matches, UChar ch)
    {
        unsigned pos = 0;
        unsigned range = matches.size();

        // binary chop, find position to insert char.
        while (range) {
            unsigned index = range >> 1;

            int val = matches[pos+index] - ch;
            if (!val)
                return;
            else if (val > 0)
                range = index;
            else {
                pos += (index+1);
                range -= (index+1);
            }
        }
        
        if (pos == matches.size())
            matches.append(ch);
        else
            matches.insert(pos, ch);
    }

    void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
    {
        unsigned end = ranges.size();
        
        // Simple linear scan - I doubt there are that many ranges anyway...
        // feel free to fix this with something faster (eg binary chop).
        for (unsigned i = 0; i < end; ++i) {
            // does the new range fall before the current position in the array
            if (hi < ranges[i].begin) {
                // optional optimization: concatenate appending ranges? - may not be worthwhile.
                if (hi == (ranges[i].begin - 1)) {
                    ranges[i].begin = lo;
                    return;
                }
                ranges.insert(i, CharacterRange(lo, hi));
                return;
            }
            // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
            // If the new range start at or before the end of the last range, then the overlap (if it starts one after the
            // end of the last range they concatenate, which is just as good.
            if (lo <= (ranges[i].end + 1)) {
                // found an intersect! we'll replace this entry in the array.
                ranges[i].begin = std::min(ranges[i].begin, lo);
                ranges[i].end = std::max(ranges[i].end, hi);

                // now check if the new range can subsume any subsequent ranges.
                unsigned next = i+1;
                // each iteration of the loop we will either remove something from the list, or break the loop.
                while (next < ranges.size()) {
                    if (ranges[next].begin <= (ranges[i].end + 1)) {
                        // the next entry now overlaps / concatenates this one.
                        ranges[i].end = std::max(ranges[i].end, ranges[next].end);
                        ranges.remove(next);
                    } else
                        break;
                }
                
                return;
            }
        }

        // CharacterRange comes after all existing ranges.
        ranges.append(CharacterRange(lo, hi));
    }

    bool m_isCaseInsensitive;

    Vector<UChar> m_matches;
    Vector<CharacterRange> m_ranges;
    Vector<UChar> m_matchesUnicode;
    Vector<CharacterRange> m_rangesUnicode;
};

class YarrPatternConstructor {
public:
    YarrPatternConstructor(YarrPattern& pattern)
        : m_pattern(pattern)
        , m_characterClassConstructor(pattern.m_ignoreCase)
        , m_invertParentheticalAssertion(false)
    {
        OwnPtr<PatternDisjunction> body = adoptPtr(new PatternDisjunction);
        m_pattern.m_body = body.get();
        m_alternative = body->addNewAlternative();
        m_pattern.m_disjunctions.append(body.release());
    }

    ~YarrPatternConstructor()
    {
    }

    void reset()
    {
        m_pattern.reset();
        m_characterClassConstructor.reset();

        OwnPtr<PatternDisjunction> body = adoptPtr(new PatternDisjunction);
        m_pattern.m_body = body.get();
        m_alternative = body->addNewAlternative();
        m_pattern.m_disjunctions.append(body.release());
    }
    
    void assertionBOL()
    {
        if (!m_alternative->m_terms.size() & !m_invertParentheticalAssertion) {
            m_alternative->m_startsWithBOL = true;
            m_alternative->m_containsBOL = true;
            m_pattern.m_containsBOL = true;
        }
        m_alternative->m_terms.append(PatternTerm::BOL());
    }
    void assertionEOL()
    {
        m_alternative->m_terms.append(PatternTerm::EOL());
    }
    void assertionWordBoundary(bool invert)
    {
        m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
    }

    void atomPatternCharacter(UChar ch)
    {
        // We handle case-insensitive checking of unicode characters which do have both
        // cases by handling them as if they were defined using a CharacterClass.
        if (!m_pattern.m_ignoreCase || isASCII(ch)) {
            m_alternative->m_terms.append(PatternTerm(ch));
            return;
        }

