aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/3rdparty/botan/botan.h
blob: d7b90cc92f93f0bb668703f4a7845e6dfe5009cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
/*
* Botan 1.10.2 Amalgamation
* (C) 1999-2011 Jack Lloyd and others
*
* Distributed under the terms of the Botan license
*/

#ifndef BOTAN_AMALGAMATION_H__
#define BOTAN_AMALGAMATION_H__

#ifdef USE_SYSTEM_BOTAN
#include <botan/auto_rng.h>
#include <botan/cbc.h>
#include <botan/ctr.h>
#include <botan/der_enc.h>
#include <botan/dh.h>
#include <botan/dl_group.h>
#include <botan/dsa.h>
#include <botan/ec_group.h>
#include <botan/ecdh.h>
#include <botan/ecdsa.h>
#include <botan/hmac.h>
#include <botan/init.h>
#include <botan/lookup.h>
#include <botan/pem.h>
#include <botan/pubkey.h>
#include <botan/rsa.h>
#include <botan/ui.h>
#else

#include <QtGlobal>

#include <iosfwd>
#include <map>
#include <exception>
#include <string>
#include <algorithm>
#include <cstring>
#include <stdexcept>
#include <vector>
#include <utility>

#define BOTAN_VERSION_MAJOR 1
#define BOTAN_VERSION_MINOR 10
#define BOTAN_VERSION_PATCH 2
#define BOTAN_VERSION_DATESTAMP 0

#define BOTAN_VERSION_VC_REVISION "mtn:2bf8ad2c501213efb4cf9b219330b87666988e91"

#define BOTAN_DISTRIBUTION_INFO "unspecified"

#ifndef BOTAN_DLL
#define BOTAN_DLL Q_DECL_IMPORT
#endif

/* Chunk sizes */
#define BOTAN_DEFAULT_BUFFER_SIZE 4096
#define BOTAN_MEM_POOL_CHUNK_SIZE 64*1024
#define BOTAN_BLOCK_CIPHER_PAR_MULT 4

/* BigInt toggles */
#define BOTAN_MP_WORD_BITS 32
#define BOTAN_KARAT_MUL_THRESHOLD 32
#define BOTAN_KARAT_SQR_THRESHOLD 32

/* PK key consistency checking toggles */
#define BOTAN_PUBLIC_KEY_STRONG_CHECKS_ON_LOAD 1
#define BOTAN_PRIVATE_KEY_STRONG_CHECKS_ON_LOAD 0
#define BOTAN_PRIVATE_KEY_STRONG_CHECKS_ON_GENERATE 1

/* Should we use GCC-style inline assembler? */
#if !defined(BOTAN_USE_GCC_INLINE_ASM) && defined(__GNUG__)
  #define BOTAN_USE_GCC_INLINE_ASM 1
#endif

#if !defined(BOTAN_USE_GCC_INLINE_ASM)
  #define BOTAN_USE_GCC_INLINE_ASM 0
#endif

#ifdef __GNUC__
  #define BOTAN_GCC_VERSION \
     (__GNUC__ * 100 + __GNUC_MINOR__ * 10 + __GNUC_PATCHLEVEL__)
#else
  #define BOTAN_GCC_VERSION 0
#endif

#define BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN
#define BOTAN_TARGET_CPU_IS_X86_FAMILY
#define BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK 1

#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN) || \
    defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
  #define BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS
#endif

#if defined(_MSC_VER)
  // 4250: inherits via dominance (diamond inheritence issue)
  // 4251: needs DLL interface (STL DLL exports)
  #pragma warning(disable: 4250 4251)
#endif

/*
* Compile-time deprecatation warnings
*/
#if !defined(BOTAN_NO_DEPRECATED_WARNINGS)

  #if defined(__clang__)
    #define BOTAN_DEPRECATED(msg) __attribute__ ((deprecated))

  #elif defined(_MSC_VER)
    #define BOTAN_DEPRECATED(msg) __declspec(deprecated(msg))

  #elif defined(__GNUG__)

    #if BOTAN_GCC_VERSION >= 450 && !defined(__INTEL_COMPILER)
      #define BOTAN_DEPRECATED(msg) __attribute__ ((deprecated(msg)))
    #else
      #define BOTAN_DEPRECATED(msg) __attribute__ ((deprecated))
    #endif

  #endif

#endif

#if !defined(BOTAN_DEPRECATED)
  #define BOTAN_DEPRECATED(msg)
#endif

/*
* Module availability definitions
*/
#define BOTAN_HAS_ADLER32
#define BOTAN_HAS_AES
#define BOTAN_HAS_ALGORITHM_FACTORY
#define BOTAN_HAS_ANSI_X919_MAC
#define BOTAN_HAS_ARC4
#define BOTAN_HAS_ASN1
#define BOTAN_HAS_AUTO_SEEDING_RNG
#define BOTAN_HAS_BASE64_CODEC
#define BOTAN_HAS_BCRYPT
#define BOTAN_HAS_BIGINT
#define BOTAN_HAS_BIGINT_MATH
#define BOTAN_HAS_BIGINT_MP
#define BOTAN_HAS_BLOCK_CIPHER
#define BOTAN_HAS_BLOWFISH
#define BOTAN_HAS_BMW_512
#define BOTAN_HAS_CAMELLIA
#define BOTAN_HAS_CASCADE
#define BOTAN_HAS_CAST
#define BOTAN_HAS_CBC
#define BOTAN_HAS_CBC_MAC
#define BOTAN_HAS_CERTIFICATE_STORE
#define BOTAN_HAS_CFB
#define BOTAN_HAS_CIPHER_MODE_PADDING
#define BOTAN_HAS_CMAC
#define BOTAN_HAS_CODEC_FILTERS
#define BOTAN_HAS_COMB4P
#define BOTAN_HAS_CORE_ENGINE
#define BOTAN_HAS_CRC24
#define BOTAN_HAS_CRC32
#define BOTAN_HAS_CRYPTO_BOX
#define BOTAN_HAS_CTR_BE
#define BOTAN_HAS_CTS
#define BOTAN_HAS_DES
#define BOTAN_HAS_DIFFIE_HELLMAN
#define BOTAN_HAS_DLIES
#define BOTAN_HAS_DL_GROUP
#define BOTAN_HAS_DL_PUBLIC_KEY_FAMILY
#define BOTAN_HAS_DSA
#define BOTAN_HAS_EAX
#define BOTAN_HAS_ECB
#define BOTAN_HAS_ECC_GROUP
#define BOTAN_HAS_ECC_PUBLIC_KEY_CRYPTO
#define BOTAN_HAS_ECDH
#define BOTAN_HAS_ECDSA
#define BOTAN_HAS_EC_CURVE_GFP
#define BOTAN_HAS_ELGAMAL
#define BOTAN_HAS_EME1
#define BOTAN_HAS_EME_PKCS1v15
#define BOTAN_HAS_EMSA1
#define BOTAN_HAS_EMSA1_BSI
#define BOTAN_HAS_EMSA2
#define BOTAN_HAS_EMSA3
#define BOTAN_HAS_EMSA4
#define BOTAN_HAS_EMSA_RAW
#define BOTAN_HAS_ENGINES
#define BOTAN_HAS_ENGINE_SIMD
#define BOTAN_HAS_ENTROPY_SRC_HIGH_RESOLUTION_TIMER
#define BOTAN_HAS_FILTERS
#define BOTAN_HAS_FPE_FE1
#define BOTAN_HAS_GOST_28147_89
#define BOTAN_HAS_GOST_34_10_2001
#define BOTAN_HAS_GOST_34_11
#define BOTAN_HAS_HASH_ID
#define BOTAN_HAS_HAS_160
#define BOTAN_HAS_HEX_CODEC
#define BOTAN_HAS_HMAC
#define BOTAN_HAS_HMAC_RNG
#define BOTAN_HAS_IDEA
#define BOTAN_HAS_IF_PUBLIC_KEY_FAMILY
#define BOTAN_HAS_KASUMI
#define BOTAN_HAS_KDF1
#define BOTAN_HAS_KDF2
#define BOTAN_HAS_KDF_BASE
#define BOTAN_HAS_KECCAK
#define BOTAN_HAS_KEYPAIR_TESTING
#define BOTAN_HAS_LIBSTATE_MODULE
#define BOTAN_HAS_LION
#define BOTAN_HAS_LUBY_RACKOFF
#define BOTAN_HAS_MARS
#define BOTAN_HAS_MD2
#define BOTAN_HAS_MD4
#define BOTAN_HAS_MD5
#define BOTAN_HAS_MDX_HASH_FUNCTION
#define BOTAN_HAS_MGF1
#define BOTAN_HAS_MISTY1
#define BOTAN_HAS_MUTEX_NOOP
#define BOTAN_HAS_MUTEX_WRAPPERS
#define BOTAN_HAS_NOEKEON
#define BOTAN_HAS_NOEKEON_SIMD
#define BOTAN_HAS_NYBERG_RUEPPEL
#define BOTAN_HAS_OFB
#define BOTAN_HAS_OID_LOOKUP
#define BOTAN_HAS_OPENPGP_CODEC
#define BOTAN_HAS_PACKAGE_TRANSFORM
#define BOTAN_HAS_PARALLEL_HASH
#define BOTAN_HAS_PASSHASH9
#define BOTAN_HAS_PASSWORD_BASED_ENCRYPTION
#define BOTAN_HAS_PBE_PKCS_V15
#define BOTAN_HAS_PBE_PKCS_V20
#define BOTAN_HAS_PBKDF1
#define BOTAN_HAS_PBKDF2
#define BOTAN_HAS_PEM_CODEC
#define BOTAN_HAS_PGPS2K
#define BOTAN_HAS_PKCS10_REQUESTS
#define BOTAN_HAS_PK_PADDING
#define BOTAN_HAS_PUBLIC_KEY_CRYPTO
#define BOTAN_HAS_PUBLIC_KEY_CRYPTO
#define BOTAN_HAS_RANDPOOL
#define BOTAN_HAS_RC2
#define BOTAN_HAS_RC5
#define BOTAN_HAS_RC6
#define BOTAN_HAS_RFC3394_KEYWRAP
#define BOTAN_HAS_RIPEMD_128
#define BOTAN_HAS_RIPEMD_160
#define BOTAN_HAS_RSA
#define BOTAN_HAS_RUNTIME_BENCHMARKING
#define BOTAN_HAS_RW
#define BOTAN_HAS_SAFER
#define BOTAN_HAS_SALSA20
#define BOTAN_HAS_SEED
#define BOTAN_HAS_SELFTESTS
#define BOTAN_HAS_SERPENT
#define BOTAN_HAS_SERPENT_SIMD
#define BOTAN_HAS_SHA1
#define BOTAN_HAS_SHA2_32
#define BOTAN_HAS_SHA2_64
#define BOTAN_HAS_SIMD_32
#define BOTAN_HAS_SIMD_SCALAR
#define BOTAN_HAS_SKEIN_512
#define BOTAN_HAS_SKIPJACK
#define BOTAN_HAS_SQUARE
#define BOTAN_HAS_SRP6
#define BOTAN_HAS_SSL3_MAC
#define BOTAN_HAS_SSL_V3_PRF
#define BOTAN_HAS_STREAM_CIPHER
#define BOTAN_HAS_TEA
#define BOTAN_HAS_THRESHOLD_SECRET_SHARING
#define BOTAN_HAS_TIGER
#define BOTAN_HAS_TLS_V10_PRF
#define BOTAN_HAS_TURING
#define BOTAN_HAS_TWOFISH
#define BOTAN_HAS_UTIL_FUNCTIONS
#define BOTAN_HAS_WHIRLPOOL
#define BOTAN_HAS_WID_WAKE
#define BOTAN_HAS_X509_CA
#define BOTAN_HAS_X509_CERTIFICATES
#define BOTAN_HAS_X509_CRL
#define BOTAN_HAS_X509_SELF_SIGNED
#define BOTAN_HAS_X509_STORE
#define BOTAN_HAS_X931_RNG
#define BOTAN_HAS_X942_PRF
#define BOTAN_HAS_XTEA
#define BOTAN_HAS_XTEA_SIMD
#define BOTAN_HAS_XTS

/*
* Local configuration options (if any) follow
*/


#include <stddef.h>

/**
* The primary namespace for the botan library
*/
namespace Botan {

/**
* Typedef representing an unsigned 8-bit quantity
*/
typedef unsigned char byte;

/**
* Typedef representing an unsigned 16-bit quantity
*/
typedef unsigned short u16bit;

/**
* Typedef representing an unsigned 32-bit quantity
*/
typedef unsigned int u32bit;

/**
* Typedef representing a signed 32-bit quantity
*/
typedef signed int s32bit;

/**
* Typedef representing an unsigned 64-bit quantity
*/
#if defined(_MSC_VER) || defined(__BORLANDC__)
   typedef unsigned __int64 u64bit;
#elif defined(__KCC)
   typedef unsigned __long_long u64bit;
#elif defined(__GNUG__)
   __extension__ typedef unsigned long long u64bit;
#else
   typedef unsigned long long u64bit;
#endif

/**
* A default buffer size; typically a memory page
*/
static const size_t DEFAULT_BUFFERSIZE = BOTAN_DEFAULT_BUFFER_SIZE;

}

namespace Botan_types {

using Botan::byte;
using Botan::u32bit;

}


namespace Botan {

/**
* Allocator Interface
*/
class BOTAN_DLL Allocator
   {
   public:
      /**
      * Acquire a pointer to an allocator
      * @param locking is true if the allocator should attempt to
      *                secure the memory (eg for using to store keys)
      * @return pointer to an allocator; ownership remains with library,
      *                 so do not delete
      */
      static Allocator* get(bool locking);

      /**
      * Allocate a block of memory
      * @param n how many bytes to allocate
      * @return pointer to n bytes of memory
      */
      virtual void* allocate(size_t n) = 0;

      /**
      * Deallocate memory allocated with allocate()
      * @param ptr the pointer returned by allocate()
      * @param n the size of the block pointed to by ptr
      */
      virtual void deallocate(void* ptr, size_t n) = 0;

      /**
      * @return name of this allocator type
      */
      virtual std::string type() const = 0;

      /**
      * Initialize the allocator
      */
      virtual void init() {}

      /**
      * Shutdown the allocator
      */
      virtual void destroy() {}

      virtual ~Allocator() Q_DECL_NOEXCEPT_EXPR(false) {}
   };

}


namespace Botan {

/**
* Copy memory
* @param out the destination array
* @param in the source array
* @param n the number of elements of in/out
*/
template<typename T> inline void copy_mem(T* out, const T* in, size_t n)
   {
   std::memmove(out, in, sizeof(T)*n);
   }

/**
* Zeroize memory
* @param ptr a pointer to an array
* @param n the number of Ts pointed to by ptr
*/
template<typename T> inline void clear_mem(T* ptr, size_t n)
   {
   if(n) // avoid glibc warning if n == 0
      std::memset(ptr, 0, sizeof(T)*n);
   }

/**
* Set memory to a fixed value
* @param ptr a pointer to an array
* @param n the number of Ts pointed to by ptr
* @param val the value to set each byte to
*/
template<typename T>
inline void set_mem(T* ptr, size_t n, byte val)
   {
   std::memset(ptr, val, sizeof(T)*n);
   }

/**
* Memory comparison, input insensitive
* @param p1 a pointer to an array
* @param p2 a pointer to another array
* @param n the number of Ts in p1 and p2
* @return true iff p1[i] == p2[i] forall i in [0...n)
*/
template<typename T> inline bool same_mem(const T* p1, const T* p2, size_t n)
   {
   bool is_same = true;

   for(size_t i = 0; i != n; ++i)
      is_same &= (p1[i] == p2[i]);

   return is_same;
   }

}


namespace Botan {

/**
* This class represents variable length memory buffers.
*/
template<typename T>
class MemoryRegion
   {
   public:
      /**
      * Find out the size of the buffer, i.e. how many objects of type T it
      * contains.
      * @return size of the buffer
      */
      size_t size() const { return used; }

      /**
      * Find out whether this buffer is empty.
      * @return true if the buffer is empty, false otherwise
      */
      bool empty() const { return (used == 0); }

      /**
      * Get a pointer to the first element in the buffer.
      * @return pointer to the first element in the buffer
      */
      operator T* () { return buf; }

      /**
      * Get a constant pointer to the first element in the buffer.
      * @return constant pointer to the first element in the buffer
      */
      operator const T* () const { return buf; }

      /**
      * Get a pointer to the first element in the buffer.
      * @return pointer to the first element in the buffer
      */
      T* begin() { return buf; }

      /**
      * Get a constant pointer to the first element in the buffer.
      * @return constant pointer to the first element in the buffer
      */
      const T* begin() const { return buf; }

      /**
      * Get a pointer to one past the last element in the buffer.
      * @return pointer to one past the last element in the buffer
      */
      T* end() { return (buf + size()); }

      /**
      * Get a const pointer to one past the last element in the buffer.
      * @return const pointer to one past the last element in the buffer
      */
      const T* end() const { return (buf + size()); }

      /**
      * Check two buffers for equality.
      * @return true iff the content of both buffers is byte-wise equal
      */
      bool operator==(const MemoryRegion<T>& other) const
         {
         return (size() == other.size() &&
                 same_mem(buf, other.buf, size()));
         }

      /**
      * Compare two buffers
      * @return true iff this is ordered before other
      */
      bool operator<(const MemoryRegion<T>& other) const;

      /**
      * Check two buffers for inequality.
      * @return false if the content of both buffers is byte-wise equal, true
      * otherwise.
      */
      bool operator!=(const MemoryRegion<T>& other) const
         { return (!(*this == other)); }

      /**
      * Copy the contents of another buffer into this buffer.
      * The former contents of *this are discarded.
      * @param other the buffer to copy the contents from.
      * @return reference to *this
      */
      MemoryRegion<T>& operator=(const MemoryRegion<T>& other)
         {
         if(this != &other)
            {
            this->resize(other.size());
            this->copy(&other[0], other.size());
            }
         return (*this);
         }

      /**
      * Copy the contents of an array of objects of type T into this buffer.
      * The former contents of *this are discarded.
      * The length of *this must be at least n, otherwise memory errors occur.
      * @param in the array to copy the contents from
      * @param n the length of in
      */
      void copy(const T in[], size_t n)
         {
         copy_mem(buf, in, std::min(n, size()));
         }

      /**
      * Copy the contents of an array of objects of type T into this buffer.
      * The former contents of *this are discarded.
      * The length of *this must be at least n, otherwise memory errors occur.
      * @param off the offset position inside this buffer to start inserting
      * the copied bytes
      * @param in the array to copy the contents from
      * @param n the length of in
      */
      void copy(size_t off, const T in[], size_t n)
         {
         copy_mem(buf + off, in, std::min(n, size() - off));
         }

      /**
      * Append a single element.
      * @param x the element to append
      */
      void push_back(T x)
         {
         resize(size() + 1);
         buf[size()-1] = x;
         }

      /**
      * Reset this buffer to an empty buffer with size zero.
      */
      void clear() { resize(0); }

      /**
      * Inserts or erases elements at the end such that the size
      * becomes n, leaving elements in the range 0...n unmodified if
      * set or otherwise zero-initialized
      * @param n length of the new buffer
      */
      void resize(size_t n);

      /**
      * Swap this buffer with another object.
      */
      void swap(MemoryRegion<T>& other);

      virtual ~MemoryRegion() { deallocate(buf, allocated); }
   protected:
      MemoryRegion() : buf(0), used(0), allocated(0), alloc(0) {}

      /**
      * Copy constructor
      * @param other the other region to copy
      */
      MemoryRegion(const MemoryRegion<T>& other) :
         buf(0),
         used(0),
         allocated(0),
         alloc(other.alloc)
         {
         resize(other.size());
         copy(&other[0], other.size());
         }

      /**
      * @param locking should we use a locking allocator
      * @param length the initial length to use
      */
      void init(bool locking, size_t length = 0)
         { alloc = Allocator::get(locking); resize(length); }

   private:
      T* allocate(size_t n)
         {
         return static_cast<T*>(alloc->allocate(sizeof(T)*n));
         }

      void deallocate(T* p, size_t n)
         { if(alloc && p && n) alloc->deallocate(p, sizeof(T)*n); }

      T* buf;
      size_t used;
      size_t allocated;
      Allocator* alloc;
   };

/*
* Change the size of the buffer
*/
template<typename T>
void MemoryRegion<T>::resize(size_t n)
   {
   if(n <= allocated)
      {
      size_t zap = std::min(used, n);
      clear_mem(buf + zap, allocated - zap);
      used = n;
      }
   else
      {
      T* new_buf = allocate(n);
      copy_mem(new_buf, buf, used);
      deallocate(buf, allocated);
      buf = new_buf;
      allocated = used = n;
      }
   }

/*
* Compare this buffer with another one
*/
template<typename T>
bool MemoryRegion<T>::operator<(const MemoryRegion<T>& other) const
   {
   const size_t min_size = std::min(size(), other.size());

   // This should probably be rewritten to run in constant time
   for(size_t i = 0; i != min_size; ++i)
      {
      if(buf[i] < other[i])
         return true;
      if(buf[i] > other[i])
         return false;
      }

   // First min_size bytes are equal, shorter is first
   return (size() < other.size());
   }

/*
* Swap this buffer with another one
*/
template<typename T>
void MemoryRegion<T>::swap(MemoryRegion<T>& x)
   {
   std::swap(buf, x.buf);
   std::swap(used, x.used);
   std::swap(allocated, x.allocated);
   std::swap(alloc, x.alloc);
   }

/**
* This class represents variable length buffers that do not
* make use of memory locking.
*/
template<typename T>
class MemoryVector : public MemoryRegion<T>
   {
   public:
      /**
      * Copy the contents of another buffer into this buffer.
      * @param in the buffer to copy the contents from
      * @return reference to *this
      */
      MemoryVector<T>& operator=(const MemoryRegion<T>& in)
         {
         if(this != &in)
            {
            this->resize(in.size());
            this->copy(&in[0], in.size());
            }
         return (*this);
         }

      /**
      * Create a buffer of the specified length.
      * @param n the length of the buffer to create.
      */
      MemoryVector(size_t n = 0) { this->init(false, n); }

      /**
      * Create a buffer with the specified contents.
      * @param in the array containing the data to be initially copied
      * into the newly created buffer
      * @param n the size of the arry in
      */
      MemoryVector(const T in[], size_t n)
         {
         this->init(false);
         this->resize(n);
         this->copy(in, n);
         }

      /**
      * Copy constructor.
      */
      MemoryVector(const MemoryRegion<T>& in)
         {
         this->init(false);
         this->resize(in.size());
         this->copy(&in[0], in.size());
         }
   };

/**
* This class represents variable length buffers using the operating
* systems capability to lock memory, i.e. keeping it from being
* swapped out to disk. In this way, a security hole allowing attackers
* to find swapped out secret keys is closed.
*/
template<typename T>
class SecureVector : public MemoryRegion<T>
   {
   public:
      /**
      * Copy the contents of another buffer into this buffer.
      * @param other the buffer to copy the contents from
      * @return reference to *this
      */
      SecureVector<T>& operator=(const MemoryRegion<T>& other)
         {
         if(this != &other)
            {
            this->resize(other.size());
            this->copy(&other[0], other.size());
            }
         return (*this);
         }

      /**
      * Create a buffer of the specified length.
      * @param n the length of the buffer to create.
      */
      SecureVector(size_t n = 0) { this->init(true, n); }

      /**
      * Create a buffer with the specified contents.
      * @param in the array containing the data to be initially copied
      * into the newly created buffer
      * @param n the size of the array in
      */
      SecureVector(const T in[], size_t n)
         {
         this->init(true);
         this->resize(n);
         this->copy(&in[0], n);
         }

      /**
      * Create a buffer with contents specified contents.
      * @param in the buffer holding the contents that will be
      * copied into the newly created buffer.
      */
      SecureVector(const MemoryRegion<T>& in)
         {
         this->init(true);
         this->resize(in.size());
         this->copy(&in[0], in.size());
         }
   };

template<typename T>
MemoryRegion<T>& operator+=(MemoryRegion<T>& out,
                            const MemoryRegion<T>& in)
   {
   const size_t copy_offset = out.size();
   out.resize(out.size() + in.size());
   copy_mem(&out[copy_offset], &in[0], in.size());
   return out;
   }

template<typename T>
MemoryRegion<T>& operator+=(MemoryRegion<T>& out,
                            T in)
   {
   out.push_back(in);
   return out;
   }

template<typename T, typename L>
MemoryRegion<T>& operator+=(MemoryRegion<T>& out,
                            const std::pair<const T*, L>& in)
   {
   const size_t copy_offset = out.size();
   out.resize(out.size() + in.second);
   copy_mem(&out[copy_offset], in.first, in.second);
   return out;
   }

template<typename T, typename L>
MemoryRegion<T>& operator+=(MemoryRegion<T>& out,
                            const std::pair<T*, L>& in)
   {
   const size_t copy_offset = out.size();
   out.resize(out.size() + in.second);
   copy_mem(&out[copy_offset], in.first, in.second);
   return out;
   }

/**
* Zeroise the values; length remains unchanged
* @param vec the vector to zeroise
*/
template<typename T>
void zeroise(MemoryRegion<T>& vec)
   {
   clear_mem(&vec[0], vec.size());
   }

}

namespace std {

template<typename T>
inline void swap(Botan::MemoryRegion<T>& x, Botan::MemoryRegion<T>& y)
   {
   x.swap(y);
   }

}


namespace Botan {

/**
* Byte extraction
* @param byte_num which byte to extract, 0 == highest byte
* @param input the value to extract from
* @return byte byte_num of input
*/
template<typename T> inline byte get_byte(size_t byte_num, T input)
   {
   return static_cast<byte>(
      input >> ((sizeof(T)-1-(byte_num&(sizeof(T)-1))) << 3)
      );
   }

}


namespace Botan {

/**
* This class represents any kind of computation which uses an internal
* state, such as hash functions or MACs
*/
class BOTAN_DLL Buffered_Computation
   {
   public:
      /**
      * @return length of the output of this function in bytes
      */
      virtual size_t output_length() const = 0;

      /**
      * Add new input to process.
      * @param in the input to process as a byte array
      * @param length of param in in bytes
      */
      void update(const byte in[], size_t length) { add_data(in, length); }

      /**
      * Add new input to process.
      * @param in the input to process as a MemoryRegion
      */
      void update(const MemoryRegion<byte>& in)
         {
         add_data(&in[0], in.size());
         }

      /**
      * Add an integer in big-endian order
      * @param in the value
      */
      template<typename T> void update_be(const T in)
         {
         for(size_t i = 0; i != sizeof(T); ++i)
            {
            byte b = get_byte(i, in);
            add_data(&b, 1);
            }
         }

      /**
      * Add new input to process.
      * @param str the input to process as a std::string. Will be interpreted
      * as a byte array based on
      * the strings encoding.
      */
      void update(const std::string& str)
         {
         add_data(reinterpret_cast<const byte*>(str.data()), str.size());
         }

      /**
      * Process a single byte.
      * @param in the byte to process
      */
      void update(byte in) { add_data(&in, 1); }

      /**
      * Complete the computation and retrieve the
      * final result.
      * @param out The byte array to be filled with the result.
      * Must be of length output_length()
      */
      void final(byte out[]) { final_result(out); }

      /**
      * Complete the computation and retrieve the
      * final result.
      * @return SecureVector holding the result
      */
      SecureVector<byte> final()
         {
         SecureVector<byte> output(output_length());
         final_result(&output[0]);
         return output;
         }

      /**
      * Update and finalize computation. Does the same as calling update()
      * and final() consecutively.
      * @param in the input to process as a byte array
      * @param length the length of the byte array
      * @result the result of the call to final()
      */
      SecureVector<byte> process(const byte in[], size_t length)
         {
         add_data(in, length);
         return final();
         }

      /**
      * Update and finalize computation. Does the same as calling update()
      * and final() consecutively.
      * @param in the input to process
      * @result the result of the call to final()
      */
      SecureVector<byte> process(const MemoryRegion<byte>& in)
         {
         add_data(&in[0], in.size());
         return final();
         }

      /**
      * Update and finalize computation. Does the same as calling update()
      * and final() consecutively.
      * @param in the input to process as a string
      * @result the result of the call to final()
      */
      SecureVector<byte> process(const std::string& in)
         {
         update(in);
         return final();
         }

      virtual ~Buffered_Computation() {}
   private:
      /**
      * Add more data to the computation
      * @param input is an input buffer
      * @param length is the length of input in bytes
      */
      virtual void add_data(const byte input[], size_t length) = 0;

      /**
      * Write the final output to out
      * @param out is an output buffer of output_length()
      */
      virtual void final_result(byte out[]) = 0;
   };

}


namespace Botan {

/**
* Class used to accumulate the poll results of EntropySources
*/
class BOTAN_DLL Entropy_Accumulator
   {
   public:
      /**
      * Initialize an Entropy_Accumulator
      * @param goal is how many bits we would like to collect
      */
      Entropy_Accumulator(size_t goal) :
         entropy_goal(goal), collected_bits(0) {}

      virtual ~Entropy_Accumulator() {}

      /**
      * Get a cached I/O buffer (purely for minimizing allocation
      * overhead to polls)
      *
      * @param size requested size for the I/O buffer
      * @return cached I/O buffer for repeated polls
      */
      MemoryRegion<byte>& get_io_buffer(size_t size)
         { io_buffer.resize(size); return io_buffer; }

      /**
      * @return number of bits collected so far
      */
      size_t bits_collected() const
         { return static_cast<size_t>(collected_bits); }

      /**
      * @return if our polling goal has been achieved
      */
      bool polling_goal_achieved() const
         { return (collected_bits >= entropy_goal); }

      /**
      * @return how many bits we need to reach our polling goal
      */
      size_t desired_remaining_bits() const
         {
         if(collected_bits >= entropy_goal)
            return 0;
         return static_cast<size_t>(entropy_goal - collected_bits);
         }

      /**
      * Add entropy to the accumulator
      * @param bytes the input bytes
      * @param length specifies how many bytes the input is
      * @param entropy_bits_per_byte is a best guess at how much
      * entropy per byte is in this input
      */
      void add(const void* bytes, size_t length, double entropy_bits_per_byte)
         {
         add_bytes(reinterpret_cast<const byte*>(bytes), length);
         collected_bits += entropy_bits_per_byte * length;
         }

      /**
      * Add entropy to the accumulator
      * @param v is some value
      * @param entropy_bits_per_byte is a best guess at how much
      * entropy per byte is in this input
      */
      template<typename T>
      void add(const T& v, double entropy_bits_per_byte)
         {
         add(&v, sizeof(T), entropy_bits_per_byte);
         }
   private:
      virtual void add_bytes(const byte bytes[], size_t length) = 0;

