summaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/libarchive/archive_rb.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libs/3rdparty/libarchive/archive_rb.c')
-rw-r--r--src/libs/3rdparty/libarchive/archive_rb.c709
1 files changed, 709 insertions, 0 deletions
diff --git a/src/libs/3rdparty/libarchive/archive_rb.c b/src/libs/3rdparty/libarchive/archive_rb.c
new file mode 100644
index 000000000..cf58ac335
--- /dev/null
+++ b/src/libs/3rdparty/libarchive/archive_rb.c
@@ -0,0 +1,709 @@
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Matt Thomas <matt@3am-software.com>.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Based on: NetBSD: rb.c,v 1.6 2010/04/30 13:58:09 joerg Exp
+ */
+
+#include "archive_platform.h"
+
+#include <stddef.h>
+
+#include "archive_rb.h"
+
+/* Keep in sync with archive_rb.h */
+#define RB_DIR_LEFT 0
+#define RB_DIR_RIGHT 1
+#define RB_DIR_OTHER 1
+#define rb_left rb_nodes[RB_DIR_LEFT]
+#define rb_right rb_nodes[RB_DIR_RIGHT]
+
+#define RB_FLAG_POSITION 0x2
+#define RB_FLAG_RED 0x1
+#define RB_FLAG_MASK (RB_FLAG_POSITION|RB_FLAG_RED)
+#define RB_FATHER(rb) \
+ ((struct archive_rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
+#define RB_SET_FATHER(rb, father) \
+ ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
+
+#define RB_SENTINEL_P(rb) ((rb) == NULL)
+#define RB_LEFT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_left)
+#define RB_RIGHT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_right)
+#define RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
+#define RB_CHILDLESS_P(rb) \
+ (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
+#define RB_TWOCHILDREN_P(rb) \
+ (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
+
+#define RB_POSITION(rb) \
+ (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
+#define RB_RIGHT_P(rb) (RB_POSITION(rb) == RB_DIR_RIGHT)
+#define RB_LEFT_P(rb) (RB_POSITION(rb) == RB_DIR_LEFT)
+#define RB_RED_P(rb) (!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
+#define RB_BLACK_P(rb) (RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
+#define RB_MARK_RED(rb) ((void)((rb)->rb_info |= RB_FLAG_RED))
+#define RB_MARK_BLACK(rb) ((void)((rb)->rb_info &= ~RB_FLAG_RED))
+#define RB_INVERT_COLOR(rb) ((void)((rb)->rb_info ^= RB_FLAG_RED))
+#define RB_ROOT_P(rbt, rb) ((rbt)->rbt_root == (rb))
+#define RB_SET_POSITION(rb, position) \
+ ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
+ ((rb)->rb_info &= ~RB_FLAG_POSITION)))
+#define RB_ZERO_PROPERTIES(rb) ((void)((rb)->rb_info &= ~RB_FLAG_MASK))
+#define RB_COPY_PROPERTIES(dst, src) \
+ ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
+#define RB_SWAP_PROPERTIES(a, b) do { \
+ uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
+ (a)->rb_info ^= xorinfo; \
+ (b)->rb_info ^= xorinfo; \
+ } while (/*CONSTCOND*/ 0)
+
+static void __archive_rb_tree_insert_rebalance(struct archive_rb_tree *,
+ struct archive_rb_node *);
+static void __archive_rb_tree_removal_rebalance(struct archive_rb_tree *,
+ struct archive_rb_node *, unsigned int);
+
+#define RB_SENTINEL_NODE NULL
+
+#define T 1
+#define F 0
+
+void
+__archive_rb_tree_init(struct archive_rb_tree *rbt,
+ const struct archive_rb_tree_ops *ops)
+{
+ rbt->rbt_ops = ops;
+ *((struct archive_rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
+}
+
+struct archive_rb_node *
+__archive_rb_tree_find_node(struct archive_rb_tree *rbt, const void *key)
+{
+ archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
+ struct archive_rb_node *parent = rbt->rbt_root;
+
+ while (!RB_SENTINEL_P(parent)) {
+ const signed int diff = (*compare_key)(parent, key);
+ if (diff == 0)
+ return parent;
+ parent = parent->rb_nodes[diff > 0];
+ }
+
+ return NULL;
+}
+
+struct archive_rb_node *
+__archive_rb_tree_find_node_geq(struct archive_rb_tree *rbt, const void *key)
+{
+ archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