        UCS2CanonicalizationRange* info = rangeInfoFor(ch);
        if (info->type == CanonicalizeUnique) {
            m_alternative->m_terms.append(PatternTerm(ch));
            return;
        }

        m_characterClassConstructor.putUnicodeIgnoreCase(ch, info);
        OwnPtr<CharacterClass> newCharacterClass = m_characterClassConstructor.charClass();
        m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), false));
        m_pattern.m_userCharacterClasses.append(newCharacterClass.release());
    }

    void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
    {
        switch (classID) {
        case DigitClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
            break;
        case SpaceClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
            break;
        case WordClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
            break;
        case NewlineClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
            break;
        }
    }

    void atomCharacterClassBegin(bool invert = false)
    {
        m_invertCharacterClass = invert;
    }

    void atomCharacterClassAtom(UChar ch)
    {
        m_characterClassConstructor.putChar(ch);
    }

    void atomCharacterClassRange(UChar begin, UChar end)
    {
        m_characterClassConstructor.putRange(begin, end);
    }

    void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
    {
        ASSERT(classID != NewlineClassID);

        switch (classID) {
        case DigitClassID:
            m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
            break;
        
        case SpaceClassID:
            m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
            break;
        
        case WordClassID:
            m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
            break;
        
        default:
            RELEASE_ASSERT_NOT_REACHED();
        }
    }

    void atomCharacterClassEnd()
    {
        OwnPtr<CharacterClass> newCharacterClass = m_characterClassConstructor.charClass();
        m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), m_invertCharacterClass));
        m_pattern.m_userCharacterClasses.append(newCharacterClass.release());
    }

    void atomParenthesesSubpatternBegin(bool capture = true)
    {
        unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
        if (capture)
            m_pattern.m_numSubpatterns++;

        OwnPtr<PatternDisjunction> parenthesesDisjunction = adoptPtr(new PatternDisjunction(m_alternative));
        m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction.get(), capture, false));
        m_alternative = parenthesesDisjunction->addNewAlternative();
        m_pattern.m_disjunctions.append(parenthesesDisjunction.release());
    }

    void atomParentheticalAssertionBegin(bool invert = false)
    {
        OwnPtr<PatternDisjunction> parenthesesDisjunction = adoptPtr(new PatternDisjunction(m_alternative));
        m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction.get(), false, invert));
        m_alternative = parenthesesDisjunction->addNewAlternative();
        m_invertParentheticalAssertion = invert;
        m_pattern.m_disjunctions.append(parenthesesDisjunction.release());
    }

    void atomParenthesesEnd()
    {
        ASSERT(m_alternative->m_parent);
        ASSERT(m_alternative->m_parent->m_parent);

        PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent;
        m_alternative = m_alternative->m_parent->m_parent;

        PatternTerm& lastTerm = m_alternative->lastTerm();

        unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size();
        unsigned numBOLAnchoredAlts = 0;

        for (unsigned i = 0; i < numParenAlternatives; i++) {
            // Bubble up BOL flags
            if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL)
                numBOLAnchoredAlts++;
        }

        if (numBOLAnchoredAlts) {
            m_alternative->m_containsBOL = true;
            // If all the alternatives in parens start with BOL, then so does this one
            if (numBOLAnchoredAlts == numParenAlternatives)
                m_alternative->m_startsWithBOL = true;
        }

        lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
        m_invertParentheticalAssertion = false;
    }

    void atomBackReference(unsigned subpatternId)
    {
        ASSERT(subpatternId);
        m_pattern.m_containsBackreferences = true;
        m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);

        if (subpatternId > m_pattern.m_numSubpatterns) {
            m_alternative->m_terms.append(PatternTerm::ForwardReference());
            return;
        }

        PatternAlternative* currentAlternative = m_alternative;
        ASSERT(currentAlternative);

        // Note to self: if we waited until the AST was baked, we could also remove forwards refs 
        while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
            PatternTerm& term = currentAlternative->lastTerm();
            ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));

            if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) {
                m_alternative->m_terms.append(PatternTerm::ForwardReference());
                return;
            }
        }

        m_alternative->m_terms.append(PatternTerm(subpatternId));
    }

    // deep copy the argument disjunction.  If filterStartsWithBOL is true, 
    // skip alternatives with m_startsWithBOL set true.
    PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false)
    {
        OwnPtr<PatternDisjunction> newDisjunction;
        for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
            PatternAlternative* alternative = disjunction->m_alternatives[alt].get();
            if (!filterStartsWithBOL || !alternative->m_startsWithBOL) {
                if (!newDisjunction) {
                    newDisjunction = adoptPtr(new PatternDisjunction());
                    newDisjunction->m_parent = disjunction->m_parent;
                }
                PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
                newAlternative->m_terms.reserveInitialCapacity(alternative->m_terms.size());
                for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
                    newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL));
            }
        }
        
        if (!newDisjunction)
            return 0;