      SecureVector<byte> io_buffer;
      size_t entropy_goal;
      double collected_bits;
   };

/**
* Entropy accumulator that puts the input into a Buffered_Computation
*/
class BOTAN_DLL Entropy_Accumulator_BufferedComputation :
   public Entropy_Accumulator
   {
   public:
      /**
      * @param sink the hash or MAC we are feeding the poll data into
      * @param goal is how many bits we want to collect in this poll
      */
      Entropy_Accumulator_BufferedComputation(Buffered_Computation& sink,
                                              size_t goal) :
         Entropy_Accumulator(goal), entropy_sink(sink) {}

   private:
      virtual void add_bytes(const byte bytes[], size_t length)
         {
         entropy_sink.update(bytes, length);
         }

      Buffered_Computation& entropy_sink;
   };

/**
* Abstract interface to a source of (hopefully unpredictable) system entropy
*/
class BOTAN_DLL EntropySource
   {
   public:
      /**
      * @return name identifying this entropy source
      */
      virtual std::string name() const = 0;

      /**
      * Perform an entropy gathering poll
      * @param accum is an accumulator object that will be given entropy
      */
      virtual void poll(Entropy_Accumulator& accum) = 0;

      virtual ~EntropySource() {}
   };

}


namespace Botan {

/**
* Parse a SCAN-style algorithm name
* @param scan_name the name
* @return the name components
*/
BOTAN_DLL std::vector<std::string>
parse_algorithm_name(const std::string& scan_name);

/**
* Split a string
* @param str the input string
* @param delim the delimitor
* @return string split by delim
*/
BOTAN_DLL std::vector<std::string> split_on(
   const std::string& str, char delim);

/**
* Parse an ASN.1 OID
* @param oid the OID in string form
* @return OID components
*/
BOTAN_DLL std::vector<u32bit> parse_asn1_oid(const std::string& oid);

/**
* Compare two names using the X.509 comparison algorithm
* @param name1 the first name
* @param name2 the second name
* @return true if name1 is the same as name2 by the X.509 comparison rules
*/
BOTAN_DLL bool x500_name_cmp(const std::string& name1,
                             const std::string& name2);

/**
* Convert a number to a string
* @param n the integer to convert to a string
* @param min_len the min length of the output string
* @return n convert to a string
*/
BOTAN_DLL std::string to_string(u64bit n, size_t min_len = 0);

/**
* Convert a string to a number
* @param str the string to convert
* @return number value of the string
*/
BOTAN_DLL u32bit to_u32bit(const std::string& str);

/**
* Convert a time specification to a number
* @param timespec the time specification
* @return number of seconds represented by timespec
*/
BOTAN_DLL u32bit timespec_to_u32bit(const std::string& timespec);

/**
* Convert a string representation of an IPv4 address to a number
* @param ip_str the string representation
* @return integer IPv4 address
*/
BOTAN_DLL u32bit string_to_ipv4(const std::string& ip_str);

/**
* Convert an IPv4 address to a string
* @param ip_addr the IPv4 address to convert
* @return string representation of the IPv4 address
*/
BOTAN_DLL std::string ipv4_to_string(u32bit ip_addr);

}


namespace Botan {

typedef std::runtime_error Exception;
typedef std::invalid_argument Invalid_Argument;

/**
* Invalid_State Exception
*/
struct BOTAN_DLL Invalid_State : public Exception
   {
   Invalid_State(const std::string& err) :
      Exception(err)
      {}
   };

/**
* Lookup_Error Exception
*/
struct BOTAN_DLL Lookup_Error : public Exception
   {
   Lookup_Error(const std::string& err) :
      Exception(err)
      {}
   };

/**
* Internal_Error Exception
*/
struct BOTAN_DLL Internal_Error : public Exception
   {
   Internal_Error(const std::string& err) :
      Exception("Internal error: " + err)
      {}
   };

/**
* Invalid_Key_Length Exception
*/
struct BOTAN_DLL Invalid_Key_Length : public Invalid_Argument
   {
   Invalid_Key_Length(const std::string& name, size_t length) :
      Invalid_Argument(name + " cannot accept a key of length " +
                       to_string(length))
      {}
   };

/**
* Invalid_Block_Size Exception
*/
struct BOTAN_DLL Invalid_Block_Size : public Invalid_Argument
   {
   Invalid_Block_Size(const std::string& mode,
                      const std::string& pad) :
      Invalid_Argument("Padding method " + pad +
                       " cannot be used with " + mode)
      {}
   };

/**
* Invalid_IV_Length Exception
*/
struct BOTAN_DLL Invalid_IV_Length : public Invalid_Argument
   {
   Invalid_IV_Length(const std::string& mode, size_t bad_len) :
      Invalid_Argument("IV length " + to_string(bad_len) +
                       " is invalid for " + mode)
      {}
   };

/**
* PRNG_Unseeded Exception
*/
struct BOTAN_DLL PRNG_Unseeded : public Invalid_State
   {
   PRNG_Unseeded(const std::string& algo) :
      Invalid_State("PRNG not seeded: " + algo)
      {}
   };

/**
* Policy_Violation Exception
*/
struct BOTAN_DLL Policy_Violation : public Invalid_State
   {
   Policy_Violation(const std::string& err) :
      Invalid_State("Policy violation: " + err)
      {}
   };

/**
* Algorithm_Not_Found Exception
*/
struct BOTAN_DLL Algorithm_Not_Found : public Lookup_Error
   {
   Algorithm_Not_Found(const std::string& name) :
      Lookup_Error("Could not find any algorithm named \"" + name + "\"")
      {}
   };

/**
* Invalid_Algorithm_Name Exception
*/
struct BOTAN_DLL Invalid_Algorithm_Name : public Invalid_Argument
   {
   Invalid_Algorithm_Name(const std::string& name):
      Invalid_Argument("Invalid algorithm name: " + name)
      {}
   };

/**
* Encoding_Error Exception
*/
struct BOTAN_DLL Encoding_Error : public Invalid_Argument
   {
   Encoding_Error(const std::string& name) :
      Invalid_Argument("Encoding error: " + name) {}
   };

/**
* Decoding_Error Exception
*/
struct BOTAN_DLL Decoding_Error : public Invalid_Argument
   {
   Decoding_Error(const std::string& name) :
      Invalid_Argument("Decoding error: " + name) {}
   };

/**
* Integrity_Failure Exception
*/
struct BOTAN_DLL Integrity_Failure : public Exception
   {
   Integrity_Failure(const std::string& msg) :
      Exception("Integrity failure: " + msg) {}
   };

/**
* Invalid_OID Exception
*/
struct BOTAN_DLL Invalid_OID : public Decoding_Error
   {
   Invalid_OID(const std::string& oid) :
      Decoding_Error("Invalid ASN.1 OID: " + oid) {}
   };

/**
* Stream_IO_Error Exception
*/
struct BOTAN_DLL Stream_IO_Error : public Exception
   {
   Stream_IO_Error(const std::string& err) :
      Exception("I/O error: " + err)
      {}
   };

/**
* Self Test Failure Exception
*/
struct BOTAN_DLL Self_Test_Failure : public Internal_Error
   {
   Self_Test_Failure(const std::string& err) :
      Internal_Error("Self test failed: " + err)
      {}
   };

/**
* Memory Allocation Exception
*/
struct BOTAN_DLL Memory_Exhaustion : public std::bad_alloc
   {
   const char* what() const throw()
      { return "Ran out of memory, allocation failed"; }
   };

}


namespace Botan {

/**
* This class represents a random number (RNG) generator object.
*/
class BOTAN_DLL RandomNumberGenerator
   {
   public:
      /**
      * Create a seeded and active RNG object for general application use
      */
      static RandomNumberGenerator* make_rng();

      /**
      * Randomize a byte array.
      * @param output the byte array to hold the random output.
      * @param length the length of the byte array output.
      */
      virtual void randomize(byte output[], size_t length) = 0;

      /**
      * Return a random vector
      * @param bytes number of bytes in the result
      * @return randomized vector of length bytes
      */
      SecureVector<byte> random_vec(size_t bytes)
         {
         SecureVector<byte> output(bytes);
         randomize(&output[0], output.size());
         return output;
         }

      /**
      * Return a random byte
      * @return random byte
      */
      byte next_byte();

      /**
      * Check whether this RNG is seeded.
      * @return true if this RNG was already seeded, false otherwise.
      */
      virtual bool is_seeded() const { return true; }

      /**
      * Clear all internally held values of this RNG.
      */
      virtual void clear() = 0;

      /**
      * Return the name of this object
      */
      virtual std::string name() const = 0;

      /**
      * Seed this RNG using the entropy sources it contains.
      * @param bits_to_collect is the number of bits of entropy to
               attempt to gather from the entropy sources
      */
      virtual void reseed(size_t bits_to_collect) = 0;

      /**
      * Add this entropy source to the RNG object
      * @param source the entropy source which will be retained and used by RNG
      */
      virtual void add_entropy_source(EntropySource* source) = 0;

      /**
      * Add entropy to this RNG.
      * @param in a byte array containg the entropy to be added
      * @param length the length of the byte array in
      */
      virtual void add_entropy(const byte in[], size_t length) = 0;

      RandomNumberGenerator() {}
      virtual ~RandomNumberGenerator() {}
   private:
      RandomNumberGenerator(const RandomNumberGenerator&) {}
      RandomNumberGenerator& operator=(const RandomNumberGenerator&)
         { return (*this); }
   };

/**
* Null/stub RNG - fails if you try to use it for anything
*/
class BOTAN_DLL Null_RNG : public RandomNumberGenerator
   {
   public:
      void randomize(byte[], size_t) { throw PRNG_Unseeded("Null_RNG"); }
      void clear() {}
      std::string name() const { return "Null_RNG"; }

      void reseed(size_t) {}
      bool is_seeded() const { return false; }
      void add_entropy(const byte[], size_t) {}
      void add_entropy_source(EntropySource* es) { delete es; }
   };

}


namespace Botan {

/**
* Encoding Method for Signatures, Appendix
*/
class BOTAN_DLL EMSA
   {
   public:
      /**
      * Add more data to the signature computation
      * @param input some data
      * @param length length of input in bytes
      */
      virtual void update(const byte input[], size_t length) = 0;

      /**
      * @return raw hash
      */
      virtual SecureVector<byte> raw_data() = 0;

      /**
      * Return the encoding of a message
      * @param msg the result of raw_data()
      * @param output_bits the desired output bit size
      * @param rng a random number generator
      * @return encoded signature
      */
      virtual SecureVector<byte> encoding_of(const MemoryRegion<byte>& msg,
                                             size_t output_bits,
                                             RandomNumberGenerator& rng) = 0;

      /**
      * Verify the encoding
      * @param coded the received (coded) message representative
      * @param raw the computed (local, uncoded) message representative
      * @param key_bits the size of the key in bits
      * @return true if coded is a valid encoding of raw, otherwise false
      */
      virtual bool verify(const MemoryRegion<byte>& coded,
                          const MemoryRegion<byte>& raw,
                          size_t key_bits) = 0;
      virtual ~EMSA() {}
   };

}


namespace Botan {

/**
* This class represents an algorithm of some kind
*/
class BOTAN_DLL Algorithm
   {
   public:

      /**
      * Zeroize internal state
      */
      virtual void clear() = 0;

      /**
      * @return name of this algorithm
      */
      virtual std::string name() const = 0;

      Algorithm() {}
      virtual ~Algorithm() {}
   private:
      Algorithm(const Algorithm&) {}
      Algorithm& operator=(const Algorithm&) { return (*this); }
   };

}


namespace Botan {

/**
* This class represents hash function (message digest) objects
*/
class BOTAN_DLL HashFunction : public Buffered_Computation,
                               public Algorithm
   {
   public:
      /**
      * Get a new object representing the same algorithm as *this
      */
      virtual HashFunction* clone() const = 0;

      /**
      * The hash block size as defined for this algorithm
      */
      virtual size_t hash_block_size() const { return 0; }
   };

}


namespace Botan {

/**
* EMSA1 from IEEE 1363
* Essentially, sign the hash directly
*/
class BOTAN_DLL EMSA1 : public EMSA
   {
   public:
      /**
      * @param h the hash object to use
      */
      EMSA1(HashFunction* h) : hash(h) {}
      ~EMSA1() { delete hash; }
   protected:
      /**
      * @return const pointer to the underlying hash
      */
      const HashFunction* hash_ptr() const { return hash; }
   private:
      void update(const byte[], size_t);
      SecureVector<byte> raw_data();

      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator& rng);

      bool verify(const MemoryRegion<byte>&, const MemoryRegion<byte>&,
                  size_t);

      HashFunction* hash;
   };

}


namespace Botan {

/**
* Keccak[1600], a SHA-3 candidate
*/
class BOTAN_DLL Keccak_1600 : public HashFunction
   {
   public:

      /**
      * @param output_bits the size of the hash output; must be one of
      *                    224, 256, 384, or 512
      */
      Keccak_1600(size_t output_bits = 512);

      size_t hash_block_size() const { return bitrate / 8; }
      size_t output_length() const { return output_bits / 8; }

      HashFunction* clone() const;
      std::string name() const;
      void clear();
   private:
      void add_data(const byte input[], size_t length);
      void final_result(byte out[]);

      size_t output_bits, bitrate;
      SecureVector<u64bit> S;
      size_t S_pos;
   };

}


namespace Botan {

/**
A class encapsulating a SCAN name (similar to JCE conventions)
http://www.users.zetnet.co.uk/hopwood/crypto/scan/
*/
class BOTAN_DLL SCAN_Name
   {
   public:
      /**
      * @param algo_spec A SCAN-format name
      */
      SCAN_Name(std::string algo_spec);

      /**
      * @return original input string
      */
      std::string as_string() const { return orig_algo_spec; }

      /**
      * @return algorithm name
      */
      std::string algo_name() const { return alg_name; }

      /**
      * @return algorithm name plus any arguments
      */
      std::string algo_name_and_args() const;

      /**
      * @return number of arguments
      */
      size_t arg_count() const { return args.size(); }

      /**
      * @param lower is the lower bound
      * @param upper is the upper bound
      * @return if the number of arguments is between lower and upper
      */
      bool arg_count_between(size_t lower, size_t upper) const
         { return ((arg_count() >= lower) && (arg_count() <= upper)); }

      /**
      * @param i which argument
      * @return ith argument
      */
      std::string arg(size_t i) const;

      /**
      * @param i which argument
      * @param def_value the default value
      * @return ith argument or the default value
      */
      std::string arg(size_t i, const std::string& def_value) const;

      /**
      * @param i which argument
      * @param def_value the default value
      * @return ith argument as an integer, or the default value
      */
      size_t arg_as_integer(size_t i, size_t def_value) const;

      /**
      * @return cipher mode (if any)
      */
      std::string cipher_mode() const
         { return (mode_info.size() >= 1) ? mode_info[0] : ""; }

      /**
      * @return cipher mode padding (if any)
      */
      std::string cipher_mode_pad() const
         { return (mode_info.size() >= 2) ? mode_info[1] : ""; }

   private:
      std::string orig_algo_spec;
      std::string alg_name;
      std::vector<std::string> args;
      std::vector<std::string> mode_info;
   };

}


namespace Botan {

/**
* Represents the length requirements on an algorithm key
*/
class BOTAN_DLL Key_Length_Specification
   {
   public:
      /**
      * Constructor for fixed length keys
      * @param keylen the supported key length
      */
      Key_Length_Specification(size_t keylen) :
         min_keylen(keylen),
         max_keylen(keylen),
         keylen_mod(1)
         {
         }

      /**
      * Constructor for variable length keys
      * @param min_k the smallest supported key length
      * @param max_k the largest supported key length
      * @param k_mod the number of bytes the key must be a multiple of
      */
      Key_Length_Specification(size_t min_k,
                               size_t max_k,
                               size_t k_mod = 1) :
         min_keylen(min_k),
         max_keylen(max_k ? max_k : min_k),
         keylen_mod(k_mod)
         {
         }

      /**
      * @param length is a key length in bytes
      * @return true iff this length is a valid length for this algo
      */
      bool valid_keylength(size_t length) const
         {
         return ((length >= min_keylen) &&
                 (length <= max_keylen) &&
                 (length % keylen_mod == 0));
         }

      /**
      * @return minimum key length in bytes
      */
      size_t minimum_keylength() const
         {
         return min_keylen;
         }

      /**
      * @return maximum key length in bytes
      */
      size_t maximum_keylength() const
         {
         return max_keylen;
         }

      /**
      * @return key length multiple in bytes
      */
      size_t keylength_multiple() const
         {
         return keylen_mod;
         }

   private:
      size_t min_keylen, max_keylen, keylen_mod;
   };

}


namespace Botan {

/**
* Octet String
*/
class BOTAN_DLL OctetString
   {
   public:
      /**
      * @return size of this octet string in bytes
      */
      size_t length() const { return bits.size(); }

      /**
      * @return this object as a SecureVector<byte>
      */
      SecureVector<byte> bits_of() const { return bits; }

      /**
      * @return start of this string
      */
      const byte* begin() const { return &bits[0]; }

      /**
      * @return end of this string
      */
      const byte* end() const   { return &bits[bits.size()]; }

      /**
      * @return this encoded as hex
      */
      std::string as_string() const;

      /**
      * XOR the contents of another octet string into this one
      * @param other octet string
      * @return reference to this
      */
      OctetString& operator^=(const OctetString& other);

      /**
      * Force to have odd parity
      */
      void set_odd_parity();

      /**
      * Change the contents of this octet string
      * @param hex_string a hex encoded bytestring
      */
      void change(const std::string& hex_string);

      /**
      * Change the contents of this octet string
      * @param in the input
      * @param length of in in bytes
      */
      void change(const byte in[], size_t length);

      /**
      * Change the contents of this octet string
      * @param in the input
      */
      void change(const MemoryRegion<byte>& in) { bits = in; }

      /**
      * Create a new random OctetString
      * @param rng is a random number generator
      * @param len is the desired length in bytes
      */
      OctetString(class RandomNumberGenerator& rng, size_t len);

      /**
      * Create a new OctetString
      * @param str is a hex encoded string
      */
      OctetString(const std::string& str = "") { change(str); }

      /**
      * Create a new OctetString
      * @param in is an array
      * @param len is the length of in in bytes
      */
      OctetString(const byte in[], size_t len) { change(in, len); }

      /**
      * Create a new OctetString
      * @param in a bytestring
      */
      OctetString(const MemoryRegion<byte>& in) { change(in); }
   private:
      SecureVector<byte> bits;
   };

/**
* Compare two strings
* @param x an octet string
* @param y an octet string
* @return if x is equal to y
*/
BOTAN_DLL bool operator==(const OctetString& x,
                          const OctetString& y);

/**
* Compare two strings
* @param x an octet string
* @param y an octet string
* @return if x is not equal to y
*/
BOTAN_DLL bool operator!=(const OctetString& x,
                          const OctetString& y);

/**
* Concatenate two strings
* @param x an octet string
* @param y an octet string
* @return x concatenated with y
*/
BOTAN_DLL OctetString operator+(const OctetString& x,
                                const OctetString& y);

/**
* XOR two strings
* @param x an octet string
* @param y an octet string
* @return x XORed with y
*/
BOTAN_DLL OctetString operator^(const OctetString& x,
                                const OctetString& y);


/**
* Alternate name for octet string showing intent to use as a key
*/
typedef OctetString SymmetricKey;

/**
* Alternate name for octet string showing intent to use as an IV
*/
typedef OctetString InitializationVector;

}


namespace Botan {

/**
* This class represents a symmetric algorithm object.
*/
class BOTAN_DLL SymmetricAlgorithm : public Algorithm
   {
   public:
      /**
      * @return object describing limits on key size
      */
      virtual Key_Length_Specification key_spec() const = 0;

      /**
      * @return minimum allowed key length
      */
      size_t maximum_keylength() const
         {
         return key_spec().maximum_keylength();
         }

      /**
      * @return maxmium allowed key length
      */
      size_t minimum_keylength() const
         {
         return key_spec().minimum_keylength();
         }

      /**
      * Check whether a given key length is valid for this algorithm.
      * @param length the key length to be checked.
      * @return true if the key length is valid.
      */
      bool valid_keylength(size_t length) const
         {
         return key_spec().valid_keylength(length);
         }

      /**
      * Set the symmetric key of this object.
      * @param key the SymmetricKey to be set.
      */
      void set_key(const SymmetricKey& key)
         { set_key(key.begin(), key.length()); }

      /**
      * Set the symmetric key of this object.
      * @param key the to be set as a byte array.
      * @param length in bytes of key param
      */
      void set_key(const byte key[], size_t length)
         {
         if(!valid_keylength(length))
            throw Invalid_Key_Length(name(), length);
         key_schedule(key, length);
         }
   private:
      /**
      * Run the key schedule
      * @param key the key
      * @param length of key
      */
      virtual void key_schedule(const byte key[], size_t length) = 0;
   };

/**
* The two possible directions for cipher filters, determining whether they
* actually perform encryption or decryption.
*/
enum Cipher_Dir { ENCRYPTION, DECRYPTION };

}


namespace Botan {

/**
* This class represents a block cipher object.
*/
class BOTAN_DLL BlockCipher : public SymmetricAlgorithm
   {
   public:

      /**
      * @return block size of this algorithm
      */
      virtual size_t block_size() const = 0;

      /**
      * @return native parallelism of this cipher in blocks
      */
      virtual size_t parallelism() const { return 1; }

      /**
      * @return prefererred parallelism of this cipher in bytes
      */
      size_t parallel_bytes() const
         {
         return parallelism() * block_size() * BOTAN_BLOCK_CIPHER_PAR_MULT;
         }

      /**
      * Encrypt a block.
      * @param in The plaintext block to be encrypted as a byte array.
      * Must be of length block_size().
      * @param out The byte array designated to hold the encrypted block.
      * Must be of length block_size().
      */
      void encrypt(const byte in[], byte out[]) const
         { encrypt_n(in, out, 1); }

      /**
      * Decrypt a block.
      * @param in The ciphertext block to be decypted as a byte array.
      * Must be of length block_size().
      * @param out The byte array designated to hold the decrypted block.
      * Must be of length block_size().
      */
      void decrypt(const byte in[], byte out[]) const
         { decrypt_n(in, out, 1); }

      /**
      * Encrypt a block.
      * @param block the plaintext block to be encrypted
      * Must be of length block_size(). Will hold the result when the function
      * has finished.
      */
      void encrypt(byte block[]) const { encrypt_n(block, block, 1); }

      /**
      * Decrypt a block.
      * @param block the ciphertext block to be decrypted
      * Must be of length block_size(). Will hold the result when the function
      * has finished.
      */
      void decrypt(byte block[]) const { decrypt_n(block, block, 1); }

      /**
      * Encrypt one or more blocks
      * @param in the input buffer (multiple of block_size())
      * @param out the output buffer (same size as in)
      * @param blocks the number of blocks to process
      */
      virtual void encrypt_n(const byte in[], byte out[],
                             size_t blocks) const = 0;

      /**
      * Decrypt one or more blocks
      * @param in the input buffer (multiple of block_size())
      * @param out the output buffer (same size as in)
      * @param blocks the number of blocks to process
      */
      virtual void decrypt_n(const byte in[], byte out[],
                             size_t blocks) const = 0;

      /**
      * Get a new object representing the same algorithm as *this
      */
      virtual BlockCipher* clone() const = 0;
   };

/**
* Represents a block cipher with a single fixed block size
*/
template<size_t BS, size_t KMIN, size_t KMAX = 0, size_t KMOD = 1>
class Block_Cipher_Fixed_Params : public BlockCipher
   {
   public:
      enum { BLOCK_SIZE = BS };
      size_t block_size() const { return BS; }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(KMIN, KMAX, KMOD);
         }
   };

}


namespace Botan {

/**
* Base class for all stream ciphers
*/
class BOTAN_DLL StreamCipher : public SymmetricAlgorithm
   {
   public:
      /**
      * Encrypt or decrypt a message
      * @param in the plaintext
      * @param out the byte array to hold the output, i.e. the ciphertext
      * @param len the length of both in and out in bytes
      */
      virtual void cipher(const byte in[], byte out[], size_t len) = 0;

      /**
      * Encrypt or decrypt a message
      * @param buf the plaintext / ciphertext
      * @param len the length of buf in bytes
      */
      void cipher1(byte buf[], size_t len)
         { cipher(buf, buf, len); }

      /**
      * Resync the cipher using the IV
      * @param iv the initialization vector
      * @param iv_len the length of the IV in bytes
      */
      virtual void set_iv(const byte iv[], size_t iv_len);

      /**
      * @param iv_len the length of the IV in bytes
      * @return if the length is valid for this algorithm
      */
      virtual bool valid_iv_length(size_t iv_len) const;

      /**
      * Get a new object representing the same algorithm as *this
      */
      virtual StreamCipher* clone() const = 0;
   };

}


namespace Botan {

/**
* This class represents Message Authentication Code (MAC) objects.
*/
class BOTAN_DLL MessageAuthenticationCode : public Buffered_Computation,
                                            public SymmetricAlgorithm
   {
   public:
      /**
      * Verify a MAC.
      * @param in the MAC to verify as a byte array
      * @param length the length of param in
      * @return true if the MAC is valid, false otherwise
      */
      virtual bool verify_mac(const byte in[], size_t length);

      /**
      * Get a new object representing the same algorithm as *this
      */
      virtual MessageAuthenticationCode* clone() const = 0;

      /**
      * Get the name of this algorithm.
      * @return name of this algorithm
      */
      virtual std::string name() const = 0;
   };

}


namespace Botan {

/**
* Base class for PBKDF (password based key derivation function)
* implementations. Converts a password into a key using a salt
* and iterated hashing to make brute force attacks harder.
*/
class BOTAN_DLL PBKDF : public Algorithm
   {
   public:

      /**
      * @return new instance of this same algorithm
      */
      virtual PBKDF* clone() const = 0;

      void clear() {}

      /**
      * Derive a key from a passphrase
      * @param output_len the desired length of the key to produce
      * @param passphrase the password to derive the key from
      * @param salt a randomly chosen salt
      * @param salt_len length of salt in bytes
      * @param iterations the number of iterations to use (use 10K or more)
      */
      virtual OctetString derive_key(size_t output_len,
                                     const std::string& passphrase,
                                     const byte salt[], size_t salt_len,
                                     size_t iterations) const = 0;
   };

/**
* For compatability with 1.8
*/
typedef PBKDF S2K;

}


namespace Botan {

#if (BOTAN_MP_WORD_BITS == 8)
  typedef byte word;
#elif (BOTAN_MP_WORD_BITS == 16)
  typedef u16bit word;
#elif (BOTAN_MP_WORD_BITS == 32)
  typedef u32bit word;
#elif (BOTAN_MP_WORD_BITS == 64)
  typedef u64bit word;
#else
  #error BOTAN_MP_WORD_BITS must be 8, 16, 32, or 64
#endif

const word MP_WORD_MASK = ~static_cast<word>(0);
const word MP_WORD_TOP_BIT = static_cast<word>(1) << (8*sizeof(word) - 1);
const word MP_WORD_MAX = MP_WORD_MASK;

}


namespace Botan {

/**
* Arbitrary precision integer
*/
class BOTAN_DLL BigInt
   {
   public:
     /**
     * Base enumerator for encoding and decoding
     */
     enum Base { Octal = 8, Decimal = 10, Hexadecimal = 16, Binary = 256 };

     /**
     * Sign symbol definitions for positive and negative numbers
     */
     enum Sign { Negative = 0, Positive = 1 };

     /**
     * Number types (currently only power-of-2 supported)
     */
     enum NumberType { Power2 };

     /**
     * DivideByZero Exception
     */
     struct BOTAN_DLL DivideByZero : public Exception
        { DivideByZero() : Exception("BigInt divide by zero") {} };

     /**
     * += operator
     * @param y the BigInt to add to this
     */
     BigInt& operator+=(const BigInt& y);

     /**
     * -= operator
     * @param y the BigInt to subtract from this
     */
     BigInt& operator-=(const BigInt& y);

     /**
     * *= operator
     * @param y the BigInt to multiply with this
     */
     BigInt& operator*=(const BigInt& y);

     /**
     * /= operator
     * @param y the BigInt to divide this by
     */
     BigInt& operator/=(const BigInt& y);

     /**
     * Modulo operator
     * @param y the modulus to reduce this by
     */
     BigInt& operator%=(const BigInt& y);

     /**
     * Modulo operator
     * @param y the modulus (word) to reduce this by
     */
     word    operator%=(word y);

     /**
     * Left shift operator
     * @param shift the number of bits to shift this left by
     */
     BigInt& operator<<=(size_t shift);

     /**
     * Right shift operator
     * @param shift the number of bits to shift this right by
     */
     BigInt& operator>>=(size_t shift);

     /**
     * Increment operator
     */
     BigInt& operator++() { return (*this += 1); }

     /**
     * Decrement operator
     */
     BigInt& operator--() { return (*this -= 1); }

     /**
     * Postfix increment operator
     */
     BigInt  operator++(int) { BigInt x = (*this); ++(*this); return x; }

     /**
     * Postfix decrement operator
     */
     BigInt  operator--(int) { BigInt x = (*this); --(*this); return x; }

     /**
     * Unary negation operator
     * @return negative this
     */
     BigInt operator-() const;

     /**
     * ! operator
     * @return true iff this is zero, otherwise false
     */
     bool operator !() const { return (!is_nonzero()); }

     /**
     * [] operator (array access)
     * @param i a word index
     * @return the word at index i
     */
     word& operator[](size_t i) { return reg[i]; }

     /**
     * [] operator (array access)
     * @param i a word index
     * @return the word at index i
     */
     const word& operator[](size_t i) const { return reg[i]; }

     /**
     * Zeroize the BigInt
     */
     void clear() { zeroise(reg); }

     /**
     * Compare this to another BigInt
     * @param n the BigInt value to compare with
     * @param check_signs include sign in comparison?
     * @result if (this<n) return -1, if (this>n) return 1, if both
     * values are identical return 0 [like Perl's <=> operator]
     */
     s32bit cmp(const BigInt& n, bool check_signs = true) const;

     /**
     * Test if the integer has an even value
     * @result true if the integer is even, false otherwise
     */
     bool is_even() const { return (get_bit(0) == 0); }

     /**
     * Test if the integer has an odd value
     * @result true if the integer is odd, false otherwise
     */
     bool is_odd()  const { return (get_bit(0) == 1); }