+ struct archive_rb_node *parent = rbt->rbt_root;
+ struct archive_rb_node *last = NULL;
+
+ while (!RB_SENTINEL_P(parent)) {
+ const signed int diff = (*compare_key)(parent, key);
+ if (diff == 0)
+ return parent;
+ if (diff < 0)
+ last = parent;
+ parent = parent->rb_nodes[diff > 0];
+ }
+
+ return last;
+}
+
+struct archive_rb_node *
+__archive_rb_tree_find_node_leq(struct archive_rb_tree *rbt, const void *key)
+{
+ archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
+ struct archive_rb_node *parent = rbt->rbt_root;
+ struct archive_rb_node *last = NULL;
+
+ while (!RB_SENTINEL_P(parent)) {
+ const signed int diff = (*compare_key)(parent, key);
+ if (diff == 0)
+ return parent;
+ if (diff > 0)
+ last = parent;
+ parent = parent->rb_nodes[diff > 0];
+ }
+
+ return last;
+}
+
+int
+__archive_rb_tree_insert_node(struct archive_rb_tree *rbt,
+ struct archive_rb_node *self)
+{
+ archive_rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
+ struct archive_rb_node *parent, *tmp;
+ unsigned int position;
+ int rebalance;
+
+ tmp = rbt->rbt_root;
+ /*
+ * This is a hack. Because rbt->rbt_root is just a
+ * struct archive_rb_node *, just like rb_node->rb_nodes[RB_DIR_LEFT],
+ * we can use this fact to avoid a lot of tests for root and know
+ * that even at root, updating
+ * RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
+ * update rbt->rbt_root.
+ */
+ parent = (struct archive_rb_node *)(void *)&rbt->rbt_root;
+ position = RB_DIR_LEFT;
+
+ /*
+ * Find out where to place this new leaf.
+ */
+ while (!RB_SENTINEL_P(tmp)) {
+ const signed int diff = (*compare_nodes)(tmp, self);
+ if (diff == 0) {
+ /*
+ * Node already exists; don't insert.
+ */
+ return F;
+ }
+ parent = tmp;
+ position = (diff > 0);
+ tmp = parent->rb_nodes[position];
+ }
+
+ /*
+ * Initialize the node and insert as a leaf into the tree.
+ */
+ RB_SET_FATHER(self, parent);
+ RB_SET_POSITION(self, position);
+ if (parent == (struct archive_rb_node *)(void *)&rbt->rbt_root) {
+ RB_MARK_BLACK(self); /* root is always black */
+ rebalance = F;
+ } else {
+ /*
+ * All new nodes are colored red. We only need to rebalance
+ * if our parent is also red.
+ */
+ RB_MARK_RED(self);
+ rebalance = RB_RED_P(parent);
+ }
+ self->rb_left = parent->rb_nodes[position];
+ self->rb_right = parent->rb_nodes[position];
+ parent->rb_nodes[position] = self;
+
+ /*
+ * Rebalance tree after insertion
+ */
+ if (rebalance)
+ __archive_rb_tree_insert_rebalance(rbt, self);
+
+ return T;
+}
+
+/*
+ * Swap the location and colors of 'self' and its child @ which. The child
+ * can not be a sentinel node. This is our rotation function. However,
+ * since it preserves coloring, it great simplifies both insertion and
+ * removal since rotation almost always involves the exchanging of colors
+ * as a separate step.
+ */
+/*ARGSUSED*/
+static void
+__archive_rb_tree_reparent_nodes(
+ struct archive_rb_node *old_father, const unsigned int which)
+{
+ const unsigned int other = which ^ RB_DIR_OTHER;
+ struct archive_rb_node * const grandpa = RB_FATHER(old_father);
+ struct archive_rb_node * const old_child = old_father->rb_nodes[which];
+ struct archive_rb_node * const new_father = old_child;
+ struct archive_rb_node * const new_child = old_father;
+
+ if (new_father == NULL)
+ return;
+ /*
+ * Exchange descendant linkages.
+ */
+ grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
+ new_child->rb_nodes[which] = old_child->rb_nodes[other];
+ new_father->rb_nodes[other] = new_child;
+
+ /*
+ * Update ancestor linkages
+ */
+ RB_SET_FATHER(new_father, grandpa);
+ RB_SET_FATHER(new_child, new_father);
+
+ /*
+ * Exchange properties between new_father and new_child. The only
+ * change is that new_child's position is now on the other side.
+ */
+ RB_SWAP_PROPERTIES(new_father, new_child);
+ RB_SET_POSITION(new_child, other);
+
+ /*
+ * Make sure to reparent the new child to ourself.