        PatternDisjunction* copiedDisjunction = newDisjunction.get();
        m_pattern.m_disjunctions.append(newDisjunction.release());
        return copiedDisjunction;
    }
    
    PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false)
    {
        if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
            return PatternTerm(term);
        
        PatternTerm termCopy = term;
        termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL);
        return termCopy;
    }
    
    void quantifyAtom(unsigned min, unsigned max, bool greedy)
    {
        ASSERT(min <= max);
        ASSERT(m_alternative->m_terms.size());

        if (!max) {
            m_alternative->removeLastTerm();
            return;
        }

        PatternTerm& term = m_alternative->lastTerm();
        ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
        ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));

        if (term.type == PatternTerm::TypeParentheticalAssertion) {
            // If an assertion is quantified with a minimum count of zero, it can simply be removed.
            // This arises from the RepeatMatcher behaviour in the spec. Matching an assertion never
            // results in any input being consumed, however the continuation passed to the assertion
            // (called in steps, 8c and 9 of the RepeatMatcher definition, ES5.1 15.10.2.5) will
            // reject all zero length matches (see step 2.1). A match from the continuation of the
            // expression will still be accepted regardless (via steps 8a and 11) - the upshot of all
            // this is that matches from the assertion are not required, and won't be accepted anyway,
            // so no need to ever run it.
            if (!min)
                m_alternative->removeLastTerm();
            // We never need to run an assertion more than once. Subsequent interations will be run
            // with the same start index (since assertions are non-capturing) and the same captures
            // (per step 4 of RepeatMatcher in ES5.1 15.10.2.5), and as such will always produce the
            // same result and captures. If the first match succeeds then the subsequent (min - 1)
            // matches will too. Any additional optional matches will fail (on the same basis as the
            // minimum zero quantified assertions, above), but this will still result in a match.
            return;
        }

        if (min == 0)
            term.quantify(max, greedy   ? QuantifierGreedy : QuantifierNonGreedy);
        else if (min == max)
            term.quantify(min, QuantifierFixedCount);
        else {
            term.quantify(min, QuantifierFixedCount);
            m_alternative->m_terms.append(copyTerm(term));
            // NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
            m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
            if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
                m_alternative->lastTerm().parentheses.isCopy = true;
        }
    }

    void disjunction()
    {
        m_alternative = m_alternative->m_parent->addNewAlternative();
    }

    unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition)
    {
        alternative->m_hasFixedSize = true;
        Checked<unsigned> currentInputPosition = initialInputPosition;

        for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
            PatternTerm& term = alternative->m_terms[i];

            switch (term.type) {
            case PatternTerm::TypeAssertionBOL:
            case PatternTerm::TypeAssertionEOL:
            case PatternTerm::TypeAssertionWordBoundary:
                term.inputPosition = currentInputPosition.unsafeGet();
                break;

            case PatternTerm::TypeBackReference:
                term.inputPosition = currentInputPosition.unsafeGet();
                term.frameLocation = currentCallFrameSize;
                currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference;
                alternative->m_hasFixedSize = false;
                break;

            case PatternTerm::TypeForwardReference:
                break;

            case PatternTerm::TypePatternCharacter:
                term.inputPosition = currentInputPosition.unsafeGet();
                if (term.quantityType != QuantifierFixedCount) {
                    term.frameLocation = currentCallFrameSize;
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter;
                    alternative->m_hasFixedSize = false;
                } else
                    currentInputPosition += term.quantityCount;
                break;

            case PatternTerm::TypeCharacterClass:
                term.inputPosition = currentInputPosition.unsafeGet();
                if (term.quantityType != QuantifierFixedCount) {
                    term.frameLocation = currentCallFrameSize;
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass;
                    alternative->m_hasFixedSize = false;
                } else
                    currentInputPosition += term.quantityCount;
                break;

            case PatternTerm::TypeParenthesesSubpattern:
                // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
                term.frameLocation = currentCallFrameSize;
                if (term.quantityCount == 1 && !term.parentheses.isCopy) {
                    if (term.quantityType != QuantifierFixedCount)
                        currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce;
                    currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet());
                    // If quantity is fixed, then pre-check its minimum size.
                    if (term.quantityType == QuantifierFixedCount)
                        currentInputPosition += term.parentheses.disjunction->m_minimumSize;
                    term.inputPosition = currentInputPosition.unsafeGet();
                } else if (term.parentheses.isTerminal) {
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal;
                    currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet());
                    term.inputPosition = currentInputPosition.unsafeGet();
                } else {
                    term.inputPosition = currentInputPosition.unsafeGet();
                    setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition.unsafeGet());
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses;
                }
                // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
                alternative->m_hasFixedSize = false;
                break;

