summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGVTables.cpp
blob: 3cb3d354483893a5669be1934940f1ece9f1c9f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of virtual tables.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Format.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
#include <cstdio>

using namespace clang;
using namespace CodeGen;

CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
    : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}

llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
                                              GlobalDecl GD) {
  return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
                                 /*DontDefer=*/true, /*IsThunk=*/true);
}

static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
                               llvm::Function *ThunkFn, bool ForVTable,
                               GlobalDecl GD) {
  CGM.setFunctionLinkage(GD, ThunkFn);
  CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
                                  !Thunk.Return.isEmpty());

  // Set the right visibility.
  CGM.setGVProperties(ThunkFn, GD);

  if (!CGM.getCXXABI().exportThunk()) {
    ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
    ThunkFn->setDSOLocal(true);
  }

  if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
}

#ifndef NDEBUG
static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
                    const ABIArgInfo &infoR, CanQualType typeR) {
  return (infoL.getKind() == infoR.getKind() &&
          (typeL == typeR ||
           (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
           (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
}
#endif

static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
                                      QualType ResultType, RValue RV,
                                      const ThunkInfo &Thunk) {
  // Emit the return adjustment.
  bool NullCheckValue = !ResultType->isReferenceType();

  llvm::BasicBlock *AdjustNull = nullptr;
  llvm::BasicBlock *AdjustNotNull = nullptr;
  llvm::BasicBlock *AdjustEnd = nullptr;

  llvm::Value *ReturnValue = RV.getScalarVal();

  if (NullCheckValue) {
    AdjustNull = CGF.createBasicBlock("adjust.null");
    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
    AdjustEnd = CGF.createBasicBlock("adjust.end");

    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
    CGF.EmitBlock(AdjustNotNull);
  }

  auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
  auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
  ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
                                            Address(ReturnValue, ClassAlign),
                                            Thunk.Return);

  if (NullCheckValue) {
    CGF.Builder.CreateBr(AdjustEnd);
    CGF.EmitBlock(AdjustNull);
    CGF.Builder.CreateBr(AdjustEnd);
    CGF.EmitBlock(AdjustEnd);

    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
    PHI->addIncoming(ReturnValue, AdjustNotNull);
    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
                     AdjustNull);
    ReturnValue = PHI;
  }

  return RValue::get(ReturnValue);
}

/// This function clones a function's DISubprogram node and enters it into
/// a value map with the intent that the map can be utilized by the cloner
/// to short-circuit Metadata node mapping.
/// Furthermore, the function resolves any DILocalVariable nodes referenced
/// by dbg.value intrinsics so they can be properly mapped during cloning.
static void resolveTopLevelMetadata(llvm::Function *Fn,
                                    llvm::ValueToValueMapTy &VMap) {
  // Clone the DISubprogram node and put it into the Value map.
  auto *DIS = Fn->getSubprogram();
  if (!DIS)
    return;
  auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
  VMap.MD()[DIS].reset(NewDIS);

  // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
  // they are referencing.
  for (auto &BB : Fn->getBasicBlockList()) {
    for (auto &I : BB) {
      if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
        auto *DILocal = DII->getVariable();
        if (!DILocal->isResolved())
          DILocal->resolve();
      }
    }
  }
}

// This function does roughly the same thing as GenerateThunk, but in a
// very different way, so that va_start and va_end work correctly.
// FIXME: This function assumes "this" is the first non-sret LLVM argument of
//        a function, and that there is an alloca built in the entry block
//        for all accesses to "this".
// FIXME: This function assumes there is only one "ret" statement per function.
// FIXME: Cloning isn't correct in the presence of indirect goto!
// FIXME: This implementation of thunks bloats codesize by duplicating the
//        function definition.  There are alternatives:
//        1. Add some sort of stub support to LLVM for cases where we can
//           do a this adjustment, then a sibcall.
//        2. We could transform the definition to take a va_list instead of an
//           actual variable argument list, then have the thunks (including a
//           no-op thunk for the regular definition) call va_start/va_end.
//           There's a bit of per-call overhead for this solution, but it's
//           better for codesize if the definition is long.
llvm::Function *
CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
                                      const CGFunctionInfo &FnInfo,
                                      GlobalDecl GD, const ThunkInfo &Thunk) {
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
  QualType ResultType = FPT->getReturnType();