     /**
     * Test if the integer is not zero
     * @result true if the integer is non-zero, false otherwise
     */
     bool is_nonzero() const { return (!is_zero()); }

     /**
     * Test if the integer is zero
     * @result true if the integer is zero, false otherwise
     */
     bool is_zero() const
        {
        const size_t sw = sig_words();

        for(size_t i = 0; i != sw; ++i)
           if(reg[i])
              return false;
        return true;
        }

     /**
     * Set bit at specified position
     * @param n bit position to set
     */
     void set_bit(size_t n);

     /**
     * Clear bit at specified position
     * @param n bit position to clear
     */
     void clear_bit(size_t n);

     /**
     * Clear all but the lowest n bits
     * @param n amount of bits to keep
     */
     void mask_bits(size_t n);

     /**
     * Return bit value at specified position
     * @param n the bit offset to test
     * @result true, if the bit at position n is set, false otherwise
     */
     bool get_bit(size_t n) const;

     /**
     * Return (a maximum of) 32 bits of the complete value
     * @param offset the offset to start extracting
     * @param length amount of bits to extract (starting at offset)
     * @result the integer extracted from the register starting at
     * offset with specified length
     */
     u32bit get_substring(size_t offset, size_t length) const;

     /**
     * Convert this value into a u32bit, if it is in the range
     * [0 ... 2**32-1], or otherwise throw an exception.
     * @result the value as a u32bit if conversion is possible
     */
     u32bit to_u32bit() const;

     /**
     * @param n the offset to get a byte from
     * @result byte at offset n
     */
     byte byte_at(size_t n) const;

     /**
     * Return the word at a specified position of the internal register
     * @param n position in the register
     * @return value at position n
     */
     word word_at(size_t n) const
        { return ((n < size()) ? reg[n] : 0); }

     /**
     * Tests if the sign of the integer is negative
     * @result true, iff the integer has a negative sign
     */
     bool is_negative() const { return (sign() == Negative); }

     /**
     * Tests if the sign of the integer is positive
     * @result true, iff the integer has a positive sign
     */
     bool is_positive() const { return (sign() == Positive); }

     /**
     * Return the sign of the integer
     * @result the sign of the integer
     */
     Sign sign() const { return (signedness); }

     /**
     * @result the opposite sign of the represented integer value
     */
     Sign reverse_sign() const;

     /**
     * Flip the sign of this BigInt
     */
     void flip_sign();

     /**
     * Set sign of the integer
     * @param sign new Sign to set
     */
     void set_sign(Sign sign);

     /**
     * @result absolute (positive) value of this
     */
     BigInt abs() const;

     /**
     * Give size of internal register
     * @result size of internal register in words
     */
     size_t size() const { return get_reg().size(); }

     /**
     * Return how many words we need to hold this value
     * @result significant words of the represented integer value
     */
     size_t sig_words() const
        {
        const word* x = &reg[0];
        size_t sig = reg.size();

        while(sig && (x[sig-1] == 0))
           sig--;
        return sig;
        }

     /**
     * Give byte length of the integer
     * @result byte length of the represented integer value
     */
     size_t bytes() const;

     /**
     * Get the bit length of the integer
     * @result bit length of the represented integer value
     */
     size_t bits() const;

     /**
     * Return a pointer to the big integer word register
     * @result a pointer to the start of the internal register of
     * the integer value
     */
     const word* data() const { return &reg[0]; }

     /**
     * return a reference to the internal register containing the value
     * @result a reference to the word-array (SecureVector<word>)
     * with the internal register value (containing the integer
     * value)
     */
     SecureVector<word>& get_reg() { return reg; }

     /**
     * return a const reference to the internal register containing the value
     * @result a const reference to the word-array (SecureVector<word>)
     * with the internal register value (containing the integer value)
     */
     const SecureVector<word>& get_reg() const { return reg; }

     /**
     * Assign using a plain word array
     */
     void assign(const word x[], size_t length)
        {
        reg.resize(length);
        copy_mem(&reg[0], x, length);
        }

     /**
     * Increase internal register buffer by n words
     * @param n increase by n words
     */
     void grow_reg(size_t n);

     void grow_to(size_t n);

     /**
     * Fill BigInt with a random number with size of bitsize
     * @param rng the random number generator to use
     * @param bitsize number of bits the created random value should have
     */
     void randomize(RandomNumberGenerator& rng, size_t bitsize = 0);

     /**
     * Store BigInt-value in a given byte array
     * @param buf destination byte array for the integer value
     */
     void binary_encode(byte buf[]) const;

     /**
     * Read integer value from a byte array with given size
     * @param buf byte array buffer containing the integer
     * @param length size of buf
     */
     void binary_decode(const byte buf[], size_t length);

     /**
     * Read integer value from a byte array (MemoryRegion<byte>)
     * @param buf the array to load from
     */
     void binary_decode(const MemoryRegion<byte>& buf);

     /**
     * @param base the base to measure the size for
     * @return size of this integer in base base
     */
     size_t encoded_size(Base base = Binary) const;

     /**
     * @param rng a random number generator
     * @param min the minimum value
     * @param max the maximum value
     * @return random integer between min and max
     */
     static BigInt random_integer(RandomNumberGenerator& rng,
                                  const BigInt& min,
                                  const BigInt& max);

     /**
     * Encode the integer value from a BigInt to a SecureVector of bytes
     * @param n the BigInt to use as integer source
     * @param base number-base of resulting byte array representation
     * @result SecureVector of bytes containing the integer with given base
     */
     static SecureVector<byte> encode(const BigInt& n, Base base = Binary);

     /**
     * Encode the integer value from a BigInt to a byte array
     * @param buf destination byte array for the encoded integer
     * value with given base
     * @param n the BigInt to use as integer source
     * @param base number-base of resulting byte array representation
     */
     static void encode(byte buf[], const BigInt& n, Base base = Binary);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the binary value to load
     * @param length size of buf
     * @param base number-base of the integer in buf
     * @result BigInt representing the integer in the byte array
     */
     static BigInt decode(const byte buf[], size_t length,
                          Base base = Binary);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the binary value to load
     * @param base number-base of the integer in buf
     * @result BigInt representing the integer in the byte array
     */
     static BigInt decode(const MemoryRegion<byte>& buf,
                          Base base = Binary);

     /**
     * Encode a BigInt to a byte array according to IEEE 1363
     * @param n the BigInt to encode
     * @param bytes the length of the resulting SecureVector<byte>
     * @result a SecureVector<byte> containing the encoded BigInt
     */
     static SecureVector<byte> encode_1363(const BigInt& n, size_t bytes);

     /**
     * Swap this value with another
     * @param other BigInt to swap values with
     */
     void swap(BigInt& other);

     /**
     * Create empty BigInt
     */
     BigInt() { signedness = Positive; }

     /**
     * Create BigInt from 64 bit integer
     * @param n initial value of this BigInt
     */
     BigInt(u64bit n);

     /**
     * Copy Constructor
     * @param other the BigInt to copy
     */
     BigInt(const BigInt& other);

     /**
     * Create BigInt from a string. If the string starts with 0x the
     * rest of the string will be interpreted as hexadecimal digits.
     * If the string starts with 0 and the second character is NOT an
     * 'x' the string will be interpreted as octal digits. If the
     * string starts with non-zero digit, it will be interpreted as a
     * decimal number.
     *
     * @param str the string to parse for an integer value
     */
     BigInt(const std::string& str);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the byte array holding the value
     * @param length size of buf
     * @param base is the number base of the integer in buf
     */
     BigInt(const byte buf[], size_t length, Base base = Binary);

     /**
     * Create a random BigInt of the specified size
     * @param rng random number generator
     * @param bits size in bits
     */
     BigInt(RandomNumberGenerator& rng, size_t bits);

     /**
     * Create BigInt of specified size, all zeros
     * @param sign the sign
     * @param n size of the internal register in words
     */
     BigInt(Sign sign, size_t n);

     /**
     * Create a number of the specified type and size
     * @param type the type of number to create. For Power2,
     * will create the integer 2^n
     * @param n a size/length parameter, interpretation depends upon
     * the value of type
     */
     BigInt(NumberType type, size_t n);

   private:
      SecureVector<word> reg;
      Sign signedness;
   };

/*
* Arithmetic Operators
*/
BigInt BOTAN_DLL operator+(const BigInt& x, const BigInt& y);
BigInt BOTAN_DLL operator-(const BigInt& x, const BigInt& y);
BigInt BOTAN_DLL operator*(const BigInt& x, const BigInt& y);
BigInt BOTAN_DLL operator/(const BigInt& x, const BigInt& d);
BigInt BOTAN_DLL operator%(const BigInt& x, const BigInt& m);
word   BOTAN_DLL operator%(const BigInt& x, word m);
BigInt BOTAN_DLL operator<<(const BigInt& x, size_t n);
BigInt BOTAN_DLL operator>>(const BigInt& x, size_t n);

/*
* Comparison Operators
*/
inline bool operator==(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) == 0); }
inline bool operator!=(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) != 0); }
inline bool operator<=(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) <= 0); }
inline bool operator>=(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) >= 0); }
inline bool operator<(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) < 0); }
inline bool operator>(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) > 0); }

/*
* I/O Operators
*/
BOTAN_DLL std::ostream& operator<<(std::ostream&, const BigInt&);
BOTAN_DLL std::istream& operator>>(std::istream&, BigInt&);

}

namespace std {

template<>
inline void swap(Botan::BigInt& x, Botan::BigInt& y)
   {
   x.swap(y);
   }

}


namespace Botan {

/**
* Modular Exponentiator Interface
*/
class BOTAN_DLL Modular_Exponentiator
   {
   public:
      virtual void set_base(const BigInt&) = 0;
      virtual void set_exponent(const BigInt&) = 0;
      virtual BigInt execute() const = 0;
      virtual Modular_Exponentiator* copy() const = 0;
      virtual ~Modular_Exponentiator() {}
   };

/**
* Modular Exponentiator Proxy
*/
class BOTAN_DLL Power_Mod
   {
   public:

      enum Usage_Hints {
         NO_HINTS        = 0x0000,

         BASE_IS_FIXED   = 0x0001,
         BASE_IS_SMALL   = 0x0002,
         BASE_IS_LARGE   = 0x0004,
         BASE_IS_2       = 0x0008,

         EXP_IS_FIXED    = 0x0100,
         EXP_IS_SMALL    = 0x0200,
         EXP_IS_LARGE    = 0x0400
      };

      /*
      * Try to choose a good window size
      */
      static size_t window_bits(size_t exp_bits, size_t base_bits,
                                Power_Mod::Usage_Hints hints);

      void set_modulus(const BigInt&, Usage_Hints = NO_HINTS) const;
      void set_base(const BigInt&) const;
      void set_exponent(const BigInt&) const;

      BigInt execute() const;

      Power_Mod& operator=(const Power_Mod&);

      Power_Mod(const BigInt& = 0, Usage_Hints = NO_HINTS);
      Power_Mod(const Power_Mod&);
      virtual ~Power_Mod();
   private:
      mutable Modular_Exponentiator* core;
      Usage_Hints hints;
   };

/**
* Fixed Exponent Modular Exponentiator Proxy
*/
class BOTAN_DLL Fixed_Exponent_Power_Mod : public Power_Mod
   {
   public:
      BigInt operator()(const BigInt& b) const
         { set_base(b); return execute(); }

      Fixed_Exponent_Power_Mod() {}
      Fixed_Exponent_Power_Mod(const BigInt&, const BigInt&,
                               Usage_Hints = NO_HINTS);
   };

/**
* Fixed Base Modular Exponentiator Proxy
*/
class BOTAN_DLL Fixed_Base_Power_Mod : public Power_Mod
   {
   public:
      BigInt operator()(const BigInt& e) const
         { set_exponent(e); return execute(); }

      Fixed_Base_Power_Mod() {}
      Fixed_Base_Power_Mod(const BigInt&, const BigInt&,
                           Usage_Hints = NO_HINTS);
   };

}


namespace Botan {

/**
* ASN.1 Type and Class Tags
*/
enum ASN1_Tag {
   UNIVERSAL        = 0x00,
   APPLICATION      = 0x40,
   CONTEXT_SPECIFIC = 0x80,
   PRIVATE          = 0xC0,

   CONSTRUCTED      = 0x20,

   EOC              = 0x00,
   BOOLEAN          = 0x01,
   INTEGER          = 0x02,
   BIT_STRING       = 0x03,
   OCTET_STRING     = 0x04,
   NULL_TAG         = 0x05,
   OBJECT_ID        = 0x06,
   ENUMERATED       = 0x0A,
   SEQUENCE         = 0x10,
   SET              = 0x11,

   UTF8_STRING      = 0x0C,
   NUMERIC_STRING   = 0x12,
   PRINTABLE_STRING = 0x13,
   T61_STRING       = 0x14,
   IA5_STRING       = 0x16,
   VISIBLE_STRING   = 0x1A,
   BMP_STRING       = 0x1E,

   UTC_TIME         = 0x17,
   GENERALIZED_TIME = 0x18,

   NO_OBJECT        = 0xFF00,
   DIRECTORY_STRING = 0xFF01
};

/**
* Basic ASN.1 Object Interface
*/
class BOTAN_DLL ASN1_Object
   {
   public:
      /**
      * Encode whatever this object is into to
      * @param to the DER_Encoder that will be written to
      */
      virtual void encode_into(class DER_Encoder& to) const = 0;

      /**
      * Decode whatever this object is from from
      * @param from the BER_Decoder that will be read from
      */
      virtual void decode_from(class BER_Decoder& from) = 0;

      virtual ~ASN1_Object() {}
   };

/**
* BER Encoded Object
*/
class BOTAN_DLL BER_Object
   {
   public:
      void assert_is_a(ASN1_Tag, ASN1_Tag);

      ASN1_Tag type_tag, class_tag;
      SecureVector<byte> value;
   };

/*
* ASN.1 Utility Functions
*/
class DataSource;

namespace ASN1 {

SecureVector<byte> put_in_sequence(const MemoryRegion<byte>& val);
std::string to_string(const BER_Object& obj);

/**
* Heuristics tests; is this object possibly BER?
* @param src a data source that will be peeked at but not modified
*/
bool maybe_BER(DataSource& src);

}

/**
* General BER Decoding Error Exception
*/
struct BOTAN_DLL BER_Decoding_Error : public Decoding_Error
   {
   BER_Decoding_Error(const std::string&);
   };

/**
* Exception For Incorrect BER Taggings
*/
struct BOTAN_DLL BER_Bad_Tag : public BER_Decoding_Error
   {
   BER_Bad_Tag(const std::string& msg, ASN1_Tag tag);
   BER_Bad_Tag(const std::string& msg, ASN1_Tag tag1, ASN1_Tag tag2);
   };

}


namespace Botan {

/**
* This class represents ASN.1 object identifiers.
*/
class BOTAN_DLL OID : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      /**
      * Find out whether this OID is empty
      * @return true is no OID value is set
      */
      bool is_empty() const { return id.size() == 0; }

      /**
      * Get this OID as list (vector) of its components.
      * @return vector representing this OID
      */
      std::vector<u32bit> get_id() const { return id; }

      /**
      * Get this OID as a string
      * @return string representing this OID
      */
      std::string as_string() const;

      /**
      * Compare two OIDs.
      * @return true if they are equal, false otherwise
      */
      bool operator==(const OID&) const;

      /**
      * Reset this instance to an empty OID.
      */
      void clear();

      /**
      * Add a component to this OID.
      * @param new_comp the new component to add to the end of this OID
      * @return reference to *this
      */
      OID& operator+=(u32bit new_comp);

      /**
      * Construct an OID from a string.
      * @param str a string in the form "a.b.c" etc., where a,b,c are numbers
      */
      OID(const std::string& str = "");
   private:
      std::vector<u32bit> id;
   };

/**
* Append another component onto the OID.
* @param oid the OID to add the new component to
* @param new_comp the new component to add
*/
OID operator+(const OID& oid, u32bit new_comp);

/**
* Compare two OIDs.
* @param a the first OID
* @param b the second OID
* @return true if a is not equal to b
*/
bool operator!=(const OID& a, const OID& b);

/**
* Compare two OIDs.
* @param a the first OID
* @param b the second OID
* @return true if a is lexicographically smaller than b
*/
bool operator<(const OID& a, const OID& b);

}


namespace Botan {

/**
* Algorithm Identifier
*/
class BOTAN_DLL AlgorithmIdentifier : public ASN1_Object
   {
   public:
      enum Encoding_Option { USE_NULL_PARAM };

      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      AlgorithmIdentifier() {}
      AlgorithmIdentifier(const OID&, Encoding_Option);
      AlgorithmIdentifier(const std::string&, Encoding_Option);

      AlgorithmIdentifier(const OID&, const MemoryRegion<byte>&);
      AlgorithmIdentifier(const std::string&, const MemoryRegion<byte>&);

      OID oid;
      SecureVector<byte> parameters;
   };

/*
* Comparison Operations
*/
bool BOTAN_DLL operator==(const AlgorithmIdentifier&,
                          const AlgorithmIdentifier&);
bool BOTAN_DLL operator!=(const AlgorithmIdentifier&,
                          const AlgorithmIdentifier&);

}


namespace Botan {

/**
* Public Key Base Class.
*/
class BOTAN_DLL Public_Key
   {
   public:
      /**
      * Get the name of the underlying public key scheme.
      * @return name of the public key scheme
      */
      virtual std::string algo_name() const = 0;

      /**
      * Get the OID of the underlying public key scheme.
      * @return OID of the public key scheme
      */
      virtual OID get_oid() const;

      /**
      * Test the key values for consistency.
      * @param rng rng to use
      * @param strong whether to perform strong and lengthy version
      * of the test
      * @return true if the test is passed
      */
      virtual bool check_key(RandomNumberGenerator& rng,
                             bool strong) const = 0;

      /**
      * Find out the number of message parts supported by this scheme.
      * @return number of message parts
      */
      virtual size_t message_parts() const { return 1; }

      /**
      * Find out the message part size supported by this scheme/key.
      * @return size of the message parts in bits
      */
      virtual size_t message_part_size() const { return 0; }

      /**
      * Get the maximum message size in bits supported by this public key.
      * @return maximum message size in bits
      */
      virtual size_t max_input_bits() const = 0;

      /**
      * @return X.509 AlgorithmIdentifier for this key
      */
      virtual AlgorithmIdentifier algorithm_identifier() const = 0;

      /**
      * @return X.509 subject key encoding for this key object
      */
      virtual MemoryVector<byte> x509_subject_public_key() const = 0;

      virtual ~Public_Key() {}
   protected:
      /**
      * Self-test after loading a key
      * @param rng a random number generator
      */
      virtual void load_check(RandomNumberGenerator& rng) const;
   };

/**
* Private Key Base Class
*/
class BOTAN_DLL Private_Key : public virtual Public_Key
   {
   public:
      /**
      * @return PKCS #8 private key encoding for this key object
      */
      virtual MemoryVector<byte> pkcs8_private_key() const = 0;

      /**
      * @return PKCS #8 AlgorithmIdentifier for this key
      * Might be different from the X.509 identifier, but normally is not
      */
      virtual AlgorithmIdentifier pkcs8_algorithm_identifier() const
         { return algorithm_identifier(); }

   protected:
      /**
      * Self-test after loading a key
      * @param rng a random number generator
      */
      void load_check(RandomNumberGenerator& rng) const;

      /**
      * Self-test after generating a key
      * @param rng a random number generator
      */
      void gen_check(RandomNumberGenerator& rng) const;
   };

/**
* PK Secret Value Derivation Key
*/
class BOTAN_DLL PK_Key_Agreement_Key : public virtual Private_Key
   {
   public:
      /*
      * @return public component of this key
      */
      virtual MemoryVector<byte> public_value() const = 0;

      virtual ~PK_Key_Agreement_Key() {}
   };

/*
* Typedefs
*/
typedef PK_Key_Agreement_Key PK_KA_Key;
typedef Public_Key X509_PublicKey;
typedef Private_Key PKCS8_PrivateKey;

}


namespace Botan {

namespace PK_Ops {

/**
* Public key encryption interface
*/
class BOTAN_DLL Encryption
   {
   public:
      virtual size_t max_input_bits() const = 0;

      virtual SecureVector<byte> encrypt(const byte msg[], size_t msg_len,
                                         RandomNumberGenerator& rng) = 0;

      virtual ~Encryption() {}
   };

/**
* Public key decryption interface
*/
class BOTAN_DLL Decryption
   {
   public:
      virtual size_t max_input_bits() const = 0;

      virtual SecureVector<byte> decrypt(const byte msg[],
                                         size_t msg_len) = 0;

      virtual ~Decryption() {}
   };

/**
* Public key signature creation interface
*/
class BOTAN_DLL Signature
   {
   public:
      /**
      * Find out the number of message parts supported by this scheme.
      * @return number of message parts
      */
      virtual size_t message_parts() const { return 1; }

      /**
      * Find out the message part size supported by this scheme/key.
      * @return size of the message parts
      */
      virtual size_t message_part_size() const { return 0; }

      /**
      * Get the maximum message size in bits supported by this public key.
      * @return maximum message in bits
      */
      virtual size_t max_input_bits() const = 0;

      /*
      * Perform a signature operation
      * @param msg the message
      * @param msg_len the length of msg in bytes
      * @param rng a random number generator
      */
      virtual SecureVector<byte> sign(const byte msg[], size_t msg_len,
                                      RandomNumberGenerator& rng) = 0;

      virtual ~Signature() {}
   };

/**
* Public key signature verification interface
*/
class BOTAN_DLL Verification
   {
   public:
      /**
      * Get the maximum message size in bits supported by this public key.
      * @return maximum message in bits
      */
      virtual size_t max_input_bits() const = 0;

      /**
      * Find out the number of message parts supported by this scheme.
      * @return number of message parts
      */
      virtual size_t message_parts() const { return 1; }

      /**
      * Find out the message part size supported by this scheme/key.
      * @return size of the message parts
      */
      virtual size_t message_part_size() const { return 0; }

      /**
      * @return boolean specifying if this key type supports message
      * recovery and thus if you need to call verify() or verify_mr()
      */
      virtual bool with_recovery() const = 0;

      /*
      * Perform a signature check operation
      * @param msg the message
      * @param msg_len the length of msg in bytes
      * @param sig the signature
      * @param sig_len the length of sig in bytes
      * @returns if signature is a valid one for message
      */
      virtual bool verify(const byte[], size_t,
                          const byte[], size_t)
         {
         throw Invalid_State("Message recovery required");
         }

      /*
      * Perform a signature operation (with message recovery)
      * Only call this if with_recovery() returns true
      * @param msg the message
      * @param msg_len the length of msg in bytes
      * @returns recovered message
      */
      virtual SecureVector<byte> verify_mr(const byte[],
                                           size_t)
         {
         throw Invalid_State("Message recovery not supported");
         }

      virtual ~Verification() {}
   };

/**
* A generic key agreement Operation (eg DH or ECDH)
*/
class BOTAN_DLL Key_Agreement
   {
   public:
      /*
      * Perform a key agreement operation
      * @param w the other key value
      * @param w_len the length of w in bytes
      * @returns the agreed key
      */
      virtual SecureVector<byte> agree(const byte w[], size_t w_len) = 0;

      virtual ~Key_Agreement() {}
   };

}

}


namespace Botan {

class Algorithm_Factory;
class Keyed_Filter;

/**
* Base class for all engines. All non-pure virtual functions simply
* return NULL, indicating the algorithm in question is not
* supported. Subclasses can reimplement whichever function(s)
* they want to hook in a particular type.
*/
class BOTAN_DLL Engine
   {
   public:
      virtual ~Engine() {}

      /**
      * @return name of this engine
      */
      virtual std::string provider_name() const = 0;

      /**
      * @param algo_spec the algorithm name/specification
      * @param af an algorithm factory object
      * @return newly allocated object, or NULL
      */
      virtual BlockCipher*
         find_block_cipher(const SCAN_Name& algo_spec,
                           Algorithm_Factory& af) const;

      /**
      * @param algo_spec the algorithm name/specification
      * @param af an algorithm factory object
      * @return newly allocated object, or NULL
      */
      virtual StreamCipher*
         find_stream_cipher(const SCAN_Name& algo_spec,
                            Algorithm_Factory& af) const;

      /**
      * @param algo_spec the algorithm name/specification
      * @param af an algorithm factory object
      * @return newly allocated object, or NULL
      */
      virtual HashFunction*
         find_hash(const SCAN_Name& algo_spec,
                   Algorithm_Factory& af) const;

      /**
      * @param algo_spec the algorithm name/specification
      * @param af an algorithm factory object
      * @return newly allocated object, or NULL
      */
      virtual MessageAuthenticationCode*
         find_mac(const SCAN_Name& algo_spec,
                  Algorithm_Factory& af) const;

      /**
      * @param algo_spec the algorithm name/specification
      * @param af an algorithm factory object
      * @return newly allocated object, or NULL
      */
      virtual PBKDF* find_pbkdf(const SCAN_Name& algo_spec,
                                Algorithm_Factory& af) const;

      /**
      * @param n the modulus
      * @param hints any use hints
      * @return newly allocated object, or NULL
      */
      virtual Modular_Exponentiator*
         mod_exp(const BigInt& n,
                 Power_Mod::Usage_Hints hints) const;

      /**
      * Return a new cipher object
      * @param algo_spec the algorithm name/specification
      * @param dir specifies if encryption or decryption is desired
      * @param af an algorithm factory object
      * @return newly allocated object, or NULL
      */
      virtual Keyed_Filter* get_cipher(const std::string& algo_spec,
                                       Cipher_Dir dir,
                                       Algorithm_Factory& af);

      /**
      * Return a new operator object for this key, if possible
      * @param key the key we want an operator for
      * @return newly allocated operator object, or NULL
      */
      virtual PK_Ops::Key_Agreement*
         get_key_agreement_op(const Private_Key& key) const;

      /**
      * Return a new operator object for this key, if possible
      * @param key the key we want an operator for
      * @return newly allocated operator object, or NULL
      */
      virtual PK_Ops::Signature*
         get_signature_op(const Private_Key& key) const;

      /**
      * Return a new operator object for this key, if possible
      * @param key the key we want an operator for
      * @return newly allocated operator object, or NULL
      */
      virtual PK_Ops::Verification*
         get_verify_op(const Public_Key& key) const;

      /**
      * Return a new operator object for this key, if possible
      * @param key the key we want an operator for
      * @return newly allocated operator object, or NULL
      */
      virtual PK_Ops::Encryption*
         get_encryption_op(const Public_Key& key) const;

      /**
      * Return a new operator object for this key, if possible
      * @param key the key we want an operator for
      * @return newly allocated operator object, or NULL
      */
      virtual PK_Ops::Decryption*
         get_decryption_op(const Private_Key& key) const;
   };

}


namespace Botan {

/**
* Dynamically_Loaded_Engine just proxies the requests to the underlying
* Engine object, and handles load/unload details
*/
class BOTAN_DLL Dynamically_Loaded_Engine : public Engine
   {
   public:
      /**
      * @param lib_path full pathname to DLL to load
      */
      Dynamically_Loaded_Engine(const std::string& lib_path);

      ~Dynamically_Loaded_Engine();

      std::string provider_name() const { return engine->provider_name(); }

      BlockCipher* find_block_cipher(const SCAN_Name& algo_spec,
                                     Algorithm_Factory& af) const
         {
         return engine->find_block_cipher(algo_spec, af);
         }

      StreamCipher* find_stream_cipher(const SCAN_Name& algo_spec,
                                       Algorithm_Factory& af) const
         {
         return engine->find_stream_cipher(algo_spec, af);
         }

      HashFunction* find_hash(const SCAN_Name& algo_spec,
                              Algorithm_Factory& af) const
         {
         return engine->find_hash(algo_spec, af);
         }

      MessageAuthenticationCode* find_mac(const SCAN_Name& algo_spec,
                                          Algorithm_Factory& af) const
         {
         return engine->find_mac(algo_spec, af);
         }

      PBKDF* find_pbkdf(const SCAN_Name& algo_spec,
                        Algorithm_Factory& af) const
         {
         return engine->find_pbkdf(algo_spec, af);
         }

      Modular_Exponentiator* mod_exp(const BigInt& n,
                                     Power_Mod::Usage_Hints hints) const
         {
         return engine->mod_exp(n, hints);
         }

      Keyed_Filter* get_cipher(const std::string& algo_spec,
                               Cipher_Dir dir,
                               Algorithm_Factory& af)
         {
         return engine->get_cipher(algo_spec, dir, af);
         }

      PK_Ops::Key_Agreement*
         get_key_agreement_op(const Private_Key& key) const
         {
         return engine->get_key_agreement_op(key);
         }

      PK_Ops::Signature*
         get_signature_op(const Private_Key& key) const
         {
         return engine->get_signature_op(key);
         }

      PK_Ops::Verification*
         get_verify_op(const Public_Key& key) const
         {
         return engine->get_verify_op(key);
         }

      PK_Ops::Encryption*
         get_encryption_op(const Public_Key& key) const
         {
         return engine->get_encryption_op(key);
         }

      PK_Ops::Decryption*
         get_decryption_op(const Private_Key& key) const
         {
         return engine->get_decryption_op(key);
         }

   private:
      class Dynamically_Loaded_Library* lib;
      Engine* engine;
   };

}


namespace Botan {

/**
* Simple String
*/
class BOTAN_DLL ASN1_String : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      std::string value() const;
      std::string iso_8859() const;

      ASN1_Tag tagging() const;

      ASN1_String(const std::string& = "");
      ASN1_String(const std::string&, ASN1_Tag);
   private:
      std::string iso_8859_str;
      ASN1_Tag tag;
   };

}


namespace Botan {

/**
* Attribute
*/
class BOTAN_DLL Attribute : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder& to) const;
      void decode_from(class BER_Decoder& from);

      OID oid;
      MemoryVector<byte> parameters;

      Attribute() {}
      Attribute(const OID&, const MemoryRegion<byte>&);
      Attribute(const std::string&, const MemoryRegion<byte>&);
   };

/**
* X.509 Time
*/
class BOTAN_DLL X509_Time : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      std::string as_string() const;
      std::string readable_string() const;
      bool time_is_set() const;

      s32bit cmp(const X509_Time&) const;

      void set_to(const std::string&);
      void set_to(const std::string&, ASN1_Tag);

      X509_Time(u64bit);
      X509_Time(const std::string& = "");
      X509_Time(const std::string&, ASN1_Tag);
   private:
      bool passes_sanity_check() const;
      u32bit year, month, day, hour, minute, second;
      ASN1_Tag tag;
   };