            case PatternTerm::TypeParentheticalAssertion:
                term.inputPosition = currentInputPosition.unsafeGet();
                term.frameLocation = currentCallFrameSize;
                currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition.unsafeGet());
                break;

            case PatternTerm::TypeDotStarEnclosure:
                alternative->m_hasFixedSize = false;
                term.inputPosition = initialInputPosition;
                break;
            }
        }

        alternative->m_minimumSize = (currentInputPosition - initialInputPosition).unsafeGet();
        return currentCallFrameSize;
    }

    unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition)
    {
        if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
            initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative;

        unsigned minimumInputSize = UINT_MAX;
        unsigned maximumCallFrameSize = 0;
        bool hasFixedSize = true;

        for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
            PatternAlternative* alternative = disjunction->m_alternatives[alt].get();
            unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition);
            minimumInputSize = std::min(minimumInputSize, alternative->m_minimumSize);
            maximumCallFrameSize = std::max(maximumCallFrameSize, currentAlternativeCallFrameSize);
            hasFixedSize &= alternative->m_hasFixedSize;
        }
        
        ASSERT(minimumInputSize != UINT_MAX);
        ASSERT(maximumCallFrameSize >= initialCallFrameSize);

        disjunction->m_hasFixedSize = hasFixedSize;
        disjunction->m_minimumSize = minimumInputSize;
        disjunction->m_callFrameSize = maximumCallFrameSize;
        return maximumCallFrameSize;
    }

    void setupOffsets()
    {
        setupDisjunctionOffsets(m_pattern.m_body, 0, 0);
    }

    // This optimization identifies sets of parentheses that we will never need to backtrack.
    // In these cases we do not need to store state from prior iterations.
    // We can presently avoid backtracking for:
    //   * where the parens are at the end of the regular expression (last term in any of the
    //     alternatives of the main body disjunction).
    //   * where the parens are non-capturing, and quantified unbounded greedy (*).
    //   * where the parens do not contain any capturing subpatterns.
    void checkForTerminalParentheses()
    {
        // This check is much too crude; should be just checking whether the candidate
        // node contains nested capturing subpatterns, not the whole expression!
        if (m_pattern.m_numSubpatterns)
            return;

        Vector<OwnPtr<PatternAlternative> >& alternatives = m_pattern.m_body->m_alternatives;
        for (size_t i = 0; i < alternatives.size(); ++i) {
            Vector<PatternTerm>& terms = alternatives[i]->m_terms;
            if (terms.size()) {
                PatternTerm& term = terms.last();
                if (term.type == PatternTerm::TypeParenthesesSubpattern
                    && term.quantityType == QuantifierGreedy
                    && term.quantityCount == quantifyInfinite
                    && !term.capture())
                    term.parentheses.isTerminal = true;
            }
        }
    }

    void optimizeBOL()
    {
        // Look for expressions containing beginning of line (^) anchoring and unroll them.
        // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops
        // This code relies on the parsing code tagging alternatives with m_containsBOL and
        // m_startsWithBOL and rolling those up to containing alternatives.
        // At this point, this is only valid for non-multiline expressions.
        PatternDisjunction* disjunction = m_pattern.m_body;
        
        if (!m_pattern.m_containsBOL || m_pattern.m_multiline)
            return;
        
        PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true);

        // Set alternatives in disjunction to "onceThrough"
        for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt)
            disjunction->m_alternatives[alt]->setOnceThrough();

        if (loopDisjunction) {
            // Move alternatives from loopDisjunction to disjunction
            for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt)
                disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt].release());
                
            loopDisjunction->m_alternatives.clear();
        }
    }

    bool containsCapturingTerms(PatternAlternative* alternative, size_t firstTermIndex, size_t lastTermIndex)
    {
        Vector<PatternTerm>& terms = alternative->m_terms;

        for (size_t termIndex = firstTermIndex; termIndex <= lastTermIndex; ++termIndex) {
            PatternTerm& term = terms[termIndex];

            if (term.m_capture)
                return true;