  // Get the original function
  assert(FnInfo.isVariadic());
  llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
  llvm::Function *BaseFn = cast<llvm::Function>(Callee);

  // Clone to thunk.
  llvm::ValueToValueMapTy VMap;

  // We are cloning a function while some Metadata nodes are still unresolved.
  // Ensure that the value mapper does not encounter any of them.
  resolveTopLevelMetadata(BaseFn, VMap);
  llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
  Fn->replaceAllUsesWith(NewFn);
  NewFn->takeName(Fn);
  Fn->eraseFromParent();
  Fn = NewFn;

  // "Initialize" CGF (minimally).
  CurFn = Fn;

  // Get the "this" value
  llvm::Function::arg_iterator AI = Fn->arg_begin();
  if (CGM.ReturnTypeUsesSRet(FnInfo))
    ++AI;

  // Find the first store of "this", which will be to the alloca associated
  // with "this".
  Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
  llvm::BasicBlock *EntryBB = &Fn->front();
  llvm::BasicBlock::iterator ThisStore =
      std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
        return isa<llvm::StoreInst>(I) &&
               I.getOperand(0) == ThisPtr.getPointer();
      });
  assert(ThisStore != EntryBB->end() &&
         "Store of this should be in entry block?");
  // Adjust "this", if necessary.
  Builder.SetInsertPoint(&*ThisStore);
  llvm::Value *AdjustedThisPtr =
      CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
  ThisStore->setOperand(0, AdjustedThisPtr);

  if (!Thunk.Return.isEmpty()) {
    // Fix up the returned value, if necessary.
    for (llvm::BasicBlock &BB : *Fn) {
      llvm::Instruction *T = BB.getTerminator();
      if (isa<llvm::ReturnInst>(T)) {
        RValue RV = RValue::get(T->getOperand(0));
        T->eraseFromParent();
        Builder.SetInsertPoint(&BB);
        RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
        Builder.CreateRet(RV.getScalarVal());
        break;
      }
    }
  }

  return Fn;
}

void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
                                 const CGFunctionInfo &FnInfo,
                                 bool IsUnprototyped) {
  assert(!CurGD.getDecl() && "CurGD was already set!");
  CurGD = GD;
  CurFuncIsThunk = true;

  // Build FunctionArgs.
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
  QualType ThisType = MD->getThisType();
  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
  QualType ResultType;
  if (IsUnprototyped)
    ResultType = CGM.getContext().VoidTy;
  else if (CGM.getCXXABI().HasThisReturn(GD))
    ResultType = ThisType;
  else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
    ResultType = CGM.getContext().VoidPtrTy;
  else
    ResultType = FPT->getReturnType();
  FunctionArgList FunctionArgs;

  // Create the implicit 'this' parameter declaration.
  CGM.getCXXABI().buildThisParam(*this, FunctionArgs);

  // Add the rest of the parameters, if we have a prototype to work with.
  if (!IsUnprototyped) {
    FunctionArgs.append(MD->param_begin(), MD->param_end());

    if (isa<CXXDestructorDecl>(MD))
      CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
                                                FunctionArgs);
  }

  // Start defining the function.
  auto NL = ApplyDebugLocation::CreateEmpty(*this);
  StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
                MD->getLocation());
  // Create a scope with an artificial location for the body of this function.
  auto AL = ApplyDebugLocation::CreateArtificial(*this);

  // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
  CXXThisValue = CXXABIThisValue;
  CurCodeDecl = MD;
  CurFuncDecl = MD;
}

void CodeGenFunction::FinishThunk() {
  // Clear these to restore the invariants expected by
  // StartFunction/FinishFunction.
  CurCodeDecl = nullptr;
  CurFuncDecl = nullptr;

  FinishFunction();
}

void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
                                                const ThunkInfo *Thunk,
                                                bool IsUnprototyped) {
  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
         "Please use a new CGF for this thunk");
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());

  // Adjust the 'this' pointer if necessary
  llvm::Value *AdjustedThisPtr =
    Thunk ? CGM.getCXXABI().performThisAdjustment(
                          *this, LoadCXXThisAddress(), Thunk->This)
          : LoadCXXThis();

  if (CurFnInfo->usesInAlloca() || IsUnprototyped) {
    // We don't handle return adjusting thunks, because they require us to call
    // the copy constructor.  For now, fall through and pretend the return
    // adjustment was empty so we don't crash.
    if (Thunk && !Thunk->Return.isEmpty()) {
      if (IsUnprototyped)
        CGM.ErrorUnsupported(
            MD, "return-adjusting thunk with incomplete parameter type");
      else
        CGM.ErrorUnsupported(
            MD, "non-trivial argument copy for return-adjusting thunk");
    }
    EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
    return;
  }

  // Start building CallArgs.
  CallArgList CallArgs;
  QualType ThisType = MD->getThisType();
  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);

  if (isa<CXXDestructorDecl>(MD))
    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);

#ifndef NDEBUG
  unsigned PrefixArgs = CallArgs.size() - 1;
#endif
  // Add the rest of the arguments.
  for (const ParmVarDecl *PD : MD->parameters())
    EmitDelegateCallArg(CallArgs, PD, SourceLocation());

  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();

#ifndef NDEBUG
  const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
      CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
    assert(similar(CallFnInfo.arg_begin()[i].info,
                   CallFnInfo.arg_begin()[i].type,
                   CurFnInfo->arg_begin()[i].info,
                   CurFnInfo->arg_begin()[i].type));
#endif

  // Determine whether we have a return value slot to use.
  QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
                            ? ThisType
                            : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
                                  ? CGM.getContext().VoidPtrTy
                                  : FPT->getReturnType();
  ReturnValueSlot Slot;
  if (!ResultType->isVoidType() &&
      CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect)
    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());

  // Now emit our call.
  llvm::CallBase *CallOrInvoke;
  RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
                       CallArgs, &CallOrInvoke);

  // Consider return adjustment if we have ThunkInfo.
  if (Thunk && !Thunk->Return.isEmpty())
    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
  else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
    Call->setTailCallKind(llvm::CallInst::TCK_Tail);

  // Emit return.
  if (!ResultType->isVoidType() && Slot.isNull())
    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);

  // Disable the final ARC autorelease.
  AutoreleaseResult = false;

  FinishThunk();
}

void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
                                        llvm::Value *AdjustedThisPtr,
                                        llvm::FunctionCallee Callee) {
  // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
  // to translate AST arguments into LLVM IR arguments.  For thunks, we know
  // that the caller prototype more or less matches the callee prototype with
  // the exception of 'this'.
  SmallVector<llvm::Value *, 8> Args;
  for (llvm::Argument &A : CurFn->args())
    Args.push_back(&A);

  // Set the adjusted 'this' pointer.
  const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
  if (ThisAI.isDirect()) {
    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
    int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
    llvm::Type *ThisType = Args[ThisArgNo]->getType();
    if (ThisType != AdjustedThisPtr->getType())
      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
    Args[ThisArgNo] = AdjustedThisPtr;
  } else {
    assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
    Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
    llvm::Type *ThisType = ThisAddr.getElementType();
    if (ThisType != AdjustedThisPtr->getType())
      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
    Builder.CreateStore(AdjustedThisPtr, ThisAddr);
  }

  // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
  // don't actually want to run them.
  llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
  Call->setTailCallKind(llvm::CallInst::TCK_MustTail);