/**
* Alternative Name
*/
class BOTAN_DLL AlternativeName : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      std::multimap<std::string, std::string> contents() const;

      void add_attribute(const std::string&, const std::string&);
      std::multimap<std::string, std::string> get_attributes() const;

      void add_othername(const OID&, const std::string&, ASN1_Tag);
      std::multimap<OID, ASN1_String> get_othernames() const;

      bool has_items() const;

      AlternativeName(const std::string& = "", const std::string& = "",
                      const std::string& = "", const std::string& = "");
   private:
      std::multimap<std::string, std::string> alt_info;
      std::multimap<OID, ASN1_String> othernames;
   };

/*
* Comparison Operations
*/
bool BOTAN_DLL operator==(const X509_Time&, const X509_Time&);
bool BOTAN_DLL operator!=(const X509_Time&, const X509_Time&);
bool BOTAN_DLL operator<=(const X509_Time&, const X509_Time&);
bool BOTAN_DLL operator>=(const X509_Time&, const X509_Time&);
bool BOTAN_DLL operator<(const X509_Time&, const X509_Time&);
bool BOTAN_DLL operator>(const X509_Time&, const X509_Time&);

}


namespace Botan {

/**
* This class represents an abstract data source object.
*/
class BOTAN_DLL DataSource
   {
   public:
      /**
      * Read from the source. Moves the internal offset so that every
      * call to read will return a new portion of the source.
      *
      * @param out the byte array to write the result to
      * @param length the length of the byte array out
      * @return length in bytes that was actually read and put
      * into out
      */
      virtual size_t read(byte out[], size_t length) = 0;

      /**
      * Read from the source but do not modify the internal
      * offset. Consecutive calls to peek() will return portions of
      * the source starting at the same position.
      *
      * @param out the byte array to write the output to
      * @param length the length of the byte array out
      * @param peek_offset the offset into the stream to read at
      * @return length in bytes that was actually read and put
      * into out
      */
      virtual size_t peek(byte out[], size_t length,
                          size_t peek_offset) const = 0;

      /**
      * Test whether the source still has data that can be read.
      * @return true if there is still data to read, false otherwise
      */
      virtual bool end_of_data() const = 0;
      /**
      * return the id of this data source
      * @return std::string representing the id of this data source
      */
      virtual std::string id() const { return ""; }

      /**
      * Read one byte.
      * @param out the byte to read to
      * @return length in bytes that was actually read and put
      * into out
      */
      size_t read_byte(byte& out);

      /**
      * Peek at one byte.
      * @param out an output byte
      * @return length in bytes that was actually read and put
      * into out
      */
      size_t peek_byte(byte& out) const;

      /**
      * Discard the next N bytes of the data
      * @param N the number of bytes to discard
      * @return number of bytes actually discarded
      */
      size_t discard_next(size_t N);

      DataSource() {}
      virtual ~DataSource() {}
   private:
      DataSource& operator=(const DataSource&) { return (*this); }
      DataSource(const DataSource&);
   };

/**
* This class represents a Memory-Based DataSource
*/
class BOTAN_DLL DataSource_Memory : public DataSource
   {
   public:
      size_t read(byte[], size_t);
      size_t peek(byte[], size_t, size_t) const;
      bool end_of_data() const;

      /**
      * Construct a memory source that reads from a string
      * @param in the string to read from
      */
      DataSource_Memory(const std::string& in);

      /**
      * Construct a memory source that reads from a byte array
      * @param in the byte array to read from
      * @param length the length of the byte array
      */
      DataSource_Memory(const byte in[], size_t length);

      /**
      * Construct a memory source that reads from a MemoryRegion
      * @param in the MemoryRegion to read from
      */
      DataSource_Memory(const MemoryRegion<byte>& in);
   private:
      SecureVector<byte> source;
      size_t offset;
   };

/**
* This class represents a Stream-Based DataSource.
*/
class BOTAN_DLL DataSource_Stream : public DataSource
   {
   public:
      size_t read(byte[], size_t);
      size_t peek(byte[], size_t, size_t) const;
      bool end_of_data() const;
      std::string id() const;

      DataSource_Stream(std::istream&,
                        const std::string& id = "<std::istream>");

      /**
      * Construct a Stream-Based DataSource from file
      * @param file the name of the file
      * @param use_binary whether to treat the file as binary or not
      */
      DataSource_Stream(const std::string& file, bool use_binary = false);

      ~DataSource_Stream();
   private:
      const std::string identifier;

      std::istream* source_p;
      std::istream& source;
      size_t total_read;
   };

}


namespace Botan {

/**
* This class represents general abstract filter objects.
*/
class BOTAN_DLL Filter
   {
   public:
      /**
      * @return descriptive name for this filter
      */
      virtual std::string name() const = 0;

      /**
      * Write a portion of a message to this filter.
      * @param input the input as a byte array
      * @param length the length of the byte array input
      */
      virtual void write(const byte input[], size_t length) = 0;

      /**
      * Start a new message. Must be closed by end_msg() before another
      * message can be started.
      */
      virtual void start_msg() {}

      /**
      * Notify that the current message is finished; flush buffers and
      * do end-of-message processing (if any).
      */
      virtual void end_msg() {}

      /**
      * Check whether this filter is an attachable filter.
      * @return true if this filter is attachable, false otherwise
      */
      virtual bool attachable() { return true; }

      virtual ~Filter() {}
   protected:
      /**
      * @param in some input for the filter
      * @param length the length of in
      */
      void send(const byte in[], size_t length);

      /**
      * @param in some input for the filter
      */
      void send(byte in) { send(&in, 1); }

      /**
      * @param in some input for the filter
      */
      void send(const MemoryRegion<byte>& in) { send(&in[0], in.size()); }

      /**
      * @param in some input for the filter
      * @param length the number of bytes of in to send
      */
      void send(const MemoryRegion<byte>& in, size_t length)
         {
         send(&in[0], length);
         }

      Filter();
   private:
      Filter(const Filter&) {}
      Filter& operator=(const Filter&) { return (*this); }

      /**
      * Start a new message in *this and all following filters. Only for
      * internal use, not intended for use in client applications.
      */
      void new_msg();

      /**
      * End a new message in *this and all following filters. Only for
      * internal use, not intended for use in client applications.
      */
      void finish_msg();

      friend class Pipe;
      friend class Fanout_Filter;

      size_t total_ports() const;
      size_t current_port() const { return port_num; }

      /**
      * Set the active port
      * @param new_port the new value
      */
      void set_port(size_t new_port);

      size_t owns() const { return filter_owns; }

      /**
      * Attach another filter to this one
      * @param f filter to attach
      */
      void attach(Filter* f);

      /**
      * @param filters the filters to set
      * @param count number of items in filters
      */
      void set_next(Filter* filters[], size_t count);
      Filter* get_next() const;

      SecureVector<byte> write_queue;
      std::vector<Filter*> next;
      size_t port_num, filter_owns;

      // true if filter belongs to a pipe --> prohibit filter sharing!
      bool owned;
   };

/**
* This is the abstract Fanout_Filter base class.
**/
class BOTAN_DLL Fanout_Filter : public Filter
   {
   protected:
      /**
      * Increment the number of filters past us that we own
      */
      void incr_owns() { ++filter_owns; }

      void set_port(size_t n) { Filter::set_port(n); }

      void set_next(Filter* f[], size_t n) { Filter::set_next(f, n); }

      void attach(Filter* f) { Filter::attach(f); }
   };

/**
* The type of checking to be performed by decoders:
* NONE - no checks, IGNORE_WS - perform checks, but ignore
* whitespaces, FULL_CHECK - perform checks, also complain
* about white spaces.
*/
enum Decoder_Checking { NONE, IGNORE_WS, FULL_CHECK };

}


namespace Botan {

/**
* This class represents pipe objects.
* A set of filters can be placed into a pipe, and information flows
* through the pipe until it reaches the end, where the output is
* collected for retrieval.  If you're familiar with the Unix shell
* environment, this design will sound quite familiar.
*/
class BOTAN_DLL Pipe : public DataSource
   {
   public:
      /**
      * An opaque type that identifies a message in this Pipe
      */
      typedef size_t message_id;

      /**
      * Exception if you use an invalid message as an argument to
      * read, remaining, etc
      */
      struct BOTAN_DLL Invalid_Message_Number : public Invalid_Argument
         {
         /**
         * @param where the error occured
         * @param msg the invalid message id that was used
         */
         Invalid_Message_Number(const std::string& where, message_id msg) :
            Invalid_Argument("Pipe::" + where + ": Invalid message number " +
                             to_string(msg))
            {}
         };

      /**
      * A meta-id for whatever the last message is
      */
      static const message_id LAST_MESSAGE;

      /**
      * A meta-id for the default message (set with set_default_msg)
      */
      static const message_id DEFAULT_MESSAGE;

      /**
      * Write input to the pipe, i.e. to its first filter.
      * @param in the byte array to write
      * @param length the length of the byte array in
      */
      void write(const byte in[], size_t length);

      /**
      * Write input to the pipe, i.e. to its first filter.
      * @param in the MemoryRegion containing the data to write
      */
      void write(const MemoryRegion<byte>& in);

      /**
      * Write input to the pipe, i.e. to its first filter.
      * @param in the string containing the data to write
      */
      void write(const std::string& in);

      /**
      * Write input to the pipe, i.e. to its first filter.
      * @param in the DataSource to read the data from
      */
      void write(DataSource& in);

      /**
      * Write input to the pipe, i.e. to its first filter.
      * @param in a single byte to be written
      */
      void write(byte in);

      /**
      * Perform start_msg(), write() and end_msg() sequentially.
      * @param in the byte array containing the data to write
      * @param length the length of the byte array to write
      */
      void process_msg(const byte in[], size_t length);

      /**
      * Perform start_msg(), write() and end_msg() sequentially.
      * @param in the MemoryRegion containing the data to write
      */
      void process_msg(const MemoryRegion<byte>& in);

      /**
      * Perform start_msg(), write() and end_msg() sequentially.
      * @param in the string containing the data to write
      */
      void process_msg(const std::string& in);

      /**
      * Perform start_msg(), write() and end_msg() sequentially.
      * @param in the DataSource providing the data to write
      */
      void process_msg(DataSource& in);

      /**
      * Find out how many bytes are ready to read.
      * @param msg the number identifying the message
      * for which the information is desired
      * @return number of bytes that can still be read
      */
      size_t remaining(message_id msg = DEFAULT_MESSAGE) const;

      /**
      * Read the default message from the pipe. Moves the internal
      * offset so that every call to read will return a new portion of
      * the message.
      *
      * @param output the byte array to write the read bytes to
      * @param length the length of the byte array output
      * @return number of bytes actually read into output
      */
      size_t read(byte output[], size_t length);

      /**
      * Read a specified message from the pipe. Moves the internal
      * offset so that every call to read will return a new portion of
      * the message.
      * @param output the byte array to write the read bytes to
      * @param length the length of the byte array output
      * @param msg the number identifying the message to read from
      * @return number of bytes actually read into output
      */
      size_t read(byte output[], size_t length, message_id msg);

      /**
      * Read a single byte from the pipe. Moves the internal offset so
      * that every call to read will return a new portion of the
      * message.
      *
      * @param output the byte to write the result to
      * @param msg the message to read from
      * @return number of bytes actually read into output
      */
      size_t read(byte& output, message_id msg = DEFAULT_MESSAGE);

      /**
      * Read the full contents of the pipe.
      * @param msg the number identifying the message to read from
      * @return SecureVector holding the contents of the pipe
      */
      SecureVector<byte> read_all(message_id msg = DEFAULT_MESSAGE);

      /**
      * Read the full contents of the pipe.
      * @param msg the number identifying the message to read from
      * @return string holding the contents of the pipe
      */
      std::string read_all_as_string(message_id = DEFAULT_MESSAGE);

      /** Read from the default message but do not modify the internal
      * offset. Consecutive calls to peek() will return portions of
      * the message starting at the same position.
      * @param output the byte array to write the peeked message part to
      * @param length the length of the byte array output
      * @param offset the offset from the current position in message
      * @return number of bytes actually peeked and written into output
      */
      size_t peek(byte output[], size_t length, size_t offset) const;

      /** Read from the specified message but do not modify the
      * internal offset. Consecutive calls to peek() will return
      * portions of the message starting at the same position.
      * @param output the byte array to write the peeked message part to
      * @param length the length of the byte array output
      * @param offset the offset from the current position in message
      * @param msg the number identifying the message to peek from
      * @return number of bytes actually peeked and written into output
      */
      size_t peek(byte output[], size_t length,
                  size_t offset, message_id msg) const;

      /** Read a single byte from the specified message but do not
      * modify the internal offset. Consecutive calls to peek() will
      * return portions of the message starting at the same position.
      * @param output the byte to write the peeked message byte to
      * @param offset the offset from the current position in message
      * @param msg the number identifying the message to peek from
      * @return number of bytes actually peeked and written into output
      */
      size_t peek(byte& output, size_t offset,
                  message_id msg = DEFAULT_MESSAGE) const;

      /**
      * @return currently set default message
      */
      size_t default_msg() const { return default_read; }

      /**
      * Set the default message
      * @param msg the number identifying the message which is going to
      * be the new default message
      */
      void set_default_msg(message_id msg);

      /**
      * Get the number of messages the are in this pipe.
      * @return number of messages the are in this pipe
      */
      message_id message_count() const;

      /**
      * Test whether this pipe has any data that can be read from.
      * @return true if there is more data to read, false otherwise
      */
      bool end_of_data() const;

      /**
      * Start a new message in the pipe. A potential other message in this pipe
      * must be closed with end_msg() before this function may be called.
      */
      void start_msg();

      /**
      * End the current message.
      */
      void end_msg();

      /**
      * Insert a new filter at the front of the pipe
      * @param filt the new filter to insert
      */
      void prepend(Filter* filt);

      /**
      * Insert a new filter at the back of the pipe
      * @param filt the new filter to insert
      */
      void append(Filter* filt);

      /**
      * Remove the first filter at the front of the pipe.
      */
      void pop();

      /**
      * Reset this pipe to an empty pipe.
      */
      void reset();

      /**
      * Construct a Pipe of up to four filters. The filters are set up
      * in the same order as the arguments.
      */
      Pipe(Filter* = 0, Filter* = 0, Filter* = 0, Filter* = 0);

      /**
      * Construct a Pipe from range of filters passed as an array
      * @param filters the set of filters to use
      * @param count the number of elements in filters
      */
      Pipe(Filter* filters[], size_t count);
      ~Pipe();
   private:
      Pipe(const Pipe&) : DataSource() {}
      Pipe& operator=(const Pipe&) { return (*this); }
      void init();
      void destruct(Filter*);
      void find_endpoints(Filter*);
      void clear_endpoints(Filter*);

      message_id get_message_no(const std::string&, message_id) const;

      Filter* pipe;
      class Output_Buffers* outputs;
      message_id default_read;
      bool inside_msg;
   };

/**
* Stream output operator; dumps the results from pipe's default
* message to the output stream.
* @param out an output stream
* @param pipe the pipe
*/
BOTAN_DLL std::ostream& operator<<(std::ostream& out, Pipe& pipe);

/**
* Stream input operator; dumps the remaining bytes of input
* to the (assumed open) pipe message.
* @param in the input stream
* @param pipe the pipe
*/
BOTAN_DLL std::istream& operator>>(std::istream& in, Pipe& pipe);

}

#if defined(BOTAN_HAS_PIPE_UNIXFD_IO)

namespace Botan {

/**
* Stream output operator; dumps the results from pipe's default
* message to the output stream.
* @param out file descriptor for an open output stream
* @param pipe the pipe
*/
int BOTAN_DLL operator<<(int out, Pipe& pipe);

/**
* File descriptor input operator; dumps the remaining bytes of input
* to the (assumed open) pipe message.
* @param in file descriptor for an open input stream
* @param pipe the pipe
*/
int BOTAN_DLL operator>>(int in, Pipe& pipe);

}

#endif


namespace Botan {

/**
* BER Decoding Object
*/
class BOTAN_DLL BER_Decoder
   {
   public:
      BER_Object get_next_object();
      void push_back(const BER_Object&);

      bool more_items() const;
      BER_Decoder& verify_end();
      BER_Decoder& discard_remaining();

      BER_Decoder  start_cons(ASN1_Tag, ASN1_Tag = UNIVERSAL);
      BER_Decoder& end_cons();

      BER_Decoder& raw_bytes(MemoryRegion<byte>&);

      BER_Decoder& decode_null();
      BER_Decoder& decode(bool&);
      BER_Decoder& decode(size_t&);
      BER_Decoder& decode(class BigInt&);
      BER_Decoder& decode(MemoryRegion<byte>&, ASN1_Tag);

      BER_Decoder& decode(bool&, ASN1_Tag, ASN1_Tag = CONTEXT_SPECIFIC);
      BER_Decoder& decode(size_t&, ASN1_Tag, ASN1_Tag = CONTEXT_SPECIFIC);
      BER_Decoder& decode(class BigInt&,
                          ASN1_Tag, ASN1_Tag = CONTEXT_SPECIFIC);
      BER_Decoder& decode(MemoryRegion<byte>&, ASN1_Tag,
                          ASN1_Tag, ASN1_Tag = CONTEXT_SPECIFIC);

      BER_Decoder& decode(class ASN1_Object&);

      BER_Decoder& decode_octet_string_bigint(class BigInt&);

      template<typename T>
         BER_Decoder& decode_optional(T& out,
                                      ASN1_Tag type_tag,
                                      ASN1_Tag class_tag,
                                      const T& default_value = T());

      template<typename T>
         BER_Decoder& decode_list(std::vector<T>& out,
                                  bool clear_out = true);

      template<typename T>
         BER_Decoder& decode_and_check(const T& expected,
                                       const std::string& error_msg)
         {
         T actual;
         decode(actual);

         if(actual != expected)
            throw Decoding_Error(error_msg);

         return (*this);
         }

      BER_Decoder& decode_optional_string(MemoryRegion<byte>&,
                                          ASN1_Tag, u16bit);

      BER_Decoder(DataSource&);
      BER_Decoder(const byte[], size_t);
      BER_Decoder(const MemoryRegion<byte>&);
      BER_Decoder(const BER_Decoder&);
      ~BER_Decoder();
   private:
      BER_Decoder& operator=(const BER_Decoder&) { return (*this); }

      BER_Decoder* parent;
      DataSource* source;
      BER_Object pushed;
      mutable bool owns;
   };

/*
* Decode an OPTIONAL or DEFAULT element
*/
template<typename T>
BER_Decoder& BER_Decoder::decode_optional(T& out,
                                          ASN1_Tag type_tag,
                                          ASN1_Tag class_tag,
                                          const T& default_value)
   {
   BER_Object obj = get_next_object();

   if(obj.type_tag == type_tag && obj.class_tag == class_tag)
      {
      if(class_tag & CONSTRUCTED)
         BER_Decoder(obj.value).decode(out).verify_end();
      else
         {
         push_back(obj);
         decode(out, type_tag, class_tag);
         }
      }
   else
      {
      out = default_value;
      push_back(obj);
      }

   return (*this);
   }

/*
* Decode a list of homogenously typed values
*/
template<typename T>
BER_Decoder& BER_Decoder::decode_list(std::vector<T>& vec, bool clear_it)
   {
   if(clear_it)
      vec.clear();

   while(more_items())
      {
      T value;
      decode(value);
      vec.push_back(value);
      }
   return (*this);
   }

}


namespace Botan {

/**
* X.509v3 Key Constraints.
*/
enum Key_Constraints {
   NO_CONSTRAINTS     = 0,
   DIGITAL_SIGNATURE  = 32768,
   NON_REPUDIATION    = 16384,
   KEY_ENCIPHERMENT   = 8192,
   DATA_ENCIPHERMENT  = 4096,
   KEY_AGREEMENT      = 2048,
   KEY_CERT_SIGN      = 1024,
   CRL_SIGN           = 512,
   ENCIPHER_ONLY      = 256,
   DECIPHER_ONLY      = 128
};

/**
* BER Decoding Function for key constraints
*/
namespace BER {

void BOTAN_DLL decode(BER_Decoder&, Key_Constraints&);

}

/**
* X.509v2 CRL Reason Code.
*/
enum CRL_Code {
   UNSPECIFIED            = 0,
   KEY_COMPROMISE         = 1,
   CA_COMPROMISE          = 2,
   AFFILIATION_CHANGED    = 3,
   SUPERSEDED             = 4,
   CESSATION_OF_OPERATION = 5,
   CERTIFICATE_HOLD       = 6,
   REMOVE_FROM_CRL        = 8,
   PRIVLEDGE_WITHDRAWN    = 9,
   AA_COMPROMISE          = 10,

   DELETE_CRL_ENTRY       = 0xFF00,
   OCSP_GOOD              = 0xFF01,
   OCSP_UNKNOWN           = 0xFF02
};

/*
* Various Other Enumerations
*/

/**
* The two types of X509 encoding supported by Botan.
*/
enum X509_Encoding { RAW_BER, PEM };

}


namespace Botan {

/**
* This class represents abstract X.509 signed objects as
* in the X.500 SIGNED macro
*/
class BOTAN_DLL X509_Object
   {
   public:
      /**
      * The underlying data that is to be or was signed
      * @return data that is or was signed
      */
      MemoryVector<byte> tbs_data() const;

      /**
      * @return signature on tbs_data()
      */
      MemoryVector<byte> signature() const;

      /**
      * @return signature algorithm that was used to generate signature
      */
      AlgorithmIdentifier signature_algorithm() const;

      /**
      * @return hash algorithm that was used to generate signature
      */
      std::string hash_used_for_signature() const;

      /**
      * Create a signed X509 object.
      * @param signer the signer used to sign the object
      * @param rng the random number generator to use
      * @param alg_id the algorithm identifier of the signature scheme
      * @param tbs the tbs bits to be signed
      * @return signed X509 object
      */
      static MemoryVector<byte> make_signed(class PK_Signer* signer,
                                            RandomNumberGenerator& rng,
                                            const AlgorithmIdentifier& alg_id,
                                            const MemoryRegion<byte>& tbs);

      /**
      * Check the signature on this data
      * @param key the public key purportedly used to sign this data
      * @return true if the signature is valid, otherwise false
      */
      bool check_signature(class Public_Key& key) const;

      /**
      * Check the signature on this data
      * @param key the public key purportedly used to sign this data
      *        the pointer will be deleted after use
      * @return true if the signature is valid, otherwise false
      */
      bool check_signature(class Public_Key* key) const;

      /**
      * @return BER encoding of this
      */
      MemoryVector<byte> BER_encode() const;

      /**
      * @return PEM encoding of this
      */
      std::string PEM_encode() const;

      /**
      * Encode this to a pipe
      * @deprecated use BER_encode or PEM_encode instead
      * @param out the pipe to write to
      * @param encoding the encoding to use
      */
      BOTAN_DEPRECATED("Use BER_encode or PEM_encode")
      void encode(Pipe& out, X509_Encoding encoding = PEM) const;

      virtual ~X509_Object() {}
   protected:
      X509_Object(DataSource& src, const std::string& pem_labels);
      X509_Object(const std::string& file, const std::string& pem_labels);

      void do_decode();
      X509_Object() {}
      AlgorithmIdentifier sig_algo;
      MemoryVector<byte> tbs_bits, sig;
   private:
      virtual void force_decode() = 0;
      void init(DataSource&, const std::string&);
      void decode_info(DataSource&);
      std::vector<std::string> PEM_labels_allowed;
      std::string PEM_label_pref;
   };

}


namespace Botan {

/**
* Distinguished Name
*/
class BOTAN_DLL X509_DN : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      std::multimap<OID, std::string> get_attributes() const;
      std::vector<std::string> get_attribute(const std::string&) const;

      std::multimap<std::string, std::string> contents() const;

      void add_attribute(const std::string&, const std::string&);
      void add_attribute(const OID&, const std::string&);

      static std::string deref_info_field(const std::string&);

      MemoryVector<byte> get_bits() const;

      X509_DN();
      X509_DN(const std::multimap<OID, std::string>&);
      X509_DN(const std::multimap<std::string, std::string>&);
   private:
      std::multimap<OID, ASN1_String> dn_info;
      MemoryVector<byte> dn_bits;
   };

bool BOTAN_DLL operator==(const X509_DN&, const X509_DN&);
bool BOTAN_DLL operator!=(const X509_DN&, const X509_DN&);
bool BOTAN_DLL operator<(const X509_DN&, const X509_DN&);

}


namespace Botan {

/**
* This namespace contains functions for handling X.509 public keys
*/
namespace X509 {

/**
* BER encode a key
* @param key the public key to encode
* @return BER encoding of this key
*/
BOTAN_DLL MemoryVector<byte> BER_encode(const Public_Key& key);

/**
* PEM encode a public key into a string.
* @param key the key to encode
* @return PEM encoded key
*/
BOTAN_DLL std::string PEM_encode(const Public_Key& key);

/**
* Create a public key from a data source.
* @param source the source providing the DER or PEM encoded key
* @return new public key object
*/
BOTAN_DLL Public_Key* load_key(DataSource& source);

/**
* Create a public key from a file
* @param filename pathname to the file to load
* @return new public key object
*/
BOTAN_DLL Public_Key* load_key(const std::string& filename);

/**
* Create a public key from a memory region.
* @param enc the memory region containing the DER or PEM encoded key
* @return new public key object
*/
BOTAN_DLL Public_Key* load_key(const MemoryRegion<byte>& enc);

/**
* Copy a key.
* @param key the public key to copy
* @return new public key object
*/
BOTAN_DLL Public_Key* copy_key(const Public_Key& key);

/**
* Create the key constraints for a specific public key.
* @param pub_key the public key from which the basic set of
* constraints to be placed in the return value is derived
* @param limits additional limits that will be incorporated into the
* return value
* @return combination of key type specific constraints and
* additional limits
*/
BOTAN_DLL Key_Constraints find_constraints(const Public_Key& pub_key,
                                           Key_Constraints limits);

/**
* Encode a key into a pipe.
* @deprecated Use PEM_encode or BER_encode instead
*
* @param key the public key to encode
* @param pipe the pipe to feed the encoded key into
* @param encoding the encoding type to use
*/
BOTAN_DEPRECATED("Use PEM_encode or BER_encode")
inline void encode(const Public_Key& key,
                   Pipe& pipe,
                   X509_Encoding encoding = PEM)
   {
   if(encoding == PEM)
      pipe.write(X509::PEM_encode(key));
   else
      pipe.write(X509::BER_encode(key));
   }

}

}


namespace Botan {

/**
* Data Store
*/
class BOTAN_DLL Data_Store
   {
   public:
      /**
      * A search function
      */
      class BOTAN_DLL Matcher
         {
         public:
            virtual bool operator()(const std::string&,
                                    const std::string&) const = 0;

            virtual std::pair<std::string, std::string>
               transform(const std::string&, const std::string&) const;

            virtual ~Matcher() {}
         };

      bool operator==(const Data_Store&) const;

      std::multimap<std::string, std::string>
         search_with(const Matcher&) const;

      std::vector<std::string> get(const std::string&) const;

      std::string get1(const std::string&) const;

      MemoryVector<byte> get1_memvec(const std::string&) const;
      u32bit get1_u32bit(const std::string&, u32bit = 0) const;

      bool has_value(const std::string&) const;

      void add(const std::multimap<std::string, std::string>&);
      void add(const std::string&, const std::string&);
      void add(const std::string&, u32bit);
      void add(const std::string&, const MemoryRegion<byte>&);
   private:
      std::multimap<std::string, std::string> contents;
   };

}


namespace Botan {

/**
* This class represents X.509 Certificate
*/
class BOTAN_DLL X509_Certificate : public X509_Object
   {
   public:
     /**
     * Get the public key associated with this certificate.
     * @return subject public key of this certificate
     */
      Public_Key* subject_public_key() const;

      /**
      * Get the issuer certificate DN.
      * @return issuer DN of this certificate
      */
      X509_DN issuer_dn() const;

      /**
      * Get the subject certificate DN.
      * @return subject DN of this certificate
      */
      X509_DN subject_dn() const;

      /**
      * Get a value for a specific subject_info parameter name.
      * @param name the name of the paramter to look up. Possible names are
      * "X509.Certificate.version", "X509.Certificate.serial",
      * "X509.Certificate.start", "X509.Certificate.end",
      * "X509.Certificate.v2.key_id", "X509.Certificate.public_key",
      * "X509v3.BasicConstraints.path_constraint",
      * "X509v3.BasicConstraints.is_ca", "X509v3.ExtendedKeyUsage",
      * "X509v3.CertificatePolicies", "X509v3.SubjectKeyIdentifier" or
      * "X509.Certificate.serial".
      * @return value(s) of the specified parameter
      */
      std::vector<std::string> subject_info(const std::string& name) const;

      /**
      * Get a value for a specific subject_info parameter name.
      * @param name the name of the paramter to look up. Possible names are
      * "X509.Certificate.v2.key_id" or "X509v3.AuthorityKeyIdentifier".
      * @return value(s) of the specified parameter
      */
      std::vector<std::string> issuer_info(const std::string& name) const;

      /**
      * Get the notBefore of the certificate.
      * @return notBefore of the certificate
      */
      std::string start_time() const;

      /**
      * Get the notAfter of the certificate.
      * @return notAfter of the certificate
      */
      std::string end_time() const;

      /**
      * Get the X509 version of this certificate object.
      * @return X509 version
      */
      u32bit x509_version() const;

      /**
      * Get the serial number of this certificate.
      * @return certificates serial number
      */
      MemoryVector<byte> serial_number() const;

      /**
      * Get the DER encoded AuthorityKeyIdentifier of this certificate.
      * @return DER encoded AuthorityKeyIdentifier
      */
      MemoryVector<byte> authority_key_id() const;

      /**
      * Get the DER encoded SubjectKeyIdentifier of this certificate.
      * @return DER encoded SubjectKeyIdentifier
      */
      MemoryVector<byte> subject_key_id() const;

      /**
      * Check whether this certificate is self signed.
      * @return true if this certificate is self signed
      */
      bool is_self_signed() const { return self_signed; }

      /**
      * Check whether this certificate is a CA certificate.
      * @return true if this certificate is a CA certificate
      */
      bool is_CA_cert() const;

      /**
      * Get the path limit as defined in the BasicConstraints extension of
      * this certificate.
      * @return path limit
      */
      u32bit path_limit() const;

      /**
      * Get the key constraints as defined in the KeyUsage extension of this
      * certificate.
      * @return key constraints
      */
      Key_Constraints constraints() const;