            if (term.type == PatternTerm::TypeParenthesesSubpattern) {
                PatternDisjunction* nestedDisjunction = term.parentheses.disjunction;
                for (unsigned alt = 0; alt < nestedDisjunction->m_alternatives.size(); ++alt) {
                    if (containsCapturingTerms(nestedDisjunction->m_alternatives[alt].get(), 0, nestedDisjunction->m_alternatives[alt]->m_terms.size() - 1))
                        return true;
                }
            }
        }

        return false;
    }

    // This optimization identifies alternatives in the form of 
    // [^].*[?]<expression>.*[$] for expressions that don't have any 
    // capturing terms. The alternative is changed to <expression> 
    // followed by processing of the dot stars to find and adjust the 
    // beginning and the end of the match.
    void optimizeDotStarWrappedExpressions()
    {
        Vector<OwnPtr<PatternAlternative> >& alternatives = m_pattern.m_body->m_alternatives;
        if (alternatives.size() != 1)
            return;

        PatternAlternative* alternative = alternatives[0].get();
        Vector<PatternTerm>& terms = alternative->m_terms;
        if (terms.size() >= 3) {
            bool startsWithBOL = false;
            bool endsWithEOL = false;
            size_t termIndex, firstExpressionTerm, lastExpressionTerm;

            termIndex = 0;
            if (terms[termIndex].type == PatternTerm::TypeAssertionBOL) {
                startsWithBOL = true;
                ++termIndex;
            }
            
            PatternTerm& firstNonAnchorTerm = terms[termIndex];
            if ((firstNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (firstNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || !((firstNonAnchorTerm.quantityType == QuantifierGreedy) || (firstNonAnchorTerm.quantityType == QuantifierNonGreedy)))
                return;
            
            firstExpressionTerm = termIndex + 1;
            
            termIndex = terms.size() - 1;
            if (terms[termIndex].type == PatternTerm::TypeAssertionEOL) {
                endsWithEOL = true;
                --termIndex;
            }
            
            PatternTerm& lastNonAnchorTerm = terms[termIndex];
            if ((lastNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (lastNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || (lastNonAnchorTerm.quantityType != QuantifierGreedy))
                return;
            
            lastExpressionTerm = termIndex - 1;

            if (firstExpressionTerm > lastExpressionTerm)
                return;

            if (!containsCapturingTerms(alternative, firstExpressionTerm, lastExpressionTerm)) {
                for (termIndex = terms.size() - 1; termIndex > lastExpressionTerm; --termIndex)
                    terms.remove(termIndex);

                for (termIndex = firstExpressionTerm; termIndex > 0; --termIndex)
                    terms.remove(termIndex - 1);

                terms.append(PatternTerm(startsWithBOL, endsWithEOL));
                
                m_pattern.m_containsBOL = false;
            }
        }
    }

private:
    YarrPattern& m_pattern;
    PatternAlternative* m_alternative;
    CharacterClassConstructor m_characterClassConstructor;
    bool m_invertCharacterClass;
    bool m_invertParentheticalAssertion;
};

const char* YarrPattern::compile(const String& patternString)
{
    YarrPatternConstructor constructor(*this);

    if (const char* error = parse(constructor, patternString))
        return error;
    
    // If the pattern contains illegal backreferences reset & reparse.
    // Quoting Netscape's "What's new in JavaScript 1.2",
    //      "Note: if the number of left parentheses is less than the number specified
    //       in \#, the \# is taken as an octal escape as described in the next row."
    if (containsIllegalBackReference()) {
        unsigned numSubpatterns = m_numSubpatterns;

        constructor.reset();
#if !ASSERT_DISABLED
        const char* error =
#endif
            parse(constructor, patternString, numSubpatterns);

        ASSERT(!error);
        ASSERT(numSubpatterns == m_numSubpatterns);
    }

    constructor.checkForTerminalParentheses();
    constructor.optimizeDotStarWrappedExpressions();
    constructor.optimizeBOL();
        
    constructor.setupOffsets();

    return 0;
}

YarrPattern::YarrPattern(const String& pattern, bool ignoreCase, bool multiline, const char** error)
    : m_ignoreCase(ignoreCase)
    , m_multiline(multiline)
    , m_containsBackreferences(false)
    , m_containsBOL(false)
    , m_numSubpatterns(0)
    , m_maxBackReference(0)
    , newlineCached(0)
    , digitsCached(0)
    , spacesCached(0)
    , wordcharCached(0)
    , nondigitsCached(0)
    , nonspacesCached(0)
    , nonwordcharCached(0)
{
    *error = compile(pattern);
}

} }