  // Apply the standard set of call attributes.
  unsigned CallingConv;
  llvm::AttributeList Attrs;
  CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
                             Attrs, CallingConv, /*AttrOnCallSite=*/true);
  Call->setAttributes(Attrs);
  Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));

  if (Call->getType()->isVoidTy())
    Builder.CreateRetVoid();
  else
    Builder.CreateRet(Call);

  // Finish the function to maintain CodeGenFunction invariants.
  // FIXME: Don't emit unreachable code.
  EmitBlock(createBasicBlock());
  FinishFunction();
}

void CodeGenFunction::generateThunk(llvm::Function *Fn,
                                    const CGFunctionInfo &FnInfo, GlobalDecl GD,
                                    const ThunkInfo &Thunk,
                                    bool IsUnprototyped) {
  StartThunk(Fn, GD, FnInfo, IsUnprototyped);
  // Create a scope with an artificial location for the body of this function.
  auto AL = ApplyDebugLocation::CreateArtificial(*this);

  // Get our callee. Use a placeholder type if this method is unprototyped so
  // that CodeGenModule doesn't try to set attributes.
  llvm::Type *Ty;
  if (IsUnprototyped)
    Ty = llvm::StructType::get(getLLVMContext());
  else
    Ty = CGM.getTypes().GetFunctionType(FnInfo);

  llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);

  // Fix up the function type for an unprototyped musttail call.
  if (IsUnprototyped)
    Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());

  // Make the call and return the result.
  EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
                            &Thunk, IsUnprototyped);
}

static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
                                  bool IsUnprototyped, bool ForVTable) {
  // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
  // provide thunks for us.
  if (CGM.getTarget().getCXXABI().isMicrosoft())
    return true;

  // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
  // definitions of the main method. Therefore, emitting thunks with the vtable
  // is purely an optimization. Emit the thunk if optimizations are enabled and
  // all of the parameter types are complete.
  if (ForVTable)
    return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;

  // Always emit thunks along with the method definition.
  return true;
}

llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
                                               const ThunkInfo &TI,
                                               bool ForVTable) {
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());

  // First, get a declaration. Compute the mangled name. Don't worry about
  // getting the function prototype right, since we may only need this
  // declaration to fill in a vtable slot.
  SmallString<256> Name;
  MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
  llvm::raw_svector_ostream Out(Name);
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
    MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
  else
    MCtx.mangleThunk(MD, TI, Out);
  llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
  llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);

  // If we don't need to emit a definition, return this declaration as is.
  bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
      MD->getType()->castAs<FunctionType>());
  if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
    return Thunk;

  // Arrange a function prototype appropriate for a function definition. In some
  // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
  const CGFunctionInfo &FnInfo =
      IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
                     : CGM.getTypes().arrangeGlobalDeclaration(GD);
  llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);

  // If the type of the underlying GlobalValue is wrong, we'll have to replace
  // it. It should be a declaration.
  llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
  if (ThunkFn->getFunctionType() != ThunkFnTy) {
    llvm::GlobalValue *OldThunkFn = ThunkFn;

    assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");

    // Remove the name from the old thunk function and get a new thunk.
    OldThunkFn->setName(StringRef());
    ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
                                     Name.str(), &CGM.getModule());
    CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);

    // If needed, replace the old thunk with a bitcast.
    if (!OldThunkFn->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
          llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
      OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
    }

    // Remove the old thunk.
    OldThunkFn->eraseFromParent();
  }

  bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
  bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;

  if (!ThunkFn->isDeclaration()) {
    if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
      // There is already a thunk emitted for this function, do nothing.
      return ThunkFn;
    }

    setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
    return ThunkFn;
  }

  // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
  // that the return type is meaningless. These thunks can be used to call
  // functions with differing return types, and the caller is required to cast
  // the prototype appropriately to extract the correct value.
  if (IsUnprototyped)
    ThunkFn->addFnAttr("thunk");

  CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);

  if (!IsUnprototyped && ThunkFn->isVarArg()) {
    // Varargs thunks are special; we can't just generate a call because
    // we can't copy the varargs.  Our implementation is rather
    // expensive/sucky at the moment, so don't generate the thunk unless
    // we have to.
    // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
    if (UseAvailableExternallyLinkage)
      return ThunkFn;
    ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD,
                                                        TI);
  } else {
    // Normal thunk body generation.
    CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
  }

  setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
  return ThunkFn;
}

void CodeGenVTables::EmitThunks(GlobalDecl GD) {
  const CXXMethodDecl *MD =
    cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();

  // We don't need to generate thunks for the base destructor.
  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
    return;

  const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
      VTContext->getThunkInfo(GD);

  if (!ThunkInfoVector)
    return;

  for (const ThunkInfo& Thunk : *ThunkInfoVector)
    maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
}

void CodeGenVTables::addVTableComponent(
    ConstantArrayBuilder &builder, const VTableLayout &layout,
    unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) {
  auto &component = layout.vtable_components()[idx];

  auto addOffsetConstant = [&](CharUnits offset) {
    builder.add(llvm::ConstantExpr::getIntToPtr(
        llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
        CGM.Int8PtrTy));
  };

  switch (component.getKind()) {
  case VTableComponent::CK_VCallOffset:
    return addOffsetConstant(component.getVCallOffset());

  case VTableComponent::CK_VBaseOffset:
    return addOffsetConstant(component.getVBaseOffset());

  case VTableComponent::CK_OffsetToTop:
    return addOffsetConstant(component.getOffsetToTop());

  case VTableComponent::CK_RTTI:
    return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));

  case VTableComponent::CK_FunctionPointer:
  case VTableComponent::CK_CompleteDtorPointer:
  case VTableComponent::CK_DeletingDtorPointer: {
    GlobalDecl GD;

    // Get the right global decl.
    switch (component.getKind()) {
    default:
      llvm_unreachable("Unexpected vtable component kind");
    case VTableComponent::CK_FunctionPointer:
      GD = component.getFunctionDecl();
      break;
    case VTableComponent::CK_CompleteDtorPointer:
      GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete);
      break;
    case VTableComponent::CK_DeletingDtorPointer:
      GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting);
      break;
    }

    if (CGM.getLangOpts().CUDA) {
      // Emit NULL for methods we can't codegen on this
      // side. Otherwise we'd end up with vtable with unresolved
      // references.
      const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
      // OK on device side: functions w/ __device__ attribute
      // OK on host side: anything except __device__-only functions.
      bool CanEmitMethod =
          CGM.getLangOpts().CUDAIsDevice
              ? MD->hasAttr<CUDADeviceAttr>()
              : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
      if (!CanEmitMethod)
        return builder.addNullPointer(CGM.Int8PtrTy);
      // Method is acceptable, continue processing as usual.
    }

    auto getSpecialVirtualFn = [&](StringRef name) {
      llvm::FunctionType *fnTy =
          llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
      llvm::Constant *fn = cast<llvm::Constant>(
          CGM.CreateRuntimeFunction(fnTy, name).getCallee());
      if (auto f = dyn_cast<llvm::Function>(fn))
        f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
      return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
    };

    llvm::Constant *fnPtr;

    // Pure virtual member functions.
    if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
      if (!PureVirtualFn)
        PureVirtualFn =
          getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
      fnPtr = PureVirtualFn;

    // Deleted virtual member functions.
    } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
      if (!DeletedVirtualFn)
        DeletedVirtualFn =
          getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
      fnPtr = DeletedVirtualFn;

    // Thunks.
    } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
               layout.vtable_thunks()[nextVTableThunkIndex].first == idx) {
      auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;

      nextVTableThunkIndex++;
      fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);