+ */
+ if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
+ RB_SET_FATHER(new_child->rb_nodes[which], new_child);
+ RB_SET_POSITION(new_child->rb_nodes[which], which);
+ }
+
+}
+
+static void
+__archive_rb_tree_insert_rebalance(struct archive_rb_tree *rbt,
+ struct archive_rb_node *self)
+{
+ struct archive_rb_node * father = RB_FATHER(self);
+ struct archive_rb_node * grandpa;
+ struct archive_rb_node * uncle;
+ unsigned int which;
+ unsigned int other;
+
+ for (;;) {
+ /*
+ * We are red and our parent is red, therefore we must have a
+ * grandfather and he must be black.
+ */
+ grandpa = RB_FATHER(father);
+ which = (father == grandpa->rb_right);
+ other = which ^ RB_DIR_OTHER;
+ uncle = grandpa->rb_nodes[other];
+
+ if (RB_BLACK_P(uncle))
+ break;
+
+ /*
+ * Case 1: our uncle is red
+ * Simply invert the colors of our parent and
+ * uncle and make our grandparent red. And
+ * then solve the problem up at his level.
+ */
+ RB_MARK_BLACK(uncle);
+ RB_MARK_BLACK(father);
+ if (RB_ROOT_P(rbt, grandpa)) {
+ /*
+ * If our grandpa is root, don't bother
+ * setting him to red, just return.
+ */
+ return;
+ }
+ RB_MARK_RED(grandpa);
+ self = grandpa;
+ father = RB_FATHER(self);
+ if (RB_BLACK_P(father)) {
+ /*
+ * If our great-grandpa is black, we're done.
+ */
+ return;
+ }
+ }
+
+ /*
+ * Case 2&3: our uncle is black.
+ */
+ if (self == father->rb_nodes[other]) {
+ /*
+ * Case 2: we are on the same side as our uncle
+ * Swap ourselves with our parent so this case
+ * becomes case 3. Basically our parent becomes our
+ * child.
+ */
+ __archive_rb_tree_reparent_nodes(father, other);
+ }
+ /*
+ * Case 3: we are opposite a child of a black uncle.
+ * Swap our parent and grandparent. Since our grandfather
+ * is black, our father will become black and our new sibling
+ * (former grandparent) will become red.
+ */
+ __archive_rb_tree_reparent_nodes(grandpa, which);
+
+ /*
+ * Final step: Set the root to black.
+ */
+ RB_MARK_BLACK(rbt->rbt_root);
+}
+
+static void
+__archive_rb_tree_prune_node(struct archive_rb_tree *rbt,
+ struct archive_rb_node *self, int rebalance)
+{
+ const unsigned int which = RB_POSITION(self);
+ struct archive_rb_node *father = RB_FATHER(self);
+
+ /*
+ * Since we are childless, we know that self->rb_left is pointing
+ * to the sentinel node.
+ */
+ father->rb_nodes[which] = self->rb_left;
+
+ /*
+ * Rebalance if requested.
+ */
+ if (rebalance)
+ __archive_rb_tree_removal_rebalance(rbt, father, which);
+}
+
+/*
+ * When deleting an interior node
+ */
+static void
+__archive_rb_tree_swap_prune_and_rebalance(struct archive_rb_tree *rbt,
+ struct archive_rb_node *self, struct archive_rb_node *standin)
+{
+ const unsigned int standin_which = RB_POSITION(standin);
+ unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
+ struct archive_rb_node *standin_son;
+ struct archive_rb_node *standin_father = RB_FATHER(standin);
+ int rebalance = RB_BLACK_P(standin);
+
+ if (standin_father == self) {
+ /*
+ * As a child of self, any children would be opposite of
+ * our parent.
+ */
+ standin_son = standin->rb_nodes[standin_which];
+ } else {
+ /*
+ * Since we aren't a child of self, any children would be
+ * on the same side as our parent.
+ */
+ standin_son = standin->rb_nodes[standin_other];
+ }
+
+ if (RB_RED_P(standin_son)) {
+ /*
+ * We know we have a red child so if we flip it to black
+ * we don't have to rebalance.
+ */
+ RB_MARK_BLACK(standin_son);
+ rebalance = F;
+
+ if (standin_father != self) {
+ /*
+ * Change the son's parentage to point to his grandpa.
+ */
+ RB_SET_FATHER(standin_son, standin_father);
+ RB_SET_POSITION(standin_son, standin_which);
+ }
+ }
+
+ if (standin_father == self) {
+ /*
+ * If we are about to delete the standin's father, then when
+ * we call rebalance, we need to use ourselves as our father.
+ * Otherwise remember our original father. Also, since we are
+ * our standin's father we only need to reparent the standin's
+ * brother.
+ *
+ * | R --> S |
+ * | Q S --> Q T |
+ * | t --> |
+ *
+ * Have our son/standin adopt his brother as his new son.