      /**
      * Get the key constraints as defined in the ExtendedKeyUsage
      * extension of this
      * certificate.
      * @return key constraints
      */
      std::vector<std::string> ex_constraints() const;

      /**
      * Get the policies as defined in the CertificatePolicies extension
      * of this certificate.
      * @return certificate policies
      */
      std::vector<std::string> policies() const;

      /**
      * @return a string describing the certificate
      */
      std::string to_string() const;

      /**
      * Check to certificates for equality.
      * @return true both certificates are (binary) equal
      */
      bool operator==(const X509_Certificate& other) const;

      /**
      * Create a certificate from a data source providing the DER or
      * PEM encoded certificate.
      * @param source the data source
      */
      X509_Certificate(DataSource& source);

      /**
      * Create a certificate from a file containing the DER or PEM
      * encoded certificate.
      * @param filename the name of the certificate file
      */
      X509_Certificate(const std::string& filename);
   private:
      void force_decode();
      friend class X509_CA;
      X509_Certificate() {}

      Data_Store subject, issuer;
      bool self_signed;
   };

/**
* Check two certificates for inequality
* @return true if the arguments represent different certificates,
* false if they are binary identical
*/
BOTAN_DLL bool operator!=(const X509_Certificate&, const X509_Certificate&);

/*
* Data Store Extraction Operations
*/
BOTAN_DLL X509_DN create_dn(const Data_Store&);
BOTAN_DLL AlternativeName create_alt_name(const Data_Store&);

}


namespace Botan {

/**
* This class represents CRL entries
*/
class BOTAN_DLL CRL_Entry : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      /**
      * Get the serial number of the certificate associated with this entry.
      * @return certificate's serial number
      */
      MemoryVector<byte> serial_number() const { return serial; }

      /**
      * Get the revocation date of the certificate associated with this entry
      * @return certificate's revocation date
      */
      X509_Time expire_time() const { return time; }

      /**
      * Get the entries reason code
      * @return reason code
      */
      CRL_Code reason_code() const { return reason; }

      /**
      * Construct an empty CRL entry.
      */
      CRL_Entry(bool throw_on_unknown_critical_extension = false);

      /**
      * Construct an CRL entry.
      * @param cert the certificate to revoke
      * @param reason the reason code to set in the entry
      */
      CRL_Entry(const X509_Certificate& cert,
                CRL_Code reason = UNSPECIFIED);

   private:
      bool throw_on_unknown_critical;
      MemoryVector<byte> serial;
      X509_Time time;
      CRL_Code reason;
   };

/**
* Test two CRL entries for equality in all fields.
*/
BOTAN_DLL bool operator==(const CRL_Entry&, const CRL_Entry&);

/**
* Test two CRL entries for inequality in at least one field.
*/
BOTAN_DLL bool operator!=(const CRL_Entry&, const CRL_Entry&);

}


namespace Botan {

/**
* This class represents X.509 Certificate Revocation Lists (CRLs).
*/
class BOTAN_DLL X509_CRL : public X509_Object
   {
   public:
      /**
      * This class represents CRL related errors.
      */
      struct BOTAN_DLL X509_CRL_Error : public Exception
         {
         X509_CRL_Error(const std::string& error) :
            Exception("X509_CRL: " + error) {}
         };

      /**
      * Get the entries of this CRL in the form of a vector.
      * @return vector containing the entries of this CRL.
      */
      std::vector<CRL_Entry> get_revoked() const;

      /**
      * Get the issuer DN of this CRL.
      * @return CRLs issuer DN
      */
      X509_DN issuer_dn() const;

      /**
      * Get the AuthorityKeyIdentifier of this CRL.
      * @return this CRLs AuthorityKeyIdentifier
      */
      MemoryVector<byte> authority_key_id() const;

      /**
      * Get the serial number of this CRL.
      * @return CRLs serial number
      */
      u32bit crl_number() const;

      /**
      * Get the CRL's thisUpdate value.
      * @return CRLs thisUpdate
      */
      X509_Time this_update() const;

      /**
      * Get the CRL's nextUpdate value.
      * @return CRLs nextdUpdate
      */
      X509_Time next_update() const;

      /**
      * Construct a CRL from a data source.
      * @param source the data source providing the DER or PEM encoded CRL.
      * @param throw_on_unknown_critical should we throw an exception
      * if an unknown CRL extension marked as critical is encountered.
      */
      X509_CRL(DataSource& source, bool throw_on_unknown_critical = false);

      /**
      * Construct a CRL from a file containing the DER or PEM encoded CRL.
      * @param filename the name of the CRL file
      * @param throw_on_unknown_critical should we throw an exception
      * if an unknown CRL extension marked as critical is encountered.
      */
      X509_CRL(const std::string& filename,
               bool throw_on_unknown_critical = false);
   private:
      void force_decode();

      bool throw_on_unknown_critical;
      std::vector<CRL_Entry> revoked;
      Data_Store info;
   };

}


namespace Botan {

/**
* Luby-Rackoff block cipher construction
*/
class BOTAN_DLL LubyRackoff : public BlockCipher
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      size_t block_size() const { return 2 * hash->output_length(); }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(2, 32, 2);
         }

      void clear();
      std::string name() const;
      BlockCipher* clone() const;

      /**
      * @param hash function to use to form the block cipher
      */
      LubyRackoff(HashFunction* hash);
      ~LubyRackoff() { delete hash; }
   private:
      void key_schedule(const byte[], size_t);

      HashFunction* hash;
      SecureVector<byte> K1, K2;
   };

}


namespace Botan {

/**
* EMSA2 from IEEE 1363
* Useful for Rabin-Williams
*/
class BOTAN_DLL EMSA2 : public EMSA
   {
   public:
      /**
      * @param hash the hash object to use
      */
      EMSA2(HashFunction* hash);
      ~EMSA2() { delete hash; }
   private:
      void update(const byte[], size_t);
      SecureVector<byte> raw_data();

      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator& rng);

      bool verify(const MemoryRegion<byte>&, const MemoryRegion<byte>&,
                  size_t);

      SecureVector<byte> empty_hash;
      HashFunction* hash;
      byte hash_id;
   };

}


namespace Botan {

/**
* Fused multiply-add
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a*b)+c
*/
BigInt BOTAN_DLL mul_add(const BigInt& a,
                         const BigInt& b,
                         const BigInt& c);

/**
* Fused subtract-multiply
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a-b)*c
*/
BigInt BOTAN_DLL sub_mul(const BigInt& a,
                         const BigInt& b,
                         const BigInt& c);

/**
* Return the absolute value
* @param n an integer
* @return absolute value of n
*/
inline BigInt abs(const BigInt& n) { return n.abs(); }

/**
* Compute the greatest common divisor
* @param x a positive integer
* @param y a positive integer
* @return gcd(x,y)
*/
BigInt BOTAN_DLL gcd(const BigInt& x, const BigInt& y);

/**
* Least common multiple
* @param x a positive integer
* @param y a positive integer
* @return z, smallest integer such that z % x == 0 and z % y == 0
*/
BigInt BOTAN_DLL lcm(const BigInt& x, const BigInt& y);

/**
* @param x an integer
* @return (x*x)
*/
BigInt BOTAN_DLL square(const BigInt& x);

/**
* Modular inversion
* @param x a positive integer
* @param modulus a positive integer
* @return y st (x*y) % modulus == 1
*/
BigInt BOTAN_DLL inverse_mod(const BigInt& x,
                             const BigInt& modulus);

/**
* Compute the Jacobi symbol. If n is prime, this is equivalent
* to the Legendre symbol.
* @see http://mathworld.wolfram.com/JacobiSymbol.html
*
* @param a is a non-negative integer
* @param n is an odd integer > 1
* @return (n / m)
*/
s32bit BOTAN_DLL jacobi(const BigInt& a,
                        const BigInt& n);

/**
* Modular exponentation
* @param b an integer base
* @param x a positive exponent
* @param m a positive modulus
* @return (b^x) % m
*/
BigInt BOTAN_DLL power_mod(const BigInt& b,
                           const BigInt& x,
                           const BigInt& m);

/**
* Compute the square root of x modulo a prime using the
* Shanks-Tonnelli algorithm
*
* @param x the input
* @param p the prime
* @return y such that (y*y)%p == x, or -1 if no such integer
*/
BigInt BOTAN_DLL ressol(const BigInt& x, const BigInt& p);

/**
* @param x an integer
* @return count of the zero bits in x, or, equivalently, the largest
* value of n such that 2^n divides x evently
*/
size_t BOTAN_DLL low_zero_bits(const BigInt& x);

/**
* Primality Testing
* @param n a positive integer to test for primality
* @param rng a random number generator
* @param level how hard to test
* @return true if all primality tests passed, otherwise false
*/
bool BOTAN_DLL primality_test(const BigInt& n,
                              RandomNumberGenerator& rng,
                              size_t level = 1);

/**
* Quickly check for primality
* @param n a positive integer to test for primality
* @param rng a random number generator
* @return true if all primality tests passed, otherwise false
*/
inline bool quick_check_prime(const BigInt& n, RandomNumberGenerator& rng)
   { return primality_test(n, rng, 0); }

/**
* Check for primality
* @param n a positive integer to test for primality
* @param rng a random number generator
* @return true if all primality tests passed, otherwise false
*/
inline bool check_prime(const BigInt& n, RandomNumberGenerator& rng)
   { return primality_test(n, rng, 1); }

/**
* Verify primality - this function is slow but useful if you want to
* ensure that a possibly malicious entity did not provide you with
* something that 'looks like' a prime
* @param n a positive integer to test for primality
* @param rng a random number generator
* @return true if all primality tests passed, otherwise false
*/
inline bool verify_prime(const BigInt& n, RandomNumberGenerator& rng)
   { return primality_test(n, rng, 2); }

/**
* Randomly generate a prime
* @param rng a random number generator
* @param bits how large the resulting prime should be in bits
* @param coprime a positive integer the result should be coprime to
* @param equiv a non-negative number that the result should be
               equivalent to modulo equiv_mod
* @param equiv_mod the modulus equiv should be checked against
* @return random prime with the specified criteria
*/
BigInt BOTAN_DLL random_prime(RandomNumberGenerator& rng,
                              size_t bits, const BigInt& coprime = 1,
                              size_t equiv = 1, size_t equiv_mod = 2);

/**
* Return a 'safe' prime, of the form p=2*q+1 with q prime
* @param rng a random number generator
* @param bits is how long the resulting prime should be
* @return prime randomly chosen from safe primes of length bits
*/
BigInt BOTAN_DLL random_safe_prime(RandomNumberGenerator& rng,
                                   size_t bits);

class Algorithm_Factory;

/**
* Generate DSA parameters using the FIPS 186 kosherizer
* @param rng a random number generator
* @param af an algorithm factory
* @param p_out where the prime p will be stored
* @param q_out where the prime q will be stored
* @param pbits how long p will be in bits
* @param qbits how long q will be in bits
* @return random seed used to generate this parameter set
*/
SecureVector<byte> BOTAN_DLL
generate_dsa_primes(RandomNumberGenerator& rng,
                    Algorithm_Factory& af,
                    BigInt& p_out, BigInt& q_out,
                    size_t pbits, size_t qbits);

/**
* Generate DSA parameters using the FIPS 186 kosherizer
* @param rng a random number generator
* @param af an algorithm factory
* @param p_out where the prime p will be stored
* @param q_out where the prime q will be stored
* @param pbits how long p will be in bits
* @param qbits how long q will be in bits
* @param seed the seed used to generate the parameters
* @return true if seed generated a valid DSA parameter set, otherwise
          false. p_out and q_out are only valid if true was returned.
*/
bool BOTAN_DLL
generate_dsa_primes(RandomNumberGenerator& rng,
                    Algorithm_Factory& af,
                    BigInt& p_out, BigInt& q_out,
                    size_t pbits, size_t qbits,
                    const MemoryRegion<byte>& seed);

/**
* The size of the PRIMES[] array
*/
const size_t PRIME_TABLE_SIZE = 6541;

/**
* A const array of all primes less than 65535
*/
extern const u16bit BOTAN_DLL PRIMES[];

}


namespace Botan {

/**
* This class represents an elliptic curve over GF(p)
*/
class BOTAN_DLL CurveGFp
   {
   public:

      /**
      * Create an uninitialized CurveGFp
      */
      CurveGFp() : p_words(0), p_dash(0) {}

      /**
      * Construct the elliptic curve E: y^2 = x^3 + ax + b over GF(p)
      * @param p prime number of the field
      * @param a first coefficient
      * @param b second coefficient
      */
      CurveGFp(const BigInt& p, const BigInt& a, const BigInt& b) :
         p(p), a(a), b(b), p_words(p.sig_words())
         {
         BigInt r(BigInt::Power2, p_words * BOTAN_MP_WORD_BITS);

         p_dash = (((r * inverse_mod(r, p)) - 1) / p).word_at(0);

         r2  = (r * r) % p;
         a_r = (a * r) % p;
         b_r = (b * r) % p;
         }

      // CurveGFp(const CurveGFp& other) = default;
      // CurveGFp& operator=(const CurveGFp& other) = default;

      /**
      * @return curve coefficient a
      */
      const BigInt& get_a() const { return a; }

      /**
      * @return curve coefficient b
      */
      const BigInt& get_b() const { return b; }

      /**
      * Get prime modulus of the field of the curve
      * @return prime modulus of the field of the curve
      */
      const BigInt& get_p() const { return p; }

      /**
      * @return Montgomery parameter r^2 % p
      */
      const BigInt& get_r2() const { return r2; }

      /**
      * @return a * r mod p
      */
      const BigInt& get_a_r() const { return a_r; }

      /**
      * @return b * r mod p
      */
      const BigInt& get_b_r() const { return b_r; }

      /**
      * @return Montgomery parameter p-dash
      */
      word get_p_dash() const { return p_dash; }

      /**
      * @return p.sig_words()
      */
      size_t get_p_words() const { return p_words; }

      /**
      * swaps the states of *this and other, does not throw
      * @param other curve to swap values with
      */
      void swap(CurveGFp& other)
         {
         std::swap(p, other.p);

         std::swap(a, other.a);
         std::swap(b, other.b);

         std::swap(a_r, other.a_r);
         std::swap(b_r, other.b_r);

         std::swap(p_words, other.p_words);

         std::swap(r2, other.r2);
         std::swap(p_dash, other.p_dash);
         }

      /**
      * Equality operator
      * @param other curve to compare with
      * @return true iff this is the same curve as other
      */
      bool operator==(const CurveGFp& other) const
         {
         /*
         Relies on choice of R, but that is fixed by constructor based
         on size of p
         */
         return (p == other.p && a_r == other.a_r && b_r == other.b_r);
         }

   private:
      // Curve parameters
      BigInt p, a, b;

      size_t p_words; // cache of p.sig_words()

      // Montgomery parameters
      BigInt r2, a_r, b_r;
      word p_dash;
   };

/**
* Equality operator
* @param lhs a curve
* @param rhs a curve
* @return true iff lhs is not the same as rhs
*/
inline bool operator!=(const CurveGFp& lhs, const CurveGFp& rhs)
   {
   return !(lhs == rhs);
   }

}

namespace std {

template<> inline
void swap<Botan::CurveGFp>(Botan::CurveGFp& curve1,
                           Botan::CurveGFp& curve2)
   {
   curve1.swap(curve2);
   }

} // namespace std


namespace Botan {

/**
* Exception thrown if you try to convert a zero point to an affine
* coordinate
*/
struct BOTAN_DLL Illegal_Transformation : public Exception
   {
   Illegal_Transformation(const std::string& err =
                          "Requested transformation is not possible") :
      Exception(err) {}
   };

/**
* Exception thrown if some form of illegal point is decoded
*/
struct BOTAN_DLL Illegal_Point : public Exception
   {
   Illegal_Point(const std::string& err = "Malformed ECP point detected") :
      Exception(err) {}
   };

/**
* This class represents one point on a curve of GF(p)
*/
class BOTAN_DLL PointGFp
   {
   public:
      enum Compression_Type {
         UNCOMPRESSED = 0,
         COMPRESSED   = 1,
         HYBRID       = 2
      };

      /**
      * Construct an uninitialized PointGFp
      */
      PointGFp() {}

      /**
      * Construct the zero point
      * @param curve The base curve
      */
      PointGFp(const CurveGFp& curve);

      /**
      * Construct a point from its affine coordinates
      * @param curve the base curve
      * @param x affine x coordinate
      * @param y affine y coordinate
      */
      PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y);

      //PointGFp(const PointGFp& other) = default;
      //PointGFp& operator=(const PointGFp& other) = default;

      /**
      * += Operator
      * @param rhs the PointGFp to add to the local value
      * @result resulting PointGFp
      */
      PointGFp& operator+=(const PointGFp& rhs);

      /**
      * -= Operator
      * @param rhs the PointGFp to subtract from the local value
      * @result resulting PointGFp
      */
      PointGFp& operator-=(const PointGFp& rhs);

      /**
      * *= Operator
      * @param scalar the PointGFp to multiply with *this
      * @result resulting PointGFp
      */
      PointGFp& operator*=(const BigInt& scalar);

      /**
      * Multiplication Operator
      * @param scalar the scalar value
      * @param point the point value
      * @return scalar*point on the curve
      */
      friend BOTAN_DLL PointGFp operator*(const BigInt& scalar, const PointGFp& point);

      /**
      * Multiexponentiation
      * @param p1 a point
      * @param z1 a scalar
      * @param p2 a point
      * @param z2 a scalar
      * @result (p1 * z1 + p2 * z2)
      */
      friend BOTAN_DLL PointGFp multi_exponentiate(
        const PointGFp& p1, const BigInt& z1,
        const PointGFp& p2, const BigInt& z2);

      /**
      * Negate this point
      * @return *this
      */
      PointGFp& negate()
         {
         if(!is_zero())
            coord_y = curve.get_p() - coord_y;
         return *this;
         }

      /**
      * Return base curve of this point
      * @result the curve over GF(p) of this point
      */
      const CurveGFp& get_curve() const { return curve; }

      /**
      * get affine x coordinate
      * @result affine x coordinate
      */
      BigInt get_affine_x() const;

      /**
      * get affine y coordinate
      * @result affine y coordinate
      */
      BigInt get_affine_y() const;

      /**
      * Is this the point at infinity?
      * @result true, if this point is at infinity, false otherwise.
      */
      bool is_zero() const
         { return (coord_x.is_zero() && coord_z.is_zero()); }

      /**
      * Checks whether the point is to be found on the underlying
      * curve; used to prevent fault attacks.
      * @return if the point is on the curve
      */
      bool on_the_curve() const;

      /**
      * swaps the states of *this and other, does not throw!
      * @param other the object to swap values with
      */
      void swap(PointGFp& other);

      /**
      * Equality operator
      */
      bool operator==(const PointGFp& other) const;
   private:

      /**
      * Montgomery multiplication/reduction
      * @param x first multiplicand
      * @param y second multiplicand
      * @param workspace temp space
      */
      BigInt monty_mult(const BigInt& x, const BigInt& y) const
         {
         BigInt result;
         monty_mult(result, x, y);
         return result;
         }

      /**
      * Montgomery multiplication/reduction
      * @warning z cannot alias x or y
      * @param z output
      * @param x first multiplicand
      * @param y second multiplicand
      */
      void monty_mult(BigInt& z, const BigInt& x, const BigInt& y) const;

      /**
      * Montgomery squaring/reduction
      * @param x multiplicand
      */
      BigInt monty_sqr(const BigInt& x) const
         {
         BigInt result;
         monty_sqr(result, x);
         return result;
         }

      /**
      * Montgomery squaring/reduction
      * @warning z cannot alias x
      * @param z output
      * @param x multiplicand
      */
      void monty_sqr(BigInt& z, const BigInt& x) const;

      /**
      * Point addition
      * @param workspace temp space, at least 11 elements
      */
      void add(const PointGFp& other, std::vector<BigInt>& workspace);

      /**
      * Point doubling
      * @param workspace temp space, at least 9 elements
      */
      void mult2(std::vector<BigInt>& workspace);

      CurveGFp curve;
      BigInt coord_x, coord_y, coord_z;
      mutable SecureVector<word> ws; // workspace for Montgomery
   };

// relational operators
inline bool operator!=(const PointGFp& lhs, const PointGFp& rhs)
   {
   return !(rhs == lhs);
   }

// arithmetic operators
inline PointGFp operator-(const PointGFp& lhs)
   {
   return PointGFp(lhs).negate();
   }

inline PointGFp operator+(const PointGFp& lhs, const PointGFp& rhs)
   {
   PointGFp tmp(lhs);
   return tmp += rhs;
   }

inline PointGFp operator-(const PointGFp& lhs, const PointGFp& rhs)
   {
   PointGFp tmp(lhs);
   return tmp -= rhs;
   }

inline PointGFp operator*(const PointGFp& point, const BigInt& scalar)
   {
   return scalar * point;
   }

// encoding and decoding
SecureVector<byte> BOTAN_DLL EC2OSP(const PointGFp& point, byte format);

PointGFp BOTAN_DLL OS2ECP(const byte data[], size_t data_len,
                          const CurveGFp& curve);

inline PointGFp OS2ECP(const MemoryRegion<byte>& data, const CurveGFp& curve)
   { return OS2ECP(&data[0], data.size(), curve); }

}

namespace std {

template<>
inline void swap<Botan::PointGFp>(Botan::PointGFp& x, Botan::PointGFp& y)
   { x.swap(y); }

}


namespace Botan {

/**
* This class represents elliptic curce domain parameters
*/
enum EC_Group_Encoding {
   EC_DOMPAR_ENC_EXPLICIT = 0,
   EC_DOMPAR_ENC_IMPLICITCA = 1,
   EC_DOMPAR_ENC_OID = 2
};

/**
* Class representing an elliptic curve
*/
class BOTAN_DLL EC_Group
   {
   public:

      /**
      * Construct Domain paramers from specified parameters
      * @param curve elliptic curve
      * @param base_point a base point
      * @param order the order of the base point
      * @param cofactor the cofactor
      */
      EC_Group(const CurveGFp& curve,
               const PointGFp& base_point,
               const BigInt& order,
               const BigInt& cofactor) :
         curve(curve),
         base_point(base_point),
         order(order),
         cofactor(cofactor),
         oid("")
         {}

      /**
      * Decode a BER encoded ECC domain parameter set
      * @param ber_encoding the bytes of the BER encoding
      */
      EC_Group(const MemoryRegion<byte>& ber_encoding);

      /**
      * Create an EC domain by OID (or throw if unknown)
      * @param oid the OID of the EC domain to create
      */
      EC_Group(const OID& oid);

      /**
      * Create an EC domain from PEM encoding (as from PEM_encode),
      * or from an OID name (eg "secp160r1", or "1.3.132.0.8")
      * @param pem_or_oid PEM-encoded data, or an OID
      */
      EC_Group(const std::string& pem_or_oid = "");

      /**
      * Create the DER encoding of this domain
      * @param form of encoding to use
      * @returns bytes encododed as DER
      */
      SecureVector<byte> DER_encode(EC_Group_Encoding form) const;

      /**
      * Return the PEM encoding (always in explicit form)
      * @return string containing PEM data
      */
      std::string PEM_encode() const;

      /**
      * Return domain parameter curve
      * @result domain parameter curve
      */
      const CurveGFp& get_curve() const { return curve; }

      /**
      * Return domain parameter curve
      * @result domain parameter curve
      */
      const PointGFp& get_base_point() const { return base_point; }

      /**
      * Return the order of the base point
      * @result order of the base point
      */
      const BigInt& get_order() const { return order; }

      /**
      * Return the cofactor
      * @result the cofactor
      */
      const BigInt& get_cofactor() const { return cofactor; }

      bool initialized() const { return !base_point.is_zero(); }

      /**
      * Return the OID of these domain parameters
      * @result the OID
      */
      std::string get_oid() const { return oid; }

      bool operator==(const EC_Group& other) const
         {
         return ((get_curve() == other.get_curve()) &&
                 (get_base_point() == other.get_base_point()) &&
                 (get_order() == other.get_order()) &&
                 (get_cofactor() == other.get_cofactor()));
         }

   private:
      CurveGFp curve;
      PointGFp base_point;
      BigInt order, cofactor;
      std::string oid;
   };

inline bool operator!=(const EC_Group& lhs,
                       const EC_Group& rhs)
   {
   return !(lhs == rhs);
   }

// For compatability with 1.8
typedef EC_Group EC_Domain_Params;

}


namespace Botan {

/**
* User Interface
* Only really used for callbacks for PKCS #8 decryption
*/
class BOTAN_DLL User_Interface
   {
   public:
      enum UI_Result { OK, CANCEL_ACTION };

      virtual std::string get_passphrase(const std::string&,
                                         const std::string&,
                                         UI_Result&) const;
      User_Interface(const std::string& = "");
      virtual ~User_Interface() {}
   protected:
      std::string preset_passphrase;
      mutable bool first_try;
   };

}


namespace Botan {

/**
* PKCS #8 General Exception
*/
struct BOTAN_DLL PKCS8_Exception : public Decoding_Error
   {
   PKCS8_Exception(const std::string& error) :
      Decoding_Error("PKCS #8: " + error) {}
   };

/**
* This namespace contains functions for handling PKCS #8 private keys
*/
namespace PKCS8 {

/**
* BER encode a private key
* @param key the private key to encode
* @return BER encoded key
*/
BOTAN_DLL SecureVector<byte> BER_encode(const Private_Key& key);

/**
* Get a string containing a PEM encoded private key.
* @param key the key to encode
* @return encoded key
*/
BOTAN_DLL std::string PEM_encode(const Private_Key& key);

/**
* Encrypt a key using PKCS #8 encryption
* @param key the key to encode
* @param rng the rng to use
* @param pass the password to use for encryption
* @param pbe_algo the name of the desired password-based encryption
         algorithm; if empty ("") a reasonable (portable/secure)
         default will be chosen.
* @return encrypted key in binary BER form
*/
BOTAN_DLL SecureVector<byte> BER_encode(const Private_Key& key,
                                        RandomNumberGenerator& rng,
                                        const std::string& pass,
                                        const std::string& pbe_algo = "");

/**
* Get a string containing a PEM encoded private key, encrypting it with a
* password.
* @param key the key to encode
* @param rng the rng to use
* @param pass the password to use for encryption
* @param pbe_algo the name of the desired password-based encryption
         algorithm; if empty ("") a reasonable (portable/secure)
         default will be chosen.
* @return encrypted key in PEM form
*/
BOTAN_DLL std::string PEM_encode(const Private_Key& key,
                                 RandomNumberGenerator& rng,
                                 const std::string& pass,
                                 const std::string& pbe_algo = "");


/**
* Encode a private key into a pipe.
* @deprecated Use PEM_encode or BER_encode instead
*
* @param key the private key to encode
* @param pipe the pipe to feed the encoded key into
* @param encoding the encoding type to use
*/
BOTAN_DEPRECATED("Use PEM_encode or BER_encode")
inline void encode(const Private_Key& key,
                   Pipe& pipe,
                   X509_Encoding encoding = PEM)
   {
   if(encoding == PEM)
      pipe.write(PKCS8::PEM_encode(key));
   else
      pipe.write(PKCS8::BER_encode(key));
   }

/**
* Encode and encrypt a private key into a pipe.
* @deprecated Use PEM_encode or BER_encode instead
*
* @param key the private key to encode
* @param pipe the pipe to feed the encoded key into
* @param pass the password to use for encryption
* @param rng the rng to use
* @param pbe_algo the name of the desired password-based encryption
         algorithm; if empty ("") a reasonable (portable/secure)
         default will be chosen.
* @param encoding the encoding type to use
*/
BOTAN_DEPRECATED("Use PEM_encode or BER_encode")
inline void encrypt_key(const Private_Key& key,
                        Pipe& pipe,
                        RandomNumberGenerator& rng,
                        const std::string& pass,
                        const std::string& pbe_algo = "",
                        X509_Encoding encoding = PEM)
   {
   if(encoding == PEM)
      pipe.write(PKCS8::PEM_encode(key, rng, pass, pbe_algo));
   else
      pipe.write(PKCS8::BER_encode(key, rng, pass, pbe_algo));
   }

/**
* Load a key from a data source.
* @param source the data source providing the encoded key
* @param rng the rng to use
* @param ui the user interface to be used for passphrase dialog
* @return loaded private key object
*/
BOTAN_DLL Private_Key* load_key(DataSource& source,
                                RandomNumberGenerator& rng,
                                const User_Interface& ui);

/** Load a key from a data source.
* @param source the data source providing the encoded key
* @param rng the rng to use
* @param pass the passphrase to decrypt the key. Provide an empty
* string if the key is not encoded.
* @return loaded private key object
*/
BOTAN_DLL Private_Key* load_key(DataSource& source,
                                RandomNumberGenerator& rng,
                                const std::string& pass = "");

/**
* Load a key from a file.
* @param filename the path to the file containing the encoded key
* @param rng the rng to use
* @param ui the user interface to be used for passphrase dialog
* @return loaded private key object
*/
BOTAN_DLL Private_Key* load_key(const std::string& filename,
                                RandomNumberGenerator& rng,
                                const User_Interface& ui);

/** Load a key from a file.
* @param filename the path to the file containing the encoded key
* @param rng the rng to use
* @param pass the passphrase to decrypt the key. Provide an empty
* string if the key is not encoded.
* @return loaded private key object
*/
BOTAN_DLL Private_Key* load_key(const std::string& filename,
                                RandomNumberGenerator& rng,
                                const std::string& pass = "");

/**
* Copy an existing encoded key object.
* @param key the key to copy
* @param rng the rng to use
* @return new copy of the key
*/
BOTAN_DLL Private_Key* copy_key(const Private_Key& key,
                                RandomNumberGenerator& rng);

}

}


namespace Botan {

/**
* This class represents abstract ECC public keys. When encoding a key
* via an encoder that can be accessed via the corresponding member
* functions, the key will decide upon its internally stored encoding
* information whether to encode itself with or without domain
* parameters, or using the domain parameter oid. Furthermore, a public
* key without domain parameters can be decoded. In that case, it
* cannot be used for verification until its domain parameters are set
* by calling the corresponding member function.
*/
class BOTAN_DLL EC_PublicKey : public virtual Public_Key
   {
   public:
      EC_PublicKey(const EC_Group& dom_par,
                   const PointGFp& pub_point);

      EC_PublicKey(const AlgorithmIdentifier& alg_id,
                   const MemoryRegion<byte>& key_bits);

      /**
      * Get the public point of this key.
      * @throw Invalid_State is thrown if the
      * domain parameters of this point are not set
      * @result the public point of this key
      */
      const PointGFp& public_point() const { return public_key; }

      AlgorithmIdentifier algorithm_identifier() const;

      MemoryVector<byte> x509_subject_public_key() const;

      bool check_key(RandomNumberGenerator& rng,
                     bool strong) const;

      /**
      * Get the domain parameters of this key.
      * @throw Invalid_State is thrown if the
      * domain parameters of this point are not set
      * @result the domain parameters of this key
      */
      const EC_Group& domain() const { return domain_params; }

      /**
      * Set the domain parameter encoding to be used when encoding this key.
      * @param enc the encoding to use
      */
      void set_parameter_encoding(EC_Group_Encoding enc);

      /**
      * Return the DER encoding of this keys domain in whatever format
      * is preset for this particular key
      */
      MemoryVector<byte> DER_domain() const
         { return domain().DER_encode(domain_format()); }

      /**
      * Get the domain parameter encoding to be used when encoding this key.
      * @result the encoding to use
      */
      EC_Group_Encoding domain_format() const
         { return domain_encoding; }
   protected:
      EC_PublicKey() : domain_encoding(EC_DOMPAR_ENC_EXPLICIT) {}

      EC_Group domain_params;
      PointGFp public_key;
      EC_Group_Encoding domain_encoding;
   };

/**
* This abstract class represents ECC private keys
*/
class BOTAN_DLL EC_PrivateKey : public virtual EC_PublicKey,
                                public virtual Private_Key
   {
   public:
     EC_PrivateKey(RandomNumberGenerator& rng,
                   const EC_Group& domain,
                   const BigInt& private_key);

      EC_PrivateKey(const AlgorithmIdentifier& alg_id,
                    const MemoryRegion<byte>& key_bits);

      MemoryVector<byte> pkcs8_private_key() const;

      /**
      * Get the private key value of this key object.
      * @result the private key value of this key object
      */
      const BigInt& private_value() const;
   protected:
      EC_PrivateKey() {}

      BigInt private_key;
   };

}


namespace Botan {

/**
* GOST-34.10 Public Key
*/
class BOTAN_DLL GOST_3410_PublicKey : public virtual EC_PublicKey
   {
   public:

      /**
      * Construct a public key from a given public point.
      * @param dom_par the domain parameters associated with this key
      * @param public_point the public point defining this key
      */
      GOST_3410_PublicKey(const EC_Group& dom_par,
                          const PointGFp& public_point) :
         EC_PublicKey(dom_par, public_point) {}

      /**
      * Construct from X.509 algorithm id and subject public key bits
      */
      GOST_3410_PublicKey(const AlgorithmIdentifier& alg_id,
                          const MemoryRegion<byte>& key_bits);

      /**
      * Get this keys algorithm name.
      * @result this keys algorithm name
      */
      std::string algo_name() const { return "GOST-34.10"; }

      AlgorithmIdentifier algorithm_identifier() const;

      MemoryVector<byte> x509_subject_public_key() const;

      /**
      * Get the maximum number of bits allowed to be fed to this key.
      * This is the bitlength of the order of the base point.