    // Otherwise we can use the method definition directly.
    } else {
      llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
      fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
    }

    fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy);
    builder.add(fnPtr);
    return;
  }

  case VTableComponent::CK_UnusedFunctionPointer:
    return builder.addNullPointer(CGM.Int8PtrTy);
  }

  llvm_unreachable("Unexpected vtable component kind");
}

llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
  SmallVector<llvm::Type *, 4> tys;
  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
    tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i)));
  }

  return llvm::StructType::get(CGM.getLLVMContext(), tys);
}

void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
                                             const VTableLayout &layout,
                                             llvm::Constant *rtti) {
  unsigned nextVTableThunkIndex = 0;
  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
    auto vtableElem = builder.beginArray(CGM.Int8PtrTy);
    size_t thisIndex = layout.getVTableOffset(i);
    size_t nextIndex = thisIndex + layout.getVTableSize(i);
    for (unsigned i = thisIndex; i != nextIndex; ++i) {
      addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex);
    }
    vtableElem.finishAndAddTo(builder);
  }
}

llvm::GlobalVariable *
CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
                                      const BaseSubobject &Base,
                                      bool BaseIsVirtual,
                                   llvm::GlobalVariable::LinkageTypes Linkage,
                                      VTableAddressPointsMapTy& AddressPoints) {
  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    DI->completeClassData(Base.getBase());

  std::unique_ptr<VTableLayout> VTLayout(
      getItaniumVTableContext().createConstructionVTableLayout(
          Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));

  // Add the address points.
  AddressPoints = VTLayout->getAddressPoints();

  // Get the mangled construction vtable name.
  SmallString<256> OutName;
  llvm::raw_svector_ostream Out(OutName);
  cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
      .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
                           Base.getBase(), Out);
  StringRef Name = OutName.str();

  llvm::Type *VTType = getVTableType(*VTLayout);

  // Construction vtable symbols are not part of the Itanium ABI, so we cannot
  // guarantee that they actually will be available externally. Instead, when
  // emitting an available_externally VTT, we provide references to an internal
  // linkage construction vtable. The ABI only requires complete-object vtables
  // to be the same for all instances of a type, not construction vtables.
  if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
    Linkage = llvm::GlobalVariable::InternalLinkage;

  unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);

  // Create the variable that will hold the construction vtable.
  llvm::GlobalVariable *VTable =
      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);

  // V-tables are always unnamed_addr.
  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);

  llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
      CGM.getContext().getTagDeclType(Base.getBase()));

  // Create and set the initializer.
  ConstantInitBuilder builder(CGM);
  auto components = builder.beginStruct();
  createVTableInitializer(components, *VTLayout, RTTI);
  components.finishAndSetAsInitializer(VTable);

  // Set properties only after the initializer has been set to ensure that the
  // GV is treated as definition and not declaration.
  assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
  CGM.setGVProperties(VTable, RD);

  CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get());

  return VTable;
}

static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
                                                const CXXRecordDecl *RD) {
  return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
         CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
}

/// Compute the required linkage of the vtable for the given class.
///
/// Note that we only call this at the end of the translation unit.
llvm::GlobalVariable::LinkageTypes
CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
  if (!RD->isExternallyVisible())
    return llvm::GlobalVariable::InternalLinkage;

  // We're at the end of the translation unit, so the current key
  // function is fully correct.
  const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
  if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
    // If this class has a key function, use that to determine the
    // linkage of the vtable.
    const FunctionDecl *def = nullptr;
    if (keyFunction->hasBody(def))
      keyFunction = cast<CXXMethodDecl>(def);

    switch (keyFunction->getTemplateSpecializationKind()) {
      case TSK_Undeclared:
      case TSK_ExplicitSpecialization:
        assert((def || CodeGenOpts.OptimizationLevel > 0 ||
                CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
               "Shouldn't query vtable linkage without key function, "
               "optimizations, or debug info");
        if (!def && CodeGenOpts.OptimizationLevel > 0)
          return llvm::GlobalVariable::AvailableExternallyLinkage;