+ */
+ standin_father = standin;
+ } else {
+ /*
+ * | R --> S . |
+ * | / \ | T --> / \ | / |
+ * | ..... | S --> ..... | T |
+ *
+ * Sever standin's connection to his father.
+ */
+ standin_father->rb_nodes[standin_which] = standin_son;
+ /*
+ * Adopt the far son.
+ */
+ standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
+ RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
+ /*
+ * Use standin_other because we need to preserve standin_which
+ * for the removal_rebalance.
+ */
+ standin_other = standin_which;
+ }
+
+ /*
+ * Move the only remaining son to our standin. If our standin is our
+ * son, this will be the only son needed to be moved.
+ */
+ standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
+ RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
+
+ /*
+ * Now copy the result of self to standin and then replace
+ * self with standin in the tree.
+ */
+ RB_COPY_PROPERTIES(standin, self);
+ RB_SET_FATHER(standin, RB_FATHER(self));
+ RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
+
+ if (rebalance)
+ __archive_rb_tree_removal_rebalance(rbt, standin_father, standin_which);
+}
+
+/*
+ * We could do this by doing
+ * __archive_rb_tree_node_swap(rbt, self, which);
+ * __archive_rb_tree_prune_node(rbt, self, F);
+ *
+ * But it's more efficient to just evaluate and recolor the child.
+ */
+static void
+__archive_rb_tree_prune_blackred_branch(
+ struct archive_rb_node *self, unsigned int which)
+{
+ struct archive_rb_node *father = RB_FATHER(self);
+ struct archive_rb_node *son = self->rb_nodes[which];
+
+ /*
+ * Remove ourselves from the tree and give our former child our
+ * properties (position, color, root).
+ */
+ RB_COPY_PROPERTIES(son, self);
+ father->rb_nodes[RB_POSITION(son)] = son;
+ RB_SET_FATHER(son, father);
+}
+/*
+ *
+ */
+void
+__archive_rb_tree_remove_node(struct archive_rb_tree *rbt,
+ struct archive_rb_node *self)
+{
+ struct archive_rb_node *standin;
+ unsigned int which;
+
+ /*
+ * In the following diagrams, we (the node to be removed) are S. Red
+ * nodes are lowercase. T could be either red or black.
+ *
+ * Remember the major axiom of the red-black tree: the number of
+ * black nodes from the root to each leaf is constant across all
+ * leaves, only the number of red nodes varies.
+ *
+ * Thus removing a red leaf doesn't require any other changes to a
+ * red-black tree. So if we must remove a node, attempt to rearrange
+ * the tree so we can remove a red node.
+ *
+ * The simplest case is a childless red node or a childless root node:
+ *
+ * | T --> T | or | R --> * |
+ * | s --> * |
+ */
+ if (RB_CHILDLESS_P(self)) {
+ const int rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
+ __archive_rb_tree_prune_node(rbt, self, rebalance);
+ return;
+ }
+ if (!RB_TWOCHILDREN_P(self)) {
+ /*
+ * The next simplest case is the node we are deleting is
+ * black and has one red child.
+ *
+ * | T --> T --> T |
+ * | S --> R --> R |
+ * | r --> s --> * |
+ */
+ which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
+ __archive_rb_tree_prune_blackred_branch(self, which);
+ return;
+ }
+
+ /*
+ * We invert these because we prefer to remove from the inside of
+ * the tree.
+ */
+ which = RB_POSITION(self) ^ RB_DIR_OTHER;
+
+ /*
+ * Let's find the node closes to us opposite of our parent
+ * Now swap it with ourself, "prune" it, and rebalance, if needed.
+ */
+ standin = __archive_rb_tree_iterate(rbt, self, which);
+ __archive_rb_tree_swap_prune_and_rebalance(rbt, self, standin);
+}
+
+static void
+__archive_rb_tree_removal_rebalance(struct archive_rb_tree *rbt,
+ struct archive_rb_node *parent, unsigned int which)
+{
+
+ while (RB_BLACK_P(parent->rb_nodes[which])) {
+ unsigned int other = which ^ RB_DIR_OTHER;
+ struct archive_rb_node *brother = parent->rb_nodes[other];
+
+ if (brother == NULL)
+ return;/* The tree may be broken. */
+ /*
+ * For cases 1, 2a, and 2b, our brother's children must
+ * be black and our father must be black
+ */
+ if (RB_BLACK_P(parent)
+ && RB_BLACK_P(brother->rb_left)
+ && RB_BLACK_P(brother->rb_right)) {
+ if (RB_RED_P(brother)) {
+ /*
+ * Case 1: Our brother is red, swap its
+ * position (and colors) with our parent.