      * @result the maximum number of input bits
      */
      size_t max_input_bits() const { return domain().get_order().bits(); }

      size_t message_parts() const { return 2; }

      size_t message_part_size() const
         { return domain().get_order().bytes(); }

   protected:
      GOST_3410_PublicKey() {}
   };

/**
* GOST-34.10 Private Key
*/
class BOTAN_DLL GOST_3410_PrivateKey : public GOST_3410_PublicKey,
                                       public EC_PrivateKey
   {
   public:

      GOST_3410_PrivateKey(const AlgorithmIdentifier& alg_id,
                           const MemoryRegion<byte>& key_bits) :
         EC_PrivateKey(alg_id, key_bits) {}

      /**
      * Generate a new private key
      * @param rng a random number generator
      * @param domain parameters to used for this key
      * @param x the private key; if zero, a new random key is generated
      */
      GOST_3410_PrivateKey(RandomNumberGenerator& rng,
                           const EC_Group& domain,
                           const BigInt& x = 0) :
         EC_PrivateKey(rng, domain, x) {}

      AlgorithmIdentifier pkcs8_algorithm_identifier() const
         { return EC_PublicKey::algorithm_identifier(); }
   };

/**
* GOST-34.10 signature operation
*/
class BOTAN_DLL GOST_3410_Signature_Operation : public PK_Ops::Signature
   {
   public:
      GOST_3410_Signature_Operation(const GOST_3410_PrivateKey& gost_3410);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return order.bytes(); }
      size_t max_input_bits() const { return order.bits(); }

      SecureVector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);

   private:
      const PointGFp& base_point;
      const BigInt& order;
      const BigInt& x;
   };

/**
* GOST-34.10 verification operation
*/
class BOTAN_DLL GOST_3410_Verification_Operation : public PK_Ops::Verification
   {
   public:
      GOST_3410_Verification_Operation(const GOST_3410_PublicKey& gost);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return order.bytes(); }
      size_t max_input_bits() const { return order.bits(); }

      bool with_recovery() const { return false; }

      bool verify(const byte msg[], size_t msg_len,
                  const byte sig[], size_t sig_len);
   private:
      const PointGFp& base_point;
      const PointGFp& public_point;
      const BigInt& order;
   };

}


namespace Botan {

/**
* MDx Hash Function Base Class
*/
class BOTAN_DLL MDx_HashFunction : public HashFunction
   {
   public:
      /**
      * @param block_length is the number of bytes per block
      * @param big_byte_endian specifies if the hash uses big-endian bytes
      * @param big_bit_endian specifies if the hash uses big-endian bits
      * @param counter_size specifies the size of the counter var in bytes
      */
      MDx_HashFunction(size_t block_length,
                       bool big_byte_endian,
                       bool big_bit_endian,
                       size_t counter_size = 8);

      size_t hash_block_size() const { return buffer.size(); }
   protected:
      void add_data(const byte input[], size_t length);
      void final_result(byte output[]);

      /**
      * Run the hash's compression function over a set of blocks
      * @param blocks the input
      * @param block_n the number of blocks
      */
      virtual void compress_n(const byte blocks[], size_t block_n) = 0;

      void clear();

      /**
      * Copy the output to the buffer
      * @param buffer to put the output into
      */
      virtual void copy_out(byte buffer[]) = 0;

      /**
      * Write the count, if used, to this spot
      * @param out where to write the counter to
      */
      virtual void write_count(byte out[]);
   private:
      SecureVector<byte> buffer;
      u64bit count;
      size_t position;

      const bool BIG_BYTE_ENDIAN, BIG_BIT_ENDIAN;
      const size_t COUNT_SIZE;
   };

}


namespace Botan {

/**
* HAS-160, a Korean hash function standardized in
* TTAS.KO-12.0011/R1. Used in conjuction with KCDSA
*/
class BOTAN_DLL HAS_160 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "HAS-160"; }
      size_t output_length() const { return 20; }
      HashFunction* clone() const { return new HAS_160; }

      void clear();

      HAS_160() : MDx_HashFunction(64, false, true), X(20), digest(5)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u32bit> X, digest;
   };

}


namespace Botan {

/**
* This class represents the Library Initialization/Shutdown Object. It
* has to exceed the lifetime of any Botan object used in an
* application.  You can call initialize/deinitialize or use
* LibraryInitializer in the RAII style.
*/
class BOTAN_DLL LibraryInitializer
   {
   public:
      /**
      * Initialize the library
      * @param options a string listing initialization options
      */
      static void initialize(const std::string& options = "");

      /**
      * Shutdown the library
      */
      static void deinitialize();

      /**
      * Initialize the library
      * @param options a string listing initialization options
      */
      LibraryInitializer(const std::string& options = "")
         { LibraryInitializer::initialize(options); }

      ~LibraryInitializer() { LibraryInitializer::deinitialize(); }
   };

}


namespace Botan {

/*
* Forward declare to avoid recursive dependency between this header
* and libstate.h
*/
class Library_State;

/**
* Namespace for management of the global state
*/
namespace Global_State_Management {

/**
* Access the global library state
* @return reference to the global library state
*/
BOTAN_DLL Library_State& global_state();

/**
* Set the global state object
* @param state the new global state to use
*/
BOTAN_DLL void set_global_state(Library_State* state);

/**
* Set the global state object unless it is already set
* @param state the new global state to use
* @return true if the state parameter is now being used as the global
*         state, or false if one was already set, in which case the
*         parameter was deleted immediately
*/
BOTAN_DLL bool set_global_state_unless_set(Library_State* state);

/**
* Swap the current state for another
* @param new_state the new state object to use
* @return previous state (or NULL if none)
*/
BOTAN_DLL Library_State* swap_global_state(Library_State* new_state);

/**
* Query if the library is currently initialized
* @return true iff the library is initialized
*/
BOTAN_DLL bool global_state_exists();

}

/*
* Insert into Botan ns for convenience/backwards compatability
*/
using Global_State_Management::global_state;

}


namespace Botan {

/**
* Forward declarations (don't need full definitions here)
*/
class BlockCipher;
class StreamCipher;
class HashFunction;
class MessageAuthenticationCode;
class PBKDF;

template<typename T> class Algorithm_Cache;

class Engine;
class Mutex_Factory;

/**
* Algorithm Factory
*/
class BOTAN_DLL Algorithm_Factory
   {
   public:
      /**
      * Constructor
      * @param mf a mutex factory
      */
      Algorithm_Factory(Mutex_Factory& mf);

      /**
      * Destructor
      */
      ~Algorithm_Factory();

      /**
      * @param engine to add (Algorithm_Factory takes ownership)
      */
      void add_engine(Engine* engine);

      /**
      * Clear out any cached objects
      */
      void clear_caches();

      /**
      * @param algo_spec the algorithm we are querying
      * @returns list of providers of this algorithm
      */
      std::vector<std::string> providers_of(const std::string& algo_spec);

      /**
      * @param algo_spec the algorithm we are setting a provider for
      * @param provider the provider we would like to use
      */
      void set_preferred_provider(const std::string& algo_spec,
                                  const std::string& provider);

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to const prototype object, ready to clone(), or NULL
      */
      const BlockCipher*
         prototype_block_cipher(const std::string& algo_spec,
                                const std::string& provider = "");

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to freshly created instance of the request algorithm
      */
      BlockCipher* make_block_cipher(const std::string& algo_spec,
                                     const std::string& provider = "");

      /**
      * @param algo the algorithm to add
      * @param provider the provider of this algorithm
      */
      void add_block_cipher(BlockCipher* algo, const std::string& provider);

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to const prototype object, ready to clone(), or NULL
      */
      const StreamCipher*
         prototype_stream_cipher(const std::string& algo_spec,
                                 const std::string& provider = "");

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to freshly created instance of the request algorithm
      */
      StreamCipher* make_stream_cipher(const std::string& algo_spec,
                                       const std::string& provider = "");

      /**
      * @param algo the algorithm to add
      * @param provider the provider of this algorithm
      */
      void add_stream_cipher(StreamCipher* algo, const std::string& provider);

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to const prototype object, ready to clone(), or NULL
      */
      const HashFunction*
         prototype_hash_function(const std::string& algo_spec,
                                 const std::string& provider = "");

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to freshly created instance of the request algorithm
      */
      HashFunction* make_hash_function(const std::string& algo_spec,
                                       const std::string& provider = "");

      /**
      * @param algo the algorithm to add
      * @param provider the provider of this algorithm
      */
      void add_hash_function(HashFunction* algo, const std::string& provider);

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to const prototype object, ready to clone(), or NULL
      */
      const MessageAuthenticationCode*
         prototype_mac(const std::string& algo_spec,
                       const std::string& provider = "");

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to freshly created instance of the request algorithm
      */
      MessageAuthenticationCode* make_mac(const std::string& algo_spec,
                                          const std::string& provider = "");

      /**
      * @param algo the algorithm to add
      * @param provider the provider of this algorithm
      */
      void add_mac(MessageAuthenticationCode* algo,
                   const std::string& provider);

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to const prototype object, ready to clone(), or NULL
      */
      const PBKDF* prototype_pbkdf(const std::string& algo_spec,
                                   const std::string& provider = "");

      /**
      * @param algo_spec the algorithm we want
      * @param provider the provider we would like to use
      * @returns pointer to freshly created instance of the request algorithm
      */
      PBKDF* make_pbkdf(const std::string& algo_spec,
                        const std::string& provider = "");

      /**
      * @param algo the algorithm to add
      * @param provider the provider of this algorithm
      */
      void add_pbkdf(PBKDF* algo, const std::string& provider);

      /**
      * An iterator for the engines in this factory
      * @deprecated Avoid in new code
      */
      class BOTAN_DLL Engine_Iterator
         {
         public:
            /**
            * @return next engine in the sequence
            */
            Engine* next() { return af.get_engine_n(n++); }

            /**
            * @param a an algorithm factory
            */
            Engine_Iterator(const Algorithm_Factory& a) :
               af(a) { n = 0; }
         private:
            const Algorithm_Factory& af;
            size_t n;
         };
      friend class Engine_Iterator;

   private:
      Algorithm_Factory(const Algorithm_Factory&) {}
      Algorithm_Factory& operator=(const Algorithm_Factory&)
         { return (*this); }

      Engine* get_engine_n(size_t n) const;

      std::vector<Engine*> engines;

      Algorithm_Cache<BlockCipher>* block_cipher_cache;
      Algorithm_Cache<StreamCipher>* stream_cipher_cache;
      Algorithm_Cache<HashFunction>* hash_cache;
      Algorithm_Cache<MessageAuthenticationCode>* mac_cache;
      Algorithm_Cache<PBKDF>* pbkdf_cache;
   };

}



namespace Botan {

class Mutex;

/**
* Global state container aka the buritto at the center of it all
*/
class BOTAN_DLL Library_State
   {
   public:
      Library_State();
      ~Library_State();

      /**
      * @param thread_safe should a mutex be used for serialization
      */
      void initialize(bool thread_safe);

      /**
      * @return global Algorithm_Factory
      */
      Algorithm_Factory& algorithm_factory() const;

      /**
      * @return global RandomNumberGenerator
      */
      RandomNumberGenerator& global_rng();

      /**
      * @param name the name of the allocator
      * @return allocator matching this name, or NULL
      */
      Allocator* get_allocator(const std::string& name = "") const;

      /**
      * Add a new allocator to the list of available ones
      * @param alloc the allocator to add
      */
      void add_allocator(Allocator* alloc);

      /**
      * Set the default allocator
      * @param name the name of the allocator to use as the default
      */
      void set_default_allocator(const std::string& name);

      /**
      * Get a parameter value as std::string.
      * @param section the section of the desired key
      * @param key the desired keys name
      * @result the value of the parameter
      */
      std::string get(const std::string& section,
                      const std::string& key) const;

      /**
      * Check whether a certain parameter is set or not.
      * @param section the section of the desired key
      * @param key the desired keys name
      * @result true if the parameters value is set,
      * false otherwise
      */
      bool is_set(const std::string& section,
                  const std::string& key) const;

      /**
      * Set a configuration parameter.
      * @param section the section of the desired key
      * @param key the desired keys name
      * @param value the new value
      * @param overwrite if set to true, the parameters value
      * will be overwritten even if it is already set, otherwise
      * no existing values will be overwritten.
      */
      void set(const std::string& section,
               const std::string& key,
               const std::string& value,
               bool overwrite = true);

      /**
      * Add a parameter value to the "alias" section.
      * @param key the name of the parameter which shall have a new alias
      * @param value the new alias
      */
      void add_alias(const std::string& key,
                     const std::string& value);

      /**
      * Resolve an alias.
      * @param alias the alias to resolve.
      * @return what the alias stands for
      */
      std::string deref_alias(const std::string& alias) const;

      /**
      * @return newly created Mutex (free with delete)
      */
      Mutex* get_mutex() const;
   private:
      static RandomNumberGenerator* make_global_rng(Algorithm_Factory& af,
                                                    Mutex* mutex);

      void load_default_config();

      Library_State(const Library_State&) {}
      Library_State& operator=(const Library_State&) { return (*this); }

      class Mutex_Factory* mutex_factory;

      Mutex* global_rng_lock;
      RandomNumberGenerator* global_rng_ptr;

      Mutex* config_lock;
      std::map<std::string, std::string> config;

      Mutex* allocator_lock;
      std::string default_allocator_name;
      std::map<std::string, Allocator*> alloc_factory;
      mutable Allocator* cached_default_allocator;
      std::vector<Allocator*> allocators;

      Algorithm_Factory* m_algorithm_factory;
   };

}



namespace Botan {

/**
* BitBucket is a filter which simply discards all inputs
*/
struct BOTAN_DLL BitBucket : public Filter
   {
   void write(const byte[], size_t) {}

   std::string name() const { return "BitBucket"; }
   };

/**
* This class represents Filter chains. A Filter chain is an ordered
* concatenation of Filters, the input to a Chain sequentially passes
* through all the Filters contained in the Chain.
*/

class BOTAN_DLL Chain : public Fanout_Filter
   {
   public:
      void write(const byte input[], size_t length) { send(input, length); }

      std::string name() const;

      /**
      * Construct a chain of up to four filters. The filters are set
      * up in the same order as the arguments.
      */
      Chain(Filter* = 0, Filter* = 0, Filter* = 0, Filter* = 0);

      /**
      * Construct a chain from range of filters
      * @param filter_arr the list of filters
      * @param length how many filters
      */
      Chain(Filter* filter_arr[], size_t length);
   };

/**
* This class represents a fork filter, whose purpose is to fork the
* flow of data. It causes an input message to result in n messages at
* the end of the filter, where n is the number of forks.
*/
class BOTAN_DLL Fork : public Fanout_Filter
   {
   public:
      void write(const byte input[], size_t length) { send(input, length); }
      void set_port(size_t n) { Fanout_Filter::set_port(n); }

      std::string name() const;

      /**
      * Construct a Fork filter with up to four forks.
      */
      Fork(Filter*, Filter*, Filter* = 0, Filter* = 0);

      /**
      * Construct a Fork from range of filters
      * @param filter_arr the list of filters
      * @param length how many filters
      */
      Fork(Filter* filter_arr[], size_t length);
   };

}


namespace Botan {

/**
* This class represents keyed filters, i.e. filters that have to be
* fed with a key in order to function.
*/
class BOTAN_DLL Keyed_Filter : public Filter
   {
   public:
      /**
      * Set the key of this filter
      * @param key the key to use
      */
      virtual void set_key(const SymmetricKey& key) = 0;

      /**
      * Set the initialization vector of this filter. Note: you should
      * call set_iv() only after you have called set_key()
      * @param iv the initialization vector to use
      */
      virtual void set_iv(const InitializationVector& iv);

      /**
      * Check whether a key length is valid for this filter
      * @param length the key length to be checked for validity
      * @return true if the key length is valid, false otherwise
      */
      virtual bool valid_keylength(size_t length) const = 0;

      /**
      * Check whether an IV length is valid for this filter
      * @param length the IV length to be checked for validity
      * @return true if the IV length is valid, false otherwise
      */
      virtual bool valid_iv_length(size_t length) const
         { return (length == 0); }
   };

}


namespace Botan {

/**
* This class represents abstract data sink objects.
*/
class BOTAN_DLL DataSink : public Filter
   {
   public:
      bool attachable() { return false; }
      DataSink() {}
      virtual ~DataSink() {}
   private:
      DataSink& operator=(const DataSink&) { return (*this); }
      DataSink(const DataSink&);
   };

/**
* This class represents a data sink which writes its output to a stream.
*/
class BOTAN_DLL DataSink_Stream : public DataSink
   {
   public:
      std::string name() const { return identifier; }

      void write(const byte[], size_t);

      /**
      * Construct a DataSink_Stream from a stream.
      * @param stream the stream to write to
      * @param name identifier
      */
      DataSink_Stream(std::ostream& stream,
                      const std::string& name = "<std::ostream>");

      /**
      * Construct a DataSink_Stream from a stream.
      * @param pathname the name of the file to open a stream to
      * @param use_binary indicates whether to treat the file
      * as a binary file or not
      */
      DataSink_Stream(const std::string& pathname,
                      bool use_binary = false);

      ~DataSink_Stream();
   private:
      const std::string identifier;

      std::ostream* sink_p;
      std::ostream& sink;
   };

}



#if defined(BOTAN_HAS_CODEC_FILTERS)

namespace Botan {

/**
* This class represents a Base64 encoder.
*/
class BOTAN_DLL Base64_Encoder : public Filter
   {
   public:
      std::string name() const { return "Base64_Encoder"; }

      /**
      * Input a part of a message to the encoder.
      * @param input the message to input as a byte array
      * @param length the length of the byte array input
      */
      void write(const byte input[], size_t length);

      /**
      * Inform the Encoder that the current message shall be closed.
      */
      void end_msg();

      /**
      * Create a base64 encoder.
      * @param breaks whether to use line breaks in the output
      * @param length the length of the lines of the output
      * @param t_n whether to use a trailing newline
      */
      Base64_Encoder(bool breaks = false, size_t length = 72,
                     bool t_n = false);
   private:
      void encode_and_send(const byte input[], size_t length,
                           bool final_inputs = false);
      void do_output(const byte output[], size_t length);

      const size_t line_length;
      const bool trailing_newline;
      MemoryVector<byte> in, out;
      size_t position, out_position;
   };

/**
* This object represents a Base64 decoder.
*/
class BOTAN_DLL Base64_Decoder : public Filter
   {
   public:
      std::string name() const { return "Base64_Decoder"; }

      /**
      * Input a part of a message to the decoder.
      * @param input the message to input as a byte array
      * @param length the length of the byte array input
      */
      void write(const byte input[], size_t length);

      /**
      * Finish up the current message
      */
      void end_msg();

      /**
      * Create a base64 decoder.
      * @param checking the type of checking that shall be performed by
      * the decoder
      */
      Base64_Decoder(Decoder_Checking checking = NONE);
   private:
      const Decoder_Checking checking;
      MemoryVector<byte> in, out;
      size_t position;
   };

}


namespace Botan {

/**
* Converts arbitrary binary data to hex strings, optionally with
* newlines inserted
*/
class BOTAN_DLL Hex_Encoder : public Filter
   {
   public:
      /**
      * Whether to use uppercase or lowercase letters for the encoded string.
      */
      enum Case { Uppercase, Lowercase };

      std::string name() const { return "Hex_Encoder"; }

      void write(const byte in[], size_t length);
      void end_msg();

      /**
      * Create a hex encoder.
      * @param the_case the case to use in the encoded strings.
      */
      Hex_Encoder(Case the_case);

      /**
      * Create a hex encoder.
      * @param newlines should newlines be used
      * @param line_length if newlines are used, how long are lines
      * @param the_case the case to use in the encoded strings
      */
      Hex_Encoder(bool newlines = false,
                  size_t line_length = 72,
                  Case the_case = Uppercase);
   private:
      void encode_and_send(const byte[], size_t);

      const Case casing;
      const size_t line_length;
      MemoryVector<byte> in, out;
      size_t position, counter;
   };

/**
* Converts hex strings to bytes
*/
class BOTAN_DLL Hex_Decoder : public Filter
   {
   public:
      std::string name() const { return "Hex_Decoder"; }

      void write(const byte[], size_t);
      void end_msg();

      /**
      * Construct a Hex Decoder using the specified
      * character checking.
      * @param checking the checking to use during decoding.
      */
      Hex_Decoder(Decoder_Checking checking = NONE);
   private:
      const Decoder_Checking checking;
      MemoryVector<byte> in, out;
      size_t position;
   };

}

#endif

namespace Botan {

/**
* Stream Cipher Filter.
*/
class BOTAN_DLL StreamCipher_Filter : public Keyed_Filter
   {
   public:

      std::string name() const { return cipher->name(); }

      /**
      * Write input data
      * @param input data
      * @param input_len length of input in bytes
      */
      void write(const byte input[], size_t input_len);

      bool valid_iv_length(size_t iv_len) const
         { return cipher->valid_iv_length(iv_len); }

      /**
      * Set the initialization vector for this filter.
      * @param iv the initialization vector to set
      */
      void set_iv(const InitializationVector& iv);

      /**
      * Set the key of this filter.
      * @param key the key to set
      */
      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      /**
      * Check whether a key length is valid for this filter.
      * @param length the key length to be checked for validity
      * @return true if the key length is valid, false otherwise
      */
      bool valid_keylength(size_t length) const
         { return cipher->valid_keylength(length); }

      /**
      * Construct a stream cipher filter.
      * @param cipher_obj a cipher object to use
      */
      StreamCipher_Filter(StreamCipher* cipher_obj);

      /**
      * Construct a stream cipher filter.
      * @param cipher_obj a cipher object to use
      * @param key the key to use inside this filter
      */
      StreamCipher_Filter(StreamCipher* cipher_obj, const SymmetricKey& key);

      /**
      * Construct a stream cipher filter.
      * @param cipher the name of the desired cipher
      */
      StreamCipher_Filter(const std::string& cipher);

      /**
      * Construct a stream cipher filter.
      * @param cipher the name of the desired cipher
      * @param key the key to use inside this filter
      */
      StreamCipher_Filter(const std::string& cipher, const SymmetricKey& key);

      ~StreamCipher_Filter() { delete cipher; }
   private:
      SecureVector<byte> buffer;
      StreamCipher* cipher;
   };

/**
* Hash Filter.
*/
class BOTAN_DLL Hash_Filter : public Filter
   {
   public:
      void write(const byte input[], size_t len) { hash->update(input, len); }
      void end_msg();

      std::string name() const { return hash->name(); }

      /**
      * Construct a hash filter.
      * @param hash_fun the hash function to use
      * @param len the output length of this filter. Leave the default
      * value 0 if you want to use the full output of the hashfunction
      * hash. Otherwise, specify a smaller value here so that the
      * output of the hash algorithm will be cut off.
      */
      Hash_Filter(HashFunction* hash_fun, size_t len = 0) :
         OUTPUT_LENGTH(len), hash(hash_fun) {}

      /**
      * Construct a hash filter.
      * @param request the name of the hash algorithm to use
      * @param len the output length of this filter. Leave the default
      * value 0 if you want to use the full output of the hashfunction
      * hash. Otherwise, specify a smaller value here so that the
      * output of the hash algorithm will be cut off.
      */
      Hash_Filter(const std::string& request, size_t len = 0);

      ~Hash_Filter() { delete hash; }
   private:
      const size_t OUTPUT_LENGTH;
      HashFunction* hash;
   };

/**
* MessageAuthenticationCode Filter.
*/
class BOTAN_DLL MAC_Filter : public Keyed_Filter
   {
   public:
      void write(const byte input[], size_t len) { mac->update(input, len); }
      void end_msg();

      std::string name() const { return mac->name(); }

      /**
      * Set the key of this filter.
      * @param key the key to set
      */
      void set_key(const SymmetricKey& key) { mac->set_key(key); }

      /**
      * Check whether a key length is valid for this filter.
      * @param length the key length to be checked for validity
      * @return true if the key length is valid, false otherwise
      */
      bool valid_keylength(size_t length) const
         { return mac->valid_keylength(length); }

      /**
      * Construct a MAC filter. The MAC key will be left empty.
      * @param mac_obj the MAC to use
      * @param out_len the output length of this filter. Leave the default
      * value 0 if you want to use the full output of the
      * MAC. Otherwise, specify a smaller value here so that the
      * output of the MAC will be cut off.
      */
      MAC_Filter(MessageAuthenticationCode* mac_obj,
                 size_t out_len = 0) : OUTPUT_LENGTH(out_len)
         {
         mac = mac_obj;
         }

      /**
      * Construct a MAC filter.
      * @param mac_obj the MAC to use
      * @param key the MAC key to use
      * @param out_len the output length of this filter. Leave the default
      * value 0 if you want to use the full output of the
      * MAC. Otherwise, specify a smaller value here so that the
      * output of the MAC will be cut off.
      */
      MAC_Filter(MessageAuthenticationCode* mac_obj,
                 const SymmetricKey& key,
                 size_t out_len = 0) : OUTPUT_LENGTH(out_len)
         {
         mac = mac_obj;
         mac->set_key(key);
         }

      /**
      * Construct a MAC filter. The MAC key will be left empty.
      * @param mac the name of the MAC to use
      * @param len the output length of this filter. Leave the default
      * value 0 if you want to use the full output of the
      * MAC. Otherwise, specify a smaller value here so that the
      * output of the MAC will be cut off.
      */
      MAC_Filter(const std::string& mac, size_t len = 0);

      /**
      * Construct a MAC filter.
      * @param mac the name of the MAC to use
      * @param key the MAC key to use
      * @param len the output length of this filter. Leave the default
      * value 0 if you want to use the full output of the
      * MAC. Otherwise, specify a smaller value here so that the
      * output of the MAC will be cut off.
      */
      MAC_Filter(const std::string& mac, const SymmetricKey& key,
                 size_t len = 0);

      ~MAC_Filter() { delete mac; }
   private:
      const size_t OUTPUT_LENGTH;
      MessageAuthenticationCode* mac;
   };

}


namespace Botan {

/**
* Block Cipher Mode Padding Method
* This class is pretty limited, it cannot deal well with
* randomized padding methods, or any padding method that
* wants to add more than one block. For instance, it should
* be possible to define cipher text stealing mode as simply
* a padding mode for CBC, which happens to consume the last
* two block (and requires use of the block cipher).
*/
class BOTAN_DLL BlockCipherModePaddingMethod
   {
   public:
      /**
      * @param block output buffer
      * @param size of the block
      * @param current_position in the last block
      */
      virtual void pad(byte block[],
                       size_t size,
                       size_t current_position) const = 0;

      /**
      * @param block the last block
      * @param size the of the block
      */
      virtual size_t unpad(const byte block[],
                           size_t size) const = 0;

      /**
      * @param block_size of the cipher
      * @param position in the current block
      * @return number of padding bytes that will be appended
      */
      virtual size_t pad_bytes(size_t block_size,
                               size_t position) const;

      /**
      * @param block_size of the cipher
      * @return valid block size for this padding mode
      */
      virtual bool valid_blocksize(size_t block_size) const = 0;

      /**
      * @return name of the mode
      */
      virtual std::string name() const = 0;

      /**
      * virtual destructor
      */
      virtual ~BlockCipherModePaddingMethod() {}
   };

/**
* PKCS#7 Padding
*/
class BOTAN_DLL PKCS7_Padding : public BlockCipherModePaddingMethod
   {
   public:
      void pad(byte[], size_t, size_t) const;
      size_t unpad(const byte[], size_t) const;
      bool valid_blocksize(size_t) const;
      std::string name() const { return "PKCS7"; }
   };