        if (keyFunction->isInlined())
          return !Context.getLangOpts().AppleKext ?
                   llvm::GlobalVariable::LinkOnceODRLinkage :
                   llvm::Function::InternalLinkage;

        return llvm::GlobalVariable::ExternalLinkage;

      case TSK_ImplicitInstantiation:
        return !Context.getLangOpts().AppleKext ?
                 llvm::GlobalVariable::LinkOnceODRLinkage :
                 llvm::Function::InternalLinkage;

      case TSK_ExplicitInstantiationDefinition:
        return !Context.getLangOpts().AppleKext ?
                 llvm::GlobalVariable::WeakODRLinkage :
                 llvm::Function::InternalLinkage;

      case TSK_ExplicitInstantiationDeclaration:
        llvm_unreachable("Should not have been asked to emit this");
    }
  }

  // -fapple-kext mode does not support weak linkage, so we must use
  // internal linkage.
  if (Context.getLangOpts().AppleKext)
    return llvm::Function::InternalLinkage;

  llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
      llvm::GlobalValue::LinkOnceODRLinkage;
  llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
      llvm::GlobalValue::WeakODRLinkage;
  if (RD->hasAttr<DLLExportAttr>()) {
    // Cannot discard exported vtables.
    DiscardableODRLinkage = NonDiscardableODRLinkage;
  } else if (RD->hasAttr<DLLImportAttr>()) {
    // Imported vtables are available externally.
    DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
    NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
  }

  switch (RD->getTemplateSpecializationKind()) {
    case TSK_Undeclared:
    case TSK_ExplicitSpecialization:
    case TSK_ImplicitInstantiation:
      return DiscardableODRLinkage;

    case TSK_ExplicitInstantiationDeclaration:
      // Explicit instantiations in MSVC do not provide vtables, so we must emit
      // our own.
      if (getTarget().getCXXABI().isMicrosoft())
        return DiscardableODRLinkage;
      return shouldEmitAvailableExternallyVTable(*this, RD)
                 ? llvm::GlobalVariable::AvailableExternallyLinkage
                 : llvm::GlobalVariable::ExternalLinkage;

    case TSK_ExplicitInstantiationDefinition:
      return NonDiscardableODRLinkage;
  }

  llvm_unreachable("Invalid TemplateSpecializationKind!");
}

/// This is a callback from Sema to tell us that a particular vtable is
/// required to be emitted in this translation unit.
///
/// This is only called for vtables that _must_ be emitted (mainly due to key
/// functions).  For weak vtables, CodeGen tracks when they are needed and
/// emits them as-needed.
void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
  VTables.GenerateClassData(theClass);
}

void
CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    DI->completeClassData(RD);

  if (RD->getNumVBases())
    CGM.getCXXABI().emitVirtualInheritanceTables(RD);

  CGM.getCXXABI().emitVTableDefinitions(*this, RD);
}

/// At this point in the translation unit, does it appear that can we
/// rely on the vtable being defined elsewhere in the program?
///
/// The response is really only definitive when called at the end of
/// the translation unit.
///
/// The only semantic restriction here is that the object file should
/// not contain a vtable definition when that vtable is defined
/// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
/// vtables when unnecessary.
bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
  assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");

  // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
  // emit them even if there is an explicit template instantiation.
  if (CGM.getTarget().getCXXABI().isMicrosoft())
    return false;

  // If we have an explicit instantiation declaration (and not a
  // definition), the vtable is defined elsewhere.
  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
  if (TSK == TSK_ExplicitInstantiationDeclaration)
    return true;

  // Otherwise, if the class is an instantiated template, the
  // vtable must be defined here.
  if (TSK == TSK_ImplicitInstantiation ||
      TSK == TSK_ExplicitInstantiationDefinition)
    return false;