+ * This should now be case 2b (unless C or E
+ * has a red child which is case 3; thus no
+ * explicit branch to case 2b).
+ *
+ * B -> D
+ * A d -> b E
+ * C E -> A C
+ */
+ __archive_rb_tree_reparent_nodes(parent, other);
+ brother = parent->rb_nodes[other];
+ if (brother == NULL)
+ return;/* The tree may be broken. */
+ } else {
+ /*
+ * Both our parent and brother are black.
+ * Change our brother to red, advance up rank
+ * and go through the loop again.
+ *
+ * B -> *B
+ * *A D -> A d
+ * C E -> C E
+ */
+ RB_MARK_RED(brother);
+ if (RB_ROOT_P(rbt, parent))
+ return; /* root == parent == black */
+ which = RB_POSITION(parent);
+ parent = RB_FATHER(parent);
+ continue;
+ }
+ }
+ /*
+ * Avoid an else here so that case 2a above can hit either
+ * case 2b, 3, or 4.
+ */
+ if (RB_RED_P(parent)
+ && RB_BLACK_P(brother)
+ && RB_BLACK_P(brother->rb_left)
+ && RB_BLACK_P(brother->rb_right)) {
+ /*
+ * We are black, our father is red, our brother and
+ * both nephews are black. Simply invert/exchange the
+ * colors of our father and brother (to black and red
+ * respectively).
+ *
+ * | f --> F |
+ * | * B --> * b |
+ * | N N --> N N |
+ */
+ RB_MARK_BLACK(parent);
+ RB_MARK_RED(brother);
+ break; /* We're done! */
+ } else {
+ /*
+ * Our brother must be black and have at least one
+ * red child (it may have two).
+ */
+ if (RB_BLACK_P(brother->rb_nodes[other])) {
+ /*
+ * Case 3: our brother is black, our near
+ * nephew is red, and our far nephew is black.
+ * Swap our brother with our near nephew.
+ * This result in a tree that matches case 4.
+ * (Our father could be red or black).
+ *
+ * | F --> F |
+ * | x B --> x B |
+ * | n --> n |
+ */
+ __archive_rb_tree_reparent_nodes(brother, which);
+ brother = parent->rb_nodes[other];
+ }
+ /*
+ * Case 4: our brother is black and our far nephew
+ * is red. Swap our father and brother locations and
+ * change our far nephew to black. (these can be
+ * done in either order so we change the color first).
+ * The result is a valid red-black tree and is a
+ * terminal case. (again we don't care about the
+ * father's color)
+ *
+ * If the father is red, we will get a red-black-black
+ * tree:
+ * | f -> f --> b |
+ * | B -> B --> F N |
+ * | n -> N --> |
+ *
+ * If the father is black, we will get an all black
+ * tree:
+ * | F -> F --> B |
+ * | B -> B --> F N |
+ * | n -> N --> |
+ *
+ * If we had two red nephews, then after the swap,
+ * our former father would have a red grandson.
+ */
+ if (brother->rb_nodes[other] == NULL)
+ return;/* The tree may be broken. */
+ RB_MARK_BLACK(brother->rb_nodes[other]);
+ __archive_rb_tree_reparent_nodes(parent, other);
+ break; /* We're done! */
+ }
+ }
+}
+
+struct archive_rb_node *
+__archive_rb_tree_iterate(struct archive_rb_tree *rbt,
+ struct archive_rb_node *self, const unsigned int direction)
+{
+ const unsigned int other = direction ^ RB_DIR_OTHER;
+
+ if (self == NULL) {
+ self = rbt->rbt_root;
+ if (RB_SENTINEL_P(self))
+ return NULL;
+ while (!RB_SENTINEL_P(self->rb_nodes[direction]))
+ self = self->rb_nodes[direction];
+ return self;
+ }
+ /*
+ * We can't go any further in this direction. We proceed up in the
+ * opposite direction until our parent is in direction we want to go.
+ */
+ if (RB_SENTINEL_P(self->rb_nodes[direction])) {
+ while (!RB_ROOT_P(rbt, self)) {
+ if (other == (unsigned int)RB_POSITION(self))
+ return RB_FATHER(self);
+ self = RB_FATHER(self);
+ }
+ return NULL;
+ }
+
+ /*
+ * Advance down one in current direction and go down as far as possible
+ * in the opposite direction.
+ */
+ self = self->rb_nodes[direction];
+ while (!RB_SENTINEL_P(self->rb_nodes[other]))
+ self = self->rb_nodes[other];
+ return self;
+}