/**
* ANSI X9.23 Padding
*/
class BOTAN_DLL ANSI_X923_Padding : public BlockCipherModePaddingMethod
   {
   public:
      void pad(byte[], size_t, size_t) const;
      size_t unpad(const byte[], size_t) const;
      bool valid_blocksize(size_t) const;
      std::string name() const { return "X9.23"; }
   };

/**
* One And Zeros Padding
*/
class BOTAN_DLL OneAndZeros_Padding : public BlockCipherModePaddingMethod
   {
   public:
      void pad(byte[], size_t, size_t) const;
      size_t unpad(const byte[], size_t) const;
      bool valid_blocksize(size_t) const;
      std::string name() const { return "OneAndZeros"; }
   };

/**
* Null Padding
*/
class BOTAN_DLL Null_Padding : public BlockCipherModePaddingMethod
   {
   public:
      void pad(byte[], size_t, size_t) const { return; }
      size_t unpad(const byte[], size_t size) const { return size; }
      size_t pad_bytes(size_t, size_t) const { return 0; }
      bool valid_blocksize(size_t) const { return true; }
      std::string name() const { return "NoPadding"; }
   };

}


namespace Botan {

/**
* Key Derivation Function
*/
class BOTAN_DLL KDF : public Algorithm
   {
   public:
      /**
      * Derive a key
      * @param key_len the desired output length in bytes
      * @param secret the secret input
      * @param salt a diversifier
      */
      SecureVector<byte> derive_key(size_t key_len,
                                    const MemoryRegion<byte>& secret,
                                    const std::string& salt = "") const;

      /**
      * Derive a key
      * @param key_len the desired output length in bytes
      * @param secret the secret input
      * @param salt a diversifier
      */
      SecureVector<byte> derive_key(size_t key_len,
                                    const MemoryRegion<byte>& secret,
                                    const MemoryRegion<byte>& salt) const;

      /**
      * Derive a key
      * @param key_len the desired output length in bytes
      * @param secret the secret input
      * @param salt a diversifier
      * @param salt_len size of salt in bytes
      */
      SecureVector<byte> derive_key(size_t key_len,
                                    const MemoryRegion<byte>& secret,
                                    const byte salt[],
                                    size_t salt_len) const;

      /**
      * Derive a key
      * @param key_len the desired output length in bytes
      * @param secret the secret input
      * @param secret_len size of secret in bytes
      * @param salt a diversifier
      */
      SecureVector<byte> derive_key(size_t key_len,
                                    const byte secret[],
                                    size_t secret_len,
                                    const std::string& salt = "") const;

      /**
      * Derive a key
      * @param key_len the desired output length in bytes
      * @param secret the secret input
      * @param secret_len size of secret in bytes
      * @param salt a diversifier
      * @param salt_len size of salt in bytes
      */
      SecureVector<byte> derive_key(size_t key_len,
                                    const byte secret[],
                                    size_t secret_len,
                                    const byte salt[],
                                    size_t salt_len) const;

      void clear() {}

      virtual KDF* clone() const = 0;
   private:
      virtual SecureVector<byte>
         derive(size_t key_len,
                const byte secret[], size_t secret_len,
                const byte salt[], size_t salt_len) const = 0;
   };

/**
* Mask Generation Function
*/
class BOTAN_DLL MGF
   {
   public:
      virtual void mask(const byte in[], size_t in_len,
                              byte out[], size_t out_len) const = 0;

      virtual ~MGF() {}
   };

}


namespace Botan {

/**
* Encoding Method for Encryption
*/
class BOTAN_DLL EME
   {
   public:
      /**
      * Return the maximum input size in bytes we can support
      * @param keybits the size of the key in bits
      * @return upper bound of input in bytes
      */
      virtual size_t maximum_input_size(size_t keybits) const = 0;

      /**
      * Encode an input
      * @param in the plaintext
      * @param in_length length of plaintext in bytes
      * @param key_length length of the key in bits
      * @param rng a random number generator
      * @return encoded plaintext
      */
      SecureVector<byte> encode(const byte in[],
                                size_t in_length,
                                size_t key_length,
                                RandomNumberGenerator& rng) const;

      /**
      * Encode an input
      * @param in the plaintext
      * @param key_length length of the key in bits
      * @param rng a random number generator
      * @return encoded plaintext
      */
      SecureVector<byte> encode(const MemoryRegion<byte>& in,
                                size_t key_length,
                                RandomNumberGenerator& rng) const;

      /**
      * Decode an input
      * @param in the encoded plaintext
      * @param in_length length of encoded plaintext in bytes
      * @param key_length length of the key in bits
      * @return plaintext
      */
      SecureVector<byte> decode(const byte in[],
                                size_t in_length,
                                size_t key_length) const;

      /**
      * Decode an input
      * @param in the encoded plaintext
      * @param key_length length of the key in bits
      * @return plaintext
      */
      SecureVector<byte> decode(const MemoryRegion<byte>& in,
                                size_t key_length) const;

      virtual ~EME() {}
   private:
      /**
      * Encode an input
      * @param in the plaintext
      * @param in_length length of plaintext in bytes
      * @param key_length length of the key in bits
      * @param rng a random number generator
      * @return encoded plaintext
      */
      virtual SecureVector<byte> pad(const byte in[],
                                     size_t in_length,
                                     size_t key_length,
                                     RandomNumberGenerator& rng) const = 0;

      /**
      * Decode an input
      * @param in the encoded plaintext
      * @param in_length length of encoded plaintext in bytes
      * @param key_length length of the key in bits
      * @return plaintext
      */
      virtual SecureVector<byte> unpad(const byte in[],
                                       size_t in_length,
                                       size_t key_length) const = 0;
   };

}


namespace Botan {

/**
* Retrieve an object prototype from the global factory
* @param algo_spec an algorithm name
* @return constant prototype object (use clone to create usable object),
          library retains ownership
*/
inline const BlockCipher*
retrieve_block_cipher(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.prototype_block_cipher(algo_spec);
   }

/**
* Retrieve an object prototype from the global factory
* @param algo_spec an algorithm name
* @return constant prototype object (use clone to create usable object),
          library retains ownership
*/
inline const StreamCipher*
retrieve_stream_cipher(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.prototype_stream_cipher(algo_spec);
   }

/**
* Retrieve an object prototype from the global factory
* @param algo_spec an algorithm name
* @return constant prototype object (use clone to create usable object),
          library retains ownership
*/
inline const HashFunction*
retrieve_hash(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.prototype_hash_function(algo_spec);
   }

/**
* Retrieve an object prototype from the global factory
* @param algo_spec an algorithm name
* @return constant prototype object (use clone to create usable object),
          library retains ownership
*/
inline const MessageAuthenticationCode*
retrieve_mac(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.prototype_mac(algo_spec);
   }

/*
* Get an algorithm object
*  NOTE: these functions create and return new objects, letting the
* caller assume ownership of them
*/

/**
* Block cipher factory method.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the desired block cipher
* @return pointer to the block cipher object
*/
inline BlockCipher* get_block_cipher(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.make_block_cipher(algo_spec);
   }

/**
* Stream cipher factory method.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the desired stream cipher
* @return pointer to the stream cipher object
*/
inline StreamCipher* get_stream_cipher(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.make_stream_cipher(algo_spec);
   }

/**
* Hash function factory method.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the desired hash function
* @return pointer to the hash function object
*/
inline HashFunction* get_hash(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.make_hash_function(algo_spec);
   }

/**
* MAC factory method.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the desired MAC
* @return pointer to the MAC object
*/
inline MessageAuthenticationCode* get_mac(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return af.make_mac(algo_spec);
   }

/**
* Password based key derivation function factory method
* @param algo_spec the name of the desired PBKDF algorithm
* @return pointer to newly allocated object of that type
*/
BOTAN_DLL PBKDF* get_pbkdf(const std::string& algo_spec);

/**
* @deprecated Use get_pbkdf
* @param algo_spec the name of the desired algorithm
* @return pointer to newly allocated object of that type
*/
inline PBKDF* get_s2k(const std::string& algo_spec)
   {
   return get_pbkdf(algo_spec);
   }

/*
* Get an EMSA/EME/KDF/MGF function
*/
// NOTE: these functions create and return new objects, letting the
// caller assume ownership of them

/**
* Factory method for EME (message-encoding methods for encryption) objects
* @param algo_spec the name of the EME to create
* @return pointer to newly allocated object of that type
*/
BOTAN_DLL EME*  get_eme(const std::string& algo_spec);

/**
* Factory method for EMSA (message-encoding methods for signatures
* with appendix) objects
* @param algo_spec the name of the EME to create
* @return pointer to newly allocated object of that type
*/
BOTAN_DLL EMSA* get_emsa(const std::string& algo_spec);

/**
* Factory method for KDF (key derivation function)
* @param algo_spec the name of the KDF to create
* @return pointer to newly allocated object of that type
*/
BOTAN_DLL KDF*  get_kdf(const std::string& algo_spec);

/*
* Get a cipher object
*/

/**
* Factory method for general symmetric cipher filters.
* @param algo_spec the name of the desired cipher
* @param key the key to be used for encryption/decryption performed by
* the filter
* @param iv the initialization vector to be used
* @param direction determines whether the filter will be an encrypting
* or decrypting filter
* @return pointer to newly allocated encryption or decryption filter
*/
BOTAN_DLL Keyed_Filter* get_cipher(const std::string& algo_spec,
                                   const SymmetricKey& key,
                                   const InitializationVector& iv,
                                   Cipher_Dir direction);

/**
* Factory method for general symmetric cipher filters.
* @param algo_spec the name of the desired cipher
* @param key the key to be used for encryption/decryption performed by
* the filter
* @param direction determines whether the filter will be an encrypting
* or decrypting filter
* @return pointer to the encryption or decryption filter
*/
BOTAN_DLL Keyed_Filter* get_cipher(const std::string& algo_spec,
                                   const SymmetricKey& key,
                                   Cipher_Dir direction);

/**
* Factory method for general symmetric cipher filters. No key will be
* set in the filter.
*
* @param algo_spec the name of the desired cipher
* @param direction determines whether the filter will be an encrypting or
* decrypting filter
* @return pointer to the encryption or decryption filter
*/
BOTAN_DLL Keyed_Filter* get_cipher(const std::string& algo_spec,
                                   Cipher_Dir direction);

/**
* Check if an algorithm exists.
* @param algo_spec the name of the algorithm to check for
* @return true if the algorithm exists, false otherwise
*/
BOTAN_DLL bool have_algorithm(const std::string& algo_spec);

/**
* Check if a block cipher algorithm exists.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm to check for
* @return true if the algorithm exists, false otherwise
*/
inline bool have_block_cipher(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return (af.prototype_block_cipher(algo_spec) != 0);
   }

/**
* Check if a stream cipher algorithm exists.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm to check for
* @return true if the algorithm exists, false otherwise
*/
inline bool have_stream_cipher(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return (af.prototype_stream_cipher(algo_spec) != 0);
   }

/**
* Check if a hash algorithm exists.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm to check for
* @return true if the algorithm exists, false otherwise
*/
inline bool have_hash(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return (af.prototype_hash_function(algo_spec) != 0);
   }

/**
* Check if a MAC algorithm exists.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm to check for
* @return true if the algorithm exists, false otherwise
*/
inline bool have_mac(const std::string& algo_spec)
   {
   Algorithm_Factory& af = global_state().algorithm_factory();
   return (af.prototype_mac(algo_spec) != 0);
   }

/*
* Query information about an algorithm
*/

/**
* Find out the block size of a certain symmetric algorithm.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm
* @return block size of the specified algorithm
*/
BOTAN_DLL size_t block_size_of(const std::string& algo_spec);

/**
* Find out the output length of a certain symmetric algorithm.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm
* @return output length of the specified algorithm
*/
BOTAN_DLL size_t output_length_of(const std::string& algo_spec);

/**
* Find out the minimum key size of a certain symmetric algorithm.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm
* @return minimum key length of the specified algorithm
*/
BOTAN_DEPRECATED("Retrieve object you want and then call key_spec")
BOTAN_DLL size_t min_keylength_of(const std::string& algo_spec);

/**
* Find out the maximum key size of a certain symmetric algorithm.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm
* @return maximum key length of the specified algorithm
*/
BOTAN_DEPRECATED("Retrieve object you want and then call key_spec")
BOTAN_DLL size_t max_keylength_of(const std::string& algo_spec);

/**
* Find out the size any valid key is a multiple of for a certain algorithm.
* @deprecated Call algorithm_factory() directly
*
* @param algo_spec the name of the algorithm
* @return size any valid key is a multiple of
*/
BOTAN_DEPRECATED("Retrieve object you want and then call key_spec")
BOTAN_DLL size_t keylength_multiple_of(const std::string& algo_spec);

}


namespace Botan {

/*
* Get information describing the version
*/

/**
* Get a human-readable string identifying the version of Botan.
* No particular format should be assumed.
* @return version string
*/
BOTAN_DLL std::string version_string();

/**
* Return the date this version of botan was released, in an integer of
* the form YYYYMMDD. For instance a version released on May 21, 2013
* would return the integer 20130521. If the currently running version
* is not an official release, this function will return 0 instead.
*
* @return release date, or zero if unreleased
*/
BOTAN_DLL u32bit version_datestamp();

/**
* Get the major version number.
* @return major version number
*/
BOTAN_DLL u32bit version_major();

/**
* Get the minor version number.
* @return minor version number
*/
BOTAN_DLL u32bit version_minor();

/**
* Get the patch number.
* @return patch number
*/
BOTAN_DLL u32bit version_patch();

/*
* Macros for compile-time version checks
*/
#define BOTAN_VERSION_CODE_FOR(a,b,c) ((a << 16) | (b << 8) | (c))

/**
* Compare using BOTAN_VERSION_CODE_FOR, as in
*  # if BOTAN_VERSION_CODE < BOTAN_VERSION_CODE_FOR(1,8,0)
*  #    error "Botan version too old"
*  # endif
*/
#define BOTAN_VERSION_CODE BOTAN_VERSION_CODE_FOR(BOTAN_VERSION_MAJOR, \
                                                  BOTAN_VERSION_MINOR, \
                                                  BOTAN_VERSION_PATCH)

}



#if defined(BOTAN_HAS_AUTO_SEEDING_RNG)

namespace Botan {

/**
* An automatically seeded PRNG
*/
class BOTAN_DLL AutoSeeded_RNG : public RandomNumberGenerator
   {
   public:
      void randomize(byte out[], size_t len)
         { rng->randomize(out, len); }

      bool is_seeded() const { return rng->is_seeded(); }

      void clear() { rng->clear(); }

      std::string name() const { return rng->name(); }

      void reseed(size_t poll_bits = 256) { rng->reseed(poll_bits); }

      void add_entropy_source(EntropySource* es)
         { rng->add_entropy_source(es); }

      void add_entropy(const byte in[], size_t len)
         { rng->add_entropy(in, len); }

      AutoSeeded_RNG() { rng = &global_state().global_rng(); }
   private:
      RandomNumberGenerator* rng;
   };

}

#endif


namespace Botan {

/**
* PKCS #10 Certificate Request.
*/
class BOTAN_DLL PKCS10_Request : public X509_Object
   {
   public:
      /**
      * Get the subject public key.
      * @return subject public key
      */
      Public_Key* subject_public_key() const;

      /**
      * Get the raw DER encoded public key.
      * @return raw DER encoded public key
      */
      MemoryVector<byte> raw_public_key() const;

      /**
      * Get the subject DN.
      * @return subject DN
      */
      X509_DN subject_dn() const;

      /**
      * Get the subject alternative name.
      * @return subject alternative name.
      */
      AlternativeName subject_alt_name() const;

      /**
      * Get the key constraints for the key associated with this
      * PKCS#10 object.
      * @return key constraints
      */
      Key_Constraints constraints() const;

      /**
      * Get the extendend key constraints (if any).
      * @return extended key constraints
      */
      std::vector<OID> ex_constraints() const;

      /**
      * Find out whether this is a CA request.
      * @result true if it is a CA request, false otherwise.
      */
      bool is_CA() const;

      /**
      * Return the constraint on the path length defined
      * in the BasicConstraints extension.
      * @return path limit
      */
      u32bit path_limit() const;

      /**
      * Get the challenge password for this request
      * @return challenge password for this request
      */
      std::string challenge_password() const;

      /**
      * Create a PKCS#10 Request from a data source.
      * @param source the data source providing the DER encoded request
      */
      PKCS10_Request(DataSource& source);

      /**
      * Create a PKCS#10 Request from a file.
      * @param filename the name of the file containing the DER or PEM
      * encoded request file
      */
      PKCS10_Request(const std::string& filename);
   private:
      void force_decode();
      void handle_attribute(const Attribute&);

      Data_Store info;
   };

}


namespace Botan {

/**
* Options for X.509 certificates.
*/
class BOTAN_DLL X509_Cert_Options
   {
   public:
      /**
      * the subject common name
      */
      std::string common_name;

      /**
      * the subject counry
      */
      std::string country;

      /**
      * the subject organization
      */
      std::string organization;

      /**
      * the subject organizational unit
      */
      std::string org_unit;

      /**
      * the subject locality
      */
      std::string locality;

      /**
      * the subject state
      */
      std::string state;

      /**
      * the subject serial number
      */
      std::string serial_number;

      /**
      * the subject email adress
      */
      std::string email;

      /**
      * the subject URI
      */
      std::string uri;

      /**
      * the subject IPv4 address
      */
      std::string ip;

      /**
      * the subject DNS
      */
      std::string dns;

      /**
      * the subject XMPP
      */
      std::string xmpp;

      /**
      * the subject challenge password
      */
      std::string challenge;

      /**
      * the subject notBefore
      */
      X509_Time start;
      /**
      * the subject notAfter
      */
      X509_Time end;

      /**
      * Indicates whether the certificate request
      */
      bool is_CA;

      /**
      * Indicates the BasicConstraints path limit
      */
      size_t path_limit;

      /**
      * The key constraints for the subject public key
      */
      Key_Constraints constraints;

      /**
      * The key extended constraints for the subject public key
      */
      std::vector<OID> ex_constraints;

      /**
      * Check the options set in this object for validity.
      */
      void sanity_check() const;

      /**
      * Mark the certificate as a CA certificate and set the path limit.
      * @param limit the path limit to be set in the BasicConstraints extension.
      */
      void CA_key(size_t limit = 1);

      /**
      * Set the notBefore of the certificate.
      * @param time the notBefore value of the certificate
      */
      void not_before(const std::string& time);

      /**
      * Set the notAfter of the certificate.
      * @param time the notAfter value of the certificate
      */
      void not_after(const std::string& time);

      /**
      * Add the key constraints of the KeyUsage extension.
      * @param constr the constraints to set
      */
      void add_constraints(Key_Constraints constr);

      /**
      * Add constraints to the ExtendedKeyUsage extension.
      * @param oid the oid to add
      */
      void add_ex_constraint(const OID& oid);

      /**
      * Add constraints to the ExtendedKeyUsage extension.
      * @param name the name to look up the oid to add
      */
      void add_ex_constraint(const std::string& name);

      /**
      * Construct a new options object
      * @param opts define the common name of this object. An example for this
      * parameter would be "common_name/country/organization/organizational_unit".
      * @param expire_time the expiration time (from the current clock in seconds)
      */
      X509_Cert_Options(const std::string& opts = "",
                        u32bit expire_time = 365 * 24 * 60 * 60);
   };

namespace X509 {

/**
* Create a self-signed X.509 certificate.
* @param opts the options defining the certificate to create
* @param key the private key used for signing, i.e. the key
* associated with this self-signed certificate
* @param hash_fn the hash function to use
* @param rng the rng to use
* @return newly created self-signed certificate
*/
BOTAN_DLL X509_Certificate
create_self_signed_cert(const X509_Cert_Options& opts,
                        const Private_Key& key,
                        const std::string& hash_fn,
                        RandomNumberGenerator& rng);

/**
* Create a PKCS#10 certificate request.
* @param opts the options defining the request to create
* @param key the key used to sign this request
* @param rng the rng to use
* @param hash_fn the hash function to use
* @return newly created PKCS#10 request
*/
BOTAN_DLL PKCS10_Request create_cert_req(const X509_Cert_Options& opts,
                                         const Private_Key& key,
                                         const std::string& hash_fn,
                                         RandomNumberGenerator& rng);

}

}


namespace Botan {

class BigInt;
class ASN1_Object;

/**
* General DER Encoding Object
*/
class BOTAN_DLL DER_Encoder
   {
   public:
      SecureVector<byte> get_contents();

      DER_Encoder& start_cons(ASN1_Tag type_tag,
                              ASN1_Tag class_tag = UNIVERSAL);
      DER_Encoder& end_cons();

      DER_Encoder& start_explicit(u16bit type_tag);
      DER_Encoder& end_explicit();

      DER_Encoder& raw_bytes(const byte val[], size_t len);
      DER_Encoder& raw_bytes(const MemoryRegion<byte>& val);

      DER_Encoder& encode_null();
      DER_Encoder& encode(bool b);
      DER_Encoder& encode(size_t s);
      DER_Encoder& encode(const BigInt& n);
      DER_Encoder& encode(const MemoryRegion<byte>& v, ASN1_Tag real_type);
      DER_Encoder& encode(const byte val[], size_t len, ASN1_Tag real_type);

      DER_Encoder& encode(bool b,
                          ASN1_Tag type_tag,
                          ASN1_Tag class_tag = CONTEXT_SPECIFIC);

      DER_Encoder& encode(size_t s,
                          ASN1_Tag type_tag,
                          ASN1_Tag class_tag = CONTEXT_SPECIFIC);

      DER_Encoder& encode(const BigInt& n,
                          ASN1_Tag type_tag,
                          ASN1_Tag class_tag = CONTEXT_SPECIFIC);

      DER_Encoder& encode(const MemoryRegion<byte>& v,
                          ASN1_Tag real_type,
                          ASN1_Tag type_tag,
                          ASN1_Tag class_tag = CONTEXT_SPECIFIC);

      DER_Encoder& encode(const byte v[], size_t len,
                          ASN1_Tag real_type,
                          ASN1_Tag type_tag,
                          ASN1_Tag class_tag = CONTEXT_SPECIFIC);

      template<typename T>
      DER_Encoder& encode_optional(const T& value, const T& default_value)
         {
         if(value != default_value)
            encode(value);
         return (*this);
         }

      template<typename T>
      DER_Encoder& encode_list(const std::vector<T>& values)
         {
         for(size_t i = 0; i != values.size(); ++i)
            encode(values[i]);
         return (*this);
         }

      DER_Encoder& encode(const ASN1_Object& obj);
      DER_Encoder& encode_if(bool pred, DER_Encoder& enc);

      DER_Encoder& add_object(ASN1_Tag type_tag, ASN1_Tag class_tag,
                              const byte rep[], size_t length);

      DER_Encoder& add_object(ASN1_Tag type_tag, ASN1_Tag class_tag,
                              const MemoryRegion<byte>& rep);

      DER_Encoder& add_object(ASN1_Tag type_tag, ASN1_Tag class_tag,
                              const std::string& str);

      DER_Encoder& add_object(ASN1_Tag type_tag, ASN1_Tag class_tag,
                              byte val);

   private:
      class DER_Sequence
         {
         public:
            ASN1_Tag tag_of() const;
            SecureVector<byte> get_contents();
            void add_bytes(const byte[], size_t);
            DER_Sequence(ASN1_Tag, ASN1_Tag);
         private:
            ASN1_Tag type_tag, class_tag;
            SecureVector<byte> contents;
            std::vector< SecureVector<byte> > set_contents;
         };

      SecureVector<byte> contents;
      std::vector<DER_Sequence> subsequences;
   };

}


namespace Botan {

/**
* EME1, aka OAEP
*/
class BOTAN_DLL EME1 : public EME
   {
   public:
      size_t maximum_input_size(size_t) const;

      /**
      * @param hash object to use for hashing (takes ownership)
      * @param P an optional label. Normally empty.
      */
      EME1(HashFunction* hash, const std::string& P = "");

      ~EME1() { delete mgf; }
   private:
      SecureVector<byte> pad(const byte[], size_t, size_t,
                             RandomNumberGenerator&) const;
      SecureVector<byte> unpad(const byte[], size_t, size_t) const;

      SecureVector<byte> Phash;
      MGF* mgf;
   };

}


namespace Botan {

/**
* The two types of signature format supported by Botan.
*/
enum Signature_Format { IEEE_1363, DER_SEQUENCE };

/**
* Enum marking if protection against fault attacks should be used
*/
enum Fault_Protection {
   ENABLE_FAULT_PROTECTION,
   DISABLE_FAULT_PROTECTION
};

/**
* Public Key Encryptor
*/
class BOTAN_DLL PK_Encryptor
   {
   public:

      /**
      * Encrypt a message.
      * @param in the message as a byte array
      * @param length the length of the above byte array
      * @param rng the random number source to use
      * @return encrypted message
      */
      SecureVector<byte> encrypt(const byte in[], size_t length,
                                 RandomNumberGenerator& rng) const
         {
         return enc(in, length, rng);
         }

      /**
      * Encrypt a message.
      * @param in the message
      * @param rng the random number source to use
      * @return encrypted message
      */
      SecureVector<byte> encrypt(const MemoryRegion<byte>& in,
                                 RandomNumberGenerator& rng) const
         {
         return enc(&in[0], in.size(), rng);
         }

      /**
      * Return the maximum allowed message size in bytes.
      * @return maximum message size in bytes
      */
      virtual size_t maximum_input_size() const = 0;

      PK_Encryptor() {}
      virtual ~PK_Encryptor() {}
   private:
      PK_Encryptor(const PK_Encryptor&) {}
      PK_Encryptor& operator=(const PK_Encryptor&) { return *this; }

      virtual SecureVector<byte> enc(const byte[], size_t,
                                     RandomNumberGenerator&) const = 0;
   };

/**
* Public Key Decryptor
*/
class BOTAN_DLL PK_Decryptor
   {
   public:
      /**
      * Decrypt a ciphertext.
      * @param in the ciphertext as a byte array
      * @param length the length of the above byte array
      * @return decrypted message
      */
      SecureVector<byte> decrypt(const byte in[], size_t length) const
         {
         return dec(in, length);
         }

      /**
      * Decrypt a ciphertext.
      * @param in the ciphertext
      * @return decrypted message
      */
      SecureVector<byte> decrypt(const MemoryRegion<byte>& in) const
         {
         return dec(&in[0], in.size());
         }

      PK_Decryptor() {}
      virtual ~PK_Decryptor() {}
   private:
      PK_Decryptor(const PK_Decryptor&) {}
      PK_Decryptor& operator=(const PK_Decryptor&) { return *this; }

      virtual SecureVector<byte> dec(const byte[], size_t) const = 0;
   };

/**
* Public Key Signer. Use the sign_message() functions for small
* messages. Use multiple calls update() to process large messages and
* generate the signature by finally calling signature().
*/
class BOTAN_DLL PK_Signer
   {
   public:
      /**
      * Sign a message.
      * @param in the message to sign as a byte array
      * @param length the length of the above byte array
      * @param rng the rng to use
      * @return signature
      */
      SecureVector<byte> sign_message(const byte in[], size_t length,
                                      RandomNumberGenerator& rng);

      /**
      * Sign a message.
      * @param in the message to sign
      * @param rng the rng to use
      * @return signature
      */
      SecureVector<byte> sign_message(const MemoryRegion<byte>& in,
                                      RandomNumberGenerator& rng)
         { return sign_message(&in[0], in.size(), rng); }

      /**
      * Add a message part (single byte).
      * @param in the byte to add
      */
      void update(byte in) { update(&in, 1); }

      /**
      * Add a message part.
      * @param in the message part to add as a byte array
      * @param length the length of the above byte array
      */
      void update(const byte in[], size_t length);

      /**
      * Add a message part.
      * @param in the message part to add
      */
      void update(const MemoryRegion<byte>& in) { update(&in[0], in.size()); }

      /**
      * Get the signature of the so far processed message (provided by the
      * calls to update()).
      * @param rng the rng to use
      * @return signature of the total message
      */
      SecureVector<byte> signature(RandomNumberGenerator& rng);

      /**
      * Set the output format of the signature.
      * @param format the signature format to use
      */
      void set_output_format(Signature_Format format) { sig_format = format; }

      /**
      * Construct a PK Signer.
      * @param key the key to use inside this signer
      * @param emsa the EMSA to use
      * An example would be "EMSA1(SHA-224)".
      * @param format the signature format to use
      * @param prot says if fault protection should be enabled
      */
      PK_Signer(const Private_Key& key,
                const std::string& emsa,
                Signature_Format format = IEEE_1363,
                Fault_Protection prot = ENABLE_FAULT_PROTECTION);

      ~PK_Signer() { delete op; delete verify_op; delete emsa; }
   private:
      bool self_test_signature(const MemoryRegion<byte>& msg,
                               const MemoryRegion<byte>& sig) const;

      PK_Signer(const PK_Signer&) {}
      PK_Signer& operator=(const PK_Signer&) { return *this; }

      PK_Ops::Signature* op;
      PK_Ops::Verification* verify_op;
      EMSA* emsa;
      Signature_Format sig_format;
   };

/**
* Public Key Verifier. Use the verify_message() functions for small
* messages. Use multiple calls update() to process large messages and
* verify the signature by finally calling check_signature().
*/
class BOTAN_DLL PK_Verifier
   {
   public:
      /**
      * Verify a signature.
      * @param msg the message that the signature belongs to, as a byte array
      * @param msg_length the length of the above byte array msg
      * @param sig the signature as a byte array
      * @param sig_length the length of the above byte array sig
      * @return true if the signature is valid
      */
      bool verify_message(const byte msg[], size_t msg_length,
                          const byte sig[], size_t sig_length);
      /**
      * Verify a signature.
      * @param msg the message that the signature belongs to
      * @param sig the signature
      * @return true if the signature is valid
      */
      bool verify_message(const MemoryRegion<byte>& msg,
                          const MemoryRegion<byte>& sig)
         {
         return verify_message(&msg[0], msg.size(),
                               &sig[0], sig.size());
         }

      /**
      * Add a message part (single byte) of the message corresponding to the
      * signature to be verified.
      * @param in the byte to add
      */
      void update(byte in) { update(&in, 1); }

      /**
      * Add a message part of the message corresponding to the
      * signature to be verified.
      * @param msg_part the new message part as a byte array
      * @param length the length of the above byte array
      */
      void update(const byte msg_part[], size_t length);

      /**
      * Add a message part of the message corresponding to the
      * signature to be verified.
      * @param in the new message part
      */
      void update(const MemoryRegion<byte>& in)
         { update(&in[0], in.size()); }