  // Otherwise, if the class doesn't have a key function (possibly
  // anymore), the vtable must be defined here.
  const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
  if (!keyFunction)
    return false;

  // Otherwise, if we don't have a definition of the key function, the
  // vtable must be defined somewhere else.
  return !keyFunction->hasBody();
}

/// Given that we're currently at the end of the translation unit, and
/// we've emitted a reference to the vtable for this class, should
/// we define that vtable?
static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
                                                   const CXXRecordDecl *RD) {
  // If vtable is internal then it has to be done.
  if (!CGM.getVTables().isVTableExternal(RD))
    return true;

  // If it's external then maybe we will need it as available_externally.
  return shouldEmitAvailableExternallyVTable(CGM, RD);
}

/// Given that at some point we emitted a reference to one or more
/// vtables, and that we are now at the end of the translation unit,
/// decide whether we should emit them.
void CodeGenModule::EmitDeferredVTables() {
#ifndef NDEBUG
  // Remember the size of DeferredVTables, because we're going to assume
  // that this entire operation doesn't modify it.
  size_t savedSize = DeferredVTables.size();
#endif

  for (const CXXRecordDecl *RD : DeferredVTables)
    if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
      VTables.GenerateClassData(RD);
    else if (shouldOpportunisticallyEmitVTables())
      OpportunisticVTables.push_back(RD);

  assert(savedSize == DeferredVTables.size() &&
         "deferred extra vtables during vtable emission?");
  DeferredVTables.clear();
}

bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
  LinkageInfo LV = RD->getLinkageAndVisibility();
  if (!isExternallyVisible(LV.getLinkage()))
    return true;

  if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
    return false;

  if (getTriple().isOSBinFormatCOFF()) {
    if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
      return false;
  } else {
    if (LV.getVisibility() != HiddenVisibility)
      return false;
  }

  if (getCodeGenOpts().LTOVisibilityPublicStd) {
    const DeclContext *DC = RD;
    while (1) {
      auto *D = cast<Decl>(DC);
      DC = DC->getParent();
      if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
        if (auto *ND = dyn_cast<NamespaceDecl>(D))
          if (const IdentifierInfo *II = ND->getIdentifier())
            if (II->isStr("std") || II->isStr("stdext"))
              return false;
        break;
      }
    }
  }

  return true;
}

void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable,
                                           const VTableLayout &VTLayout) {
  if (!getCodeGenOpts().LTOUnit)
    return;

  CharUnits PointerWidth =
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));

  typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
  std::vector<AddressPoint> AddressPoints;
  for (auto &&AP : VTLayout.getAddressPoints())
    AddressPoints.push_back(std::make_pair(
        AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
                                AP.second.AddressPointIndex));

  // Sort the address points for determinism.
  llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
                                   const AddressPoint &AP2) {
    if (&AP1 == &AP2)
      return false;

    std::string S1;
    llvm::raw_string_ostream O1(S1);
    getCXXABI().getMangleContext().mangleTypeName(
        QualType(AP1.first->getTypeForDecl(), 0), O1);
    O1.flush();

    std::string S2;
    llvm::raw_string_ostream O2(S2);
    getCXXABI().getMangleContext().mangleTypeName(
        QualType(AP2.first->getTypeForDecl(), 0), O2);
    O2.flush();

    if (S1 < S2)
      return true;
    if (S1 != S2)
      return false;

    return AP1.second < AP2.second;
  });

  ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
  for (auto AP : AddressPoints) {
    // Create type metadata for the address point.
    AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);

    // The class associated with each address point could also potentially be
    // used for indirect calls via a member function pointer, so we need to
    // annotate the address of each function pointer with the appropriate member
    // function pointer type.
    for (unsigned I = 0; I != Comps.size(); ++I) {
      if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
        continue;
      llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
          Context.getMemberPointerType(
              Comps[I].getFunctionDecl()->getType(),
              Context.getRecordType(AP.first).getTypePtr()));
      VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
    }
  }
}