      /**
      * Check the signature of the buffered message, i.e. the one build
      * by successive calls to update.
      * @param sig the signature to be verified as a byte array
      * @param length the length of the above byte array
      * @return true if the signature is valid, false otherwise
      */
      bool check_signature(const byte sig[], size_t length);

      /**
      * Check the signature of the buffered message, i.e. the one build
      * by successive calls to update.
      * @param sig the signature to be verified
      * @return true if the signature is valid, false otherwise
      */
      bool check_signature(const MemoryRegion<byte>& sig)
         {
         return check_signature(&sig[0], sig.size());
         }

      /**
      * Set the format of the signatures fed to this verifier.
      * @param format the signature format to use
      */
      void set_input_format(Signature_Format format);

      /**
      * Construct a PK Verifier.
      * @param pub_key the public key to verify against
      * @param emsa the EMSA to use (eg "EMSA3(SHA-1)")
      * @param format the signature format to use
      */
      PK_Verifier(const Public_Key& pub_key,
                  const std::string& emsa,
                  Signature_Format format = IEEE_1363);

      ~PK_Verifier() { delete op; delete emsa; }
   private:
      PK_Verifier(const PK_Verifier&) {}
      PK_Verifier& operator=(const PK_Verifier&) { return *this; }

      bool validate_signature(const MemoryRegion<byte>& msg,
                              const byte sig[], size_t sig_len);

      PK_Ops::Verification* op;
      EMSA* emsa;
      Signature_Format sig_format;
   };

/**
* Key used for key agreement
*/
class BOTAN_DLL PK_Key_Agreement
   {
   public:

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param in_len the length of in in bytes
      * @param params extra derivation params
      * @param params_len the length of params in bytes
      */
      SymmetricKey derive_key(size_t key_len,
                              const byte in[],
                              size_t in_len,
                              const byte params[],
                              size_t params_len) const;

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param in_len the length of in in bytes
      * @param params extra derivation params
      * @param params_len the length of params in bytes
      */
      SymmetricKey derive_key(size_t key_len,
                              const MemoryRegion<byte>& in,
                              const byte params[],
                              size_t params_len) const
         {
         return derive_key(key_len, &in[0], in.size(),
                           params, params_len);
         }

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param in_len the length of in in bytes
      * @param params extra derivation params
      */
      SymmetricKey derive_key(size_t key_len,
                              const byte in[], size_t in_len,
                              const std::string& params = "") const
         {
         return derive_key(key_len, in, in_len,
                           reinterpret_cast<const byte*>(params.data()),
                           params.length());
         }

      /*
      * Perform Key Agreement Operation
      * @param key_len the desired key output size
      * @param in the other parties key
      * @param params extra derivation params
      */
      SymmetricKey derive_key(size_t key_len,
                              const MemoryRegion<byte>& in,
                              const std::string& params = "") const
         {
         return derive_key(key_len, &in[0], in.size(),
                           reinterpret_cast<const byte*>(params.data()),
                           params.length());
         }

      /**
      * Construct a PK Key Agreement.
      * @param key the key to use
      * @param kdf name of the KDF to use (or 'Raw' for no KDF)
      */
      PK_Key_Agreement(const PK_Key_Agreement_Key& key,
                       const std::string& kdf);

      ~PK_Key_Agreement() { delete op; delete kdf; }
   private:
      PK_Key_Agreement(const PK_Key_Agreement_Key&) {}
      PK_Key_Agreement& operator=(const PK_Key_Agreement&) { return *this; }

      PK_Ops::Key_Agreement* op;
      KDF* kdf;
   };

/**
* Encryption with an MR algorithm and an EME.
*/
class BOTAN_DLL PK_Encryptor_EME : public PK_Encryptor
   {
   public:
      size_t maximum_input_size() const;

      /**
      * Construct an instance.
      * @param key the key to use inside the decryptor
      * @param eme the EME to use
      */
      PK_Encryptor_EME(const Public_Key& key,
                       const std::string& eme);

      ~PK_Encryptor_EME() { delete op; delete eme; }
   private:
      SecureVector<byte> enc(const byte[], size_t,
                             RandomNumberGenerator& rng) const;

      PK_Ops::Encryption* op;
      const EME* eme;
   };

/**
* Decryption with an MR algorithm and an EME.
*/
class BOTAN_DLL PK_Decryptor_EME : public PK_Decryptor
   {
   public:
     /**
      * Construct an instance.
      * @param key the key to use inside the encryptor
      * @param eme the EME to use
      */
      PK_Decryptor_EME(const Private_Key& key,
                       const std::string& eme);

      ~PK_Decryptor_EME() { delete op; delete eme; }
   private:
      SecureVector<byte> dec(const byte[], size_t) const;

      PK_Ops::Decryption* op;
      const EME* eme;
   };

/*
* Typedefs for compatability with 1.8
*/
typedef PK_Encryptor_EME PK_Encryptor_MR_with_EME;
typedef PK_Decryptor_EME PK_Decryptor_MR_with_EME;

}


namespace Botan {

/**
* DES
*/
class BOTAN_DLL DES : public Block_Cipher_Fixed_Params<8, 8>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(round_key); }
      std::string name() const { return "DES"; }
      BlockCipher* clone() const { return new DES; }

      DES() : round_key(32) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u32bit> round_key;
   };

/**
* Triple DES
*/
class BOTAN_DLL TripleDES : public Block_Cipher_Fixed_Params<8, 16, 24, 8>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(round_key); }
      std::string name() const { return "TripleDES"; }
      BlockCipher* clone() const { return new TripleDES; }

      TripleDES() : round_key(96) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u32bit> round_key;
   };

/*
* DES Tables
*/
extern const u32bit DES_SPBOX1[256];
extern const u32bit DES_SPBOX2[256];
extern const u32bit DES_SPBOX3[256];
extern const u32bit DES_SPBOX4[256];
extern const u32bit DES_SPBOX5[256];
extern const u32bit DES_SPBOX6[256];
extern const u32bit DES_SPBOX7[256];
extern const u32bit DES_SPBOX8[256];

extern const u64bit DES_IPTAB1[256];
extern const u64bit DES_IPTAB2[256];
extern const u64bit DES_FPTAB1[256];
extern const u64bit DES_FPTAB2[256];

}


namespace Botan {

/**
* DESX
*/
class BOTAN_DLL DESX : public Block_Cipher_Fixed_Params<8, 24>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { des.clear(); zeroise(K1); zeroise(K2); }
      std::string name() const { return "DESX"; }
      BlockCipher* clone() const { return new DESX; }

      DESX() : K1(8), K2(8) {}
   private:
      void key_schedule(const byte[], size_t);
      SecureVector<byte> K1, K2;
      DES des;
   };

}


namespace Botan {

/**
* The GOST 28147-89 block cipher uses a set of 4 bit Sboxes, however
* the standard does not actually define these Sboxes; they are
* considered a local configuration issue. Several different sets are
* used.
*/
class BOTAN_DLL GOST_28147_89_Params
   {
   public:
      /**
      * @param row the row
      * @param col the column
      * @return sbox entry at this row/column
      */
      byte sbox_entry(size_t row, size_t col) const;

      /**
      * @return name of this parameter set
      */
      std::string param_name() const { return name; }

      /**
      * Default GOST parameters are the ones given in GOST R 34.11 for
      * testing purposes; these sboxes are also used by Crypto++, and,
      * at least according to Wikipedia, the Central Bank of Russian
      * Federation
      * @param name of the parameter set
      */
      GOST_28147_89_Params(const std::string& name = "R3411_94_TestParam");
   private:
      const byte* sboxes;
      std::string name;
   };

/**
* GOST 28147-89
*/
class BOTAN_DLL GOST_28147_89 : public Block_Cipher_Fixed_Params<8, 32>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); }

      std::string name() const;
      BlockCipher* clone() const { return new GOST_28147_89(SBOX); }

      /**
      * @param params the sbox parameters to use
      */
      GOST_28147_89(const GOST_28147_89_Params& params);
   private:
      GOST_28147_89(const SecureVector<u32bit>& other_SBOX) :
         SBOX(other_SBOX), EK(8) {}

      void key_schedule(const byte[], size_t);

      SecureVector<u32bit> SBOX;
      SecureVector<u32bit> EK;
   };

}


namespace Botan {

/**
* GOST 34.11
*/
class BOTAN_DLL GOST_34_11 : public HashFunction
   {
   public:
      std::string name() const { return "GOST-R-34.11-94" ; }
      size_t output_length() const { return 32; }
      size_t hash_block_size() const { return 32; }
      HashFunction* clone() const { return new GOST_34_11; }

      void clear();

      GOST_34_11();
   private:
      void compress_n(const byte input[], size_t blocks);

      void add_data(const byte[], size_t);
      void final_result(byte[]);

      GOST_28147_89 cipher;
      SecureVector<byte> buffer, sum, hash;
      size_t position;
      u64bit count;
   };

}


namespace Botan {

/**
* SHA-384
*/
class BOTAN_DLL SHA_384 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "SHA-384"; }
      size_t output_length() const { return 48; }
      HashFunction* clone() const { return new SHA_384; }

      void clear();

      SHA_384() : MDx_HashFunction(128, true, true, 16), digest(8)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u64bit> digest;
   };

/**
* SHA-512
*/
class BOTAN_DLL SHA_512 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "SHA-512"; }
      size_t output_length() const { return 64; }
      HashFunction* clone() const { return new SHA_512; }

      void clear();

      SHA_512() : MDx_HashFunction(128, true, true, 16), digest(8)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u64bit> digest;
   };

}


namespace Botan {

/**
* Password Based Encryption (PBE) Filter.
*/
class BOTAN_DLL PBE : public Filter
   {
   public:
      /**
      * Set this filter's key.
      * @param pw the password to be used for the encryption
      */
      virtual void set_key(const std::string& pw) = 0;

      /**
      * Create a new random salt value and set the default iterations value.
      * @param rng a random number generator
      */
      virtual void new_params(RandomNumberGenerator& rng) = 0;

      /**
      * DER encode the params (the number of iterations and the salt value)
      * @return encoded params
      */
      virtual MemoryVector<byte> encode_params() const = 0;

      /**
      * Decode params and use them inside this Filter.
      * @param src a data source to read the encoded params from
      */
      virtual void decode_params(DataSource& src) = 0;

      /**
      * Get this PBE's OID.
      * @return object identifier
      */
      virtual OID get_oid() const = 0;
   };

}


namespace Botan {

/**
* KDF1, from IEEE 1363
*/
class BOTAN_DLL KDF1 : public KDF
   {
   public:
      SecureVector<byte> derive(size_t,
                                const byte secret[], size_t secret_len,
                                const byte P[], size_t P_len) const;

      std::string name() const { return "KDF1(" + hash->name() + ")"; }
      KDF* clone() const { return new KDF1(hash->clone()); }

      KDF1(HashFunction* h) : hash(h) {}
      KDF1(const KDF1& other) : KDF(), hash(other.hash->clone()) {}

      ~KDF1() { delete hash; }
   private:
      HashFunction* hash;
   };

}


namespace Botan {

/**
* MISTY1
*/
class BOTAN_DLL MISTY1 : public Block_Cipher_Fixed_Params<8, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); zeroise(DK); }
      std::string name() const { return "MISTY1"; }
      BlockCipher* clone() const { return new MISTY1; }

      /**
      * @param rounds the number of rounds. Must be 8 with the current
      * implementation
      */
      MISTY1(size_t rounds = 8);
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u16bit> EK, DK;
   };

}


namespace Botan {

/**
* 32-bit cyclic redundancy check
*/
class BOTAN_DLL CRC32 : public HashFunction
   {
   public:
      std::string name() const { return "CRC32"; }
      size_t output_length() const { return 4; }
      HashFunction* clone() const { return new CRC32; }

      void clear() { crc = 0xFFFFFFFF; }

      CRC32() { clear(); }
      ~CRC32() { clear(); }
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      u32bit crc;
   };

}


namespace Botan {

namespace PEM_Code {

/*
* PEM Encoding/Decoding
*/
BOTAN_DLL std::string encode(const byte[], size_t,
                             const std::string&, size_t = 64);
BOTAN_DLL std::string encode(const MemoryRegion<byte>&,
                             const std::string&, size_t = 64);

BOTAN_DLL SecureVector<byte> decode(DataSource&, std::string&);
BOTAN_DLL SecureVector<byte> decode_check_label(DataSource&,
                                                const std::string&);
BOTAN_DLL bool matches(DataSource&, const std::string& = "",
                       size_t search_range = 4096);

}

}


namespace Botan {

/**
* XTEA
*/
class BOTAN_DLL XTEA : public Block_Cipher_Fixed_Params<8, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); }
      std::string name() const { return "XTEA"; }
      BlockCipher* clone() const { return new XTEA; }

      XTEA() : EK(64) {}
   protected:
      /**
      * @return const reference to the key schedule
      */
      const SecureVector<u32bit>& get_EK() const { return EK; }

   private:
      void key_schedule(const byte[], size_t);
      SecureVector<u32bit> EK;
   };

}


namespace Botan {

/**
* KASUMI, the block cipher used in 3G telephony
*/
class BOTAN_DLL KASUMI : public Block_Cipher_Fixed_Params<8, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); }
      std::string name() const { return "KASUMI"; }
      BlockCipher* clone() const { return new KASUMI; }

      KASUMI() : EK(64) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u16bit> EK;
   };

}


namespace Botan {

/**
* This class represents discrete logarithm groups. It holds a prime p,
* a prime q = (p-1)/2 and g = x^((p-1)/q) mod p.
*/
class BOTAN_DLL DL_Group
   {
   public:
      /**
      * Get the prime p.
      * @return prime p
      */
      const BigInt& get_p() const;

      /**
      * Get the prime q.
      * @return prime q
      */
      const BigInt& get_q() const;

      /**
      * Get the base g.
      * @return base g
      */
      const BigInt& get_g() const;

      /**
      * The DL group encoding format variants.
      */
      enum Format {
         ANSI_X9_42,
         ANSI_X9_57,
         PKCS_3,

         DSA_PARAMETERS = ANSI_X9_57,
         DH_PARAMETERS = ANSI_X9_42,
         X942_DH_PARAMETERS = ANSI_X9_42,
         PKCS3_DH_PARAMETERS = PKCS_3
      };

      /**
      * Determine the prime creation for DL groups.
      */
      enum PrimeType { Strong, Prime_Subgroup, DSA_Kosherizer };

      /**
      * Perform validity checks on the group.
      * @param rng the rng to use
      * @param strong whether to perform stronger by lengthier tests
      * @return true if the object is consistent, false otherwise
      */
      bool verify_group(RandomNumberGenerator& rng, bool strong) const;

      /**
      * Encode this group into a string using PEM encoding.
      * @param format the encoding format
      * @return string holding the PEM encoded group
      */
      std::string PEM_encode(Format format) const;

      /**
      * Encode this group into a string using DER encoding.
      * @param format the encoding format
      * @return string holding the DER encoded group
      */
      SecureVector<byte> DER_encode(Format format) const;

      /**
      * Decode a DER/BER encoded group into this instance.
      * @param src a DataSource providing the encoded group
      * @param format the format of the encoded group
      */
      void BER_decode(DataSource& src, Format format);

      /**
      * Decode a PEM encoded group into this instance.
      * @param src a DataSource providing the encoded group
      */
      void PEM_decode(DataSource& src);

      /**
      * Construct a DL group with uninitialized internal value.
      * Use this constructor is you wish to set the groups values
      * from a DER or PEM encoded group.
      */
      DL_Group();

      /**
      * Construct a DL group that is registered in the configuration.
      * @param name the name that is configured in the global configuration
      * for the desired group. If no configuration file is specified,
      * the default values from the file policy.cpp will be used. For instance,
      * use "modp/ietf/768" as name.
      */
      DL_Group(const std::string& name);

      /**
      * Create a new group randomly.
      * @param rng the random number generator to use
      * @param type specifies how the creation of primes p and q shall
      * be performed. If type=Strong, then p will be determined as a
      * safe prime, and q will be chosen as (p-1)/2. If
      * type=Prime_Subgroup and qbits = 0, then the size of q will be
      * determined according to the estimated difficulty of the DL
      * problem. If type=DSA_Kosherizer, DSA primes will be created.
      * @param pbits the number of bits of p
      * @param qbits the number of bits of q. Leave it as 0 to have
      * the value determined according to pbits.
      */
      DL_Group(RandomNumberGenerator& rng, PrimeType type,
               size_t pbits, size_t qbits = 0);

      /**
      * Create a DSA group with a given seed.
      * @param rng the random number generator to use
      * @param seed the seed to use to create the random primes
      * @param pbits the desired bit size of the prime p
      * @param qbits the desired bit size of the prime q.
      */
      DL_Group(RandomNumberGenerator& rng, const MemoryRegion<byte>& seed,
               size_t pbits = 1024, size_t qbits = 0);

      /**
      * Create a DL group. The prime q will be determined according to p.
      * @param p the prime p
      * @param g the base g
      */
      DL_Group(const BigInt& p, const BigInt& g);

      /**
      * Create a DL group.
      * @param p the prime p
      * @param q the prime q
      * @param g the base g
      */
      DL_Group(const BigInt& p, const BigInt& q, const BigInt& g);
   private:
      static BigInt make_dsa_generator(const BigInt&, const BigInt&);

      void init_check() const;
      void initialize(const BigInt&, const BigInt&, const BigInt&);
      bool initialized;
      BigInt p, q, g;
   };

}


namespace Botan {

/**
* This class represents discrete logarithm (DL) public keys.
*/
class BOTAN_DLL DL_Scheme_PublicKey : public virtual Public_Key
   {
   public:
      bool check_key(RandomNumberGenerator& rng, bool) const;

      AlgorithmIdentifier algorithm_identifier() const;

      MemoryVector<byte> x509_subject_public_key() const;

      /**
      * Get the DL domain parameters of this key.
      * @return DL domain parameters of this key
      */
      const DL_Group& get_domain() const { return group; }

      /**
      * Get the public value y with y = g^x mod p where x is the secret key.
      */
      const BigInt& get_y() const { return y; }

      /**
      * Get the prime p of the underlying DL group.
      * @return prime p
      */
      const BigInt& group_p() const { return group.get_p(); }

      /**
      * Get the prime q of the underlying DL group.
      * @return prime q
      */
      const BigInt& group_q() const { return group.get_q(); }

      /**
      * Get the generator g of the underlying DL group.
      * @return generator g
      */
      const BigInt& group_g() const { return group.get_g(); }

      /**
      * Get the underlying groups encoding format.
      * @return encoding format
      */
      virtual DL_Group::Format group_format() const = 0;

      DL_Scheme_PublicKey(const AlgorithmIdentifier& alg_id,
                          const MemoryRegion<byte>& key_bits,
                          DL_Group::Format group_format);

   protected:
      DL_Scheme_PublicKey() {}

      /**
      * The DL public key
      */
      BigInt y;

      /**
      * The DL group
      */
      DL_Group group;
   };

/**
* This class represents discrete logarithm (DL) private keys.
*/
class BOTAN_DLL DL_Scheme_PrivateKey : public virtual DL_Scheme_PublicKey,
                                       public virtual Private_Key
   {
   public:
      bool check_key(RandomNumberGenerator& rng, bool) const;

      /**
      * Get the secret key x.
      * @return secret key
      */
      const BigInt& get_x() const { return x; }

      MemoryVector<byte> pkcs8_private_key() const;

      DL_Scheme_PrivateKey(const AlgorithmIdentifier& alg_id,
                           const MemoryRegion<byte>& key_bits,
                           DL_Group::Format group_format);

   protected:
      DL_Scheme_PrivateKey() {}

      /**
      * The DL private key
      */
      BigInt x;
   };

}


namespace Botan {

/**
* Modular Reducer (using Barrett's technique)
*/
class BOTAN_DLL Modular_Reducer
   {
   public:
      const BigInt& get_modulus() const { return modulus; }

      BigInt reduce(const BigInt& x) const;

      /**
      * Multiply mod p
      * @param x
      * @param y
      * @return (x * y) % p
      */
      BigInt multiply(const BigInt& x, const BigInt& y) const
         { return reduce(x * y); }

      /**
      * Square mod p
      * @param x
      * @return (x * x) % p
      */
      BigInt square(const BigInt& x) const
         { return reduce(Botan::square(x)); }

      /**
      * Cube mod p
      * @param x
      * @return (x * x * x) % p
      */
      BigInt cube(const BigInt& x) const
         { return multiply(x, this->square(x)); }

      bool initialized() const { return (mod_words != 0); }

      Modular_Reducer() { mod_words = 0; }
      Modular_Reducer(const BigInt& mod);
   private:
      BigInt modulus, modulus_2, mu;
      size_t mod_words;
   };

}


namespace Botan {

/**
* Blinding Function Object
*/
class BOTAN_DLL Blinder
   {
   public:
      BigInt blind(const BigInt& x) const;
      BigInt unblind(const BigInt& x) const;

      bool initialized() const { return reducer.initialized(); }

      Blinder() {}

      /**
      * Construct a blinder
      * @param mask the forward (blinding) mask
      * @param inverse_mask the inverse of mask (depends on algo)
      * @param modulus of the group operations are performed in
      */
      Blinder(const BigInt& mask,
              const BigInt& inverse_mask,
              const BigInt& modulus);

   private:
      Modular_Reducer reducer;
      mutable BigInt e, d;
   };

}


namespace Botan {

/**
* This class represents Diffie-Hellman public keys.
*/
class BOTAN_DLL DH_PublicKey : public virtual DL_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "DH"; }

      MemoryVector<byte> public_value() const;
      size_t max_input_bits() const { return group_p().bits(); }

      DL_Group::Format group_format() const { return DL_Group::ANSI_X9_42; }

      DH_PublicKey(const AlgorithmIdentifier& alg_id,
                   const MemoryRegion<byte>& key_bits) :
         DL_Scheme_PublicKey(alg_id, key_bits, DL_Group::ANSI_X9_42) {}

      /**
      * Construct a public key with the specified parameters.
      * @param grp the DL group to use in the key
      * @param y the public value y
      */
      DH_PublicKey(const DL_Group& grp, const BigInt& y);
   protected:
      DH_PublicKey() {}
   };

/**
* This class represents Diffie-Hellman private keys.
*/
class BOTAN_DLL DH_PrivateKey : public DH_PublicKey,
                                public PK_Key_Agreement_Key,
                                public virtual DL_Scheme_PrivateKey
   {
   public:
      MemoryVector<byte> public_value() const;

      /**
      * Load a DH private key
      * @param alg_id the algorithm id
      * @param key_bits the subject public key
      * @param rng a random number generator
      */
      DH_PrivateKey(const AlgorithmIdentifier& alg_id,
                    const MemoryRegion<byte>& key_bits,
                    RandomNumberGenerator& rng);

      /**
      * Construct a private key with predetermined value.
      * @param rng random number generator to use
      * @param grp the group to be used in the key
      * @param x the key's secret value (or if zero, generate a new key)
      */
      DH_PrivateKey(RandomNumberGenerator& rng, const DL_Group& grp,
                    const BigInt& x = 0);
   };

/**
* DH operation
*/
class BOTAN_DLL DH_KA_Operation : public PK_Ops::Key_Agreement
   {
   public:
      DH_KA_Operation(const DH_PrivateKey& key);

      SecureVector<byte> agree(const byte w[], size_t w_len);
   private:
      const BigInt& p;

      Fixed_Exponent_Power_Mod powermod_x_p;
      Blinder blinder;
   };

}


namespace Botan {

/**
* CAST-256
*/
class BOTAN_DLL CAST_256 : public Block_Cipher_Fixed_Params<16, 4, 32, 4>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(MK); zeroise(RK); }
      std::string name() const { return "CAST-256"; }
      BlockCipher* clone() const { return new CAST_256; }

      CAST_256() : MK(48), RK(48) {}
   private:
      void key_schedule(const byte[], size_t);

      static const u32bit KEY_MASK[192];
      static const byte   KEY_ROT[32];

      SecureVector<u32bit> MK;
      SecureVector<byte> RK;
   };

extern const u32bit CAST_SBOX1[256];
extern const u32bit CAST_SBOX2[256];
extern const u32bit CAST_SBOX3[256];
extern const u32bit CAST_SBOX4[256];

}


namespace Botan {

/**
* MD2
*/
class BOTAN_DLL MD2 : public HashFunction
   {
   public:
      std::string name() const { return "MD2"; }
      size_t output_length() const { return 16; }
      size_t hash_block_size() const { return 16; }
      HashFunction* clone() const { return new MD2; }

      void clear();

      MD2() : X(48), checksum(16), buffer(16)
         { clear(); }
   private:
      void add_data(const byte[], size_t);
      void hash(const byte[]);
      void final_result(byte[]);

      SecureVector<byte> X, checksum, buffer;
      size_t position;
   };

}


namespace Botan {

/**
* RC6, Ron Rivest's AES candidate
*/
class BOTAN_DLL RC6 : public Block_Cipher_Fixed_Params<16, 1, 32>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(S); }
      std::string name() const { return "RC6"; }
      BlockCipher* clone() const { return new RC6; }

      RC6() : S(44) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u32bit> S;
   };

}


namespace Botan {

/**
* WiderWake4+1-BE
*
* Note: quite old and possibly not safe; use XSalsa20 or a block
* cipher in counter mode.
*/
class BOTAN_DLL WiderWake_41_BE : public StreamCipher
   {
   public:
      void cipher(const byte[], byte[], size_t);
      void set_iv(const byte[], size_t);

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == 8); }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(16);
         }

      void clear();
      std::string name() const { return "WiderWake4+1-BE"; }
      StreamCipher* clone() const { return new WiderWake_41_BE; }

      WiderWake_41_BE() : T(256), state(5), t_key(4),
                          buffer(DEFAULT_BUFFERSIZE), position(0)
         {}

   private:
      void key_schedule(const byte[], size_t);

      void generate(size_t);

      SecureVector<u32bit> T;
      SecureVector<u32bit> state;
      SecureVector<u32bit> t_key;
      SecureVector<byte> buffer;
      size_t position;
   };

}


namespace Botan {

/**
* ElGamal Public Key
*/
class BOTAN_DLL ElGamal_PublicKey : public virtual DL_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "ElGamal"; }
      DL_Group::Format group_format() const { return DL_Group::ANSI_X9_42; }

      size_t max_input_bits() const { return (group_p().bits() - 1); }

      ElGamal_PublicKey(const AlgorithmIdentifier& alg_id,
                        const MemoryRegion<byte>& key_bits) :
         DL_Scheme_PublicKey(alg_id, key_bits, DL_Group::ANSI_X9_42)
         {}

      ElGamal_PublicKey(const DL_Group& group, const BigInt& y);
   protected:
      ElGamal_PublicKey() {}
   };

/**
* ElGamal Private Key
*/
class BOTAN_DLL ElGamal_PrivateKey : public ElGamal_PublicKey,
                                     public virtual DL_Scheme_PrivateKey
   {
   public:
      bool check_key(RandomNumberGenerator& rng, bool) const;

      ElGamal_PrivateKey(const AlgorithmIdentifier& alg_id,
                         const MemoryRegion<byte>& key_bits,
                         RandomNumberGenerator& rng);

      ElGamal_PrivateKey(RandomNumberGenerator& rng,
                         const DL_Group& group,
                         const BigInt& priv_key = 0);
   };

/**
* ElGamal encryption operation
*/
class BOTAN_DLL ElGamal_Encryption_Operation : public PK_Ops::Encryption
   {
   public:
      size_t max_input_bits() const { return mod_p.get_modulus().bits() - 1; }

      ElGamal_Encryption_Operation(const ElGamal_PublicKey& key);

      SecureVector<byte> encrypt(const byte msg[], size_t msg_len,
                                 RandomNumberGenerator& rng);

   private:
      Fixed_Base_Power_Mod powermod_g_p, powermod_y_p;
      Modular_Reducer mod_p;
   };

/**
* ElGamal decryption operation
*/
class BOTAN_DLL ElGamal_Decryption_Operation : public PK_Ops::Decryption
   {
   public:
      size_t max_input_bits() const { return mod_p.get_modulus().bits() - 1; }

      ElGamal_Decryption_Operation(const ElGamal_PrivateKey& key);

      SecureVector<byte> decrypt(const byte msg[], size_t msg_len);
   private:
      Fixed_Exponent_Power_Mod powermod_x_p;
      Modular_Reducer mod_p;
      Blinder blinder;
   };

}


namespace Botan {

/**
HMAC_RNG - based on the design described in "On Extract-then-Expand
Key Derivation Functions and an HMAC-based KDF" by Hugo Krawczyk
(henceforce, 'E-t-E')

However it actually can be parameterized with any two MAC functions,
not restricted to HMAC (this variation is also described in Krawczyk's
paper), for instance one could use HMAC(SHA-512) as the extractor
and CMAC(AES-256) as the PRF.
*/
class BOTAN_DLL HMAC_RNG : public RandomNumberGenerator
   {
   public:
      void randomize(byte buf[], size_t len);
      bool is_seeded() const { return seeded; }
      void clear();
      std::string name() const;

      void reseed(size_t poll_bits);
      void add_entropy_source(EntropySource* es);
      void add_entropy(const byte[], size_t);

      /**
      * @param extractor a MAC used for extracting the entropy
      * @param prf a MAC used as a PRF using HKDF construction
      */
      HMAC_RNG(MessageAuthenticationCode* extractor,
               MessageAuthenticationCode* prf);

      ~HMAC_RNG();
   private:
      MessageAuthenticationCode* extractor;
      MessageAuthenticationCode* prf;

      std::vector<EntropySource*> entropy_sources;
      bool seeded;

      SecureVector<byte> K, io_buffer;
      size_t user_input_len;
      u32bit counter;
   };

}


namespace Botan {

/**
* A MAC only used in SSLv3. Do not use elsewhere! Use HMAC instead.
*/
class BOTAN_DLL SSL3_MAC : public MessageAuthenticationCode
   {
   public:
      std::string name() const;
      size_t output_length() const { return hash->output_length(); }
      MessageAuthenticationCode* clone() const;

      void clear();

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(hash->output_length());
         }

      /**
      * @param hash the underlying hash to use
      */
      SSL3_MAC(HashFunction* hash);
      ~SSL3_MAC() { delete hash; }
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      void key_schedule(const byte[], size_t);

      HashFunction* hash;
      SecureVector<byte> i_key, o_key;
   };

}


namespace Botan {

/**
EMSA1_BSI is a variant of EMSA1 specified by the BSI. It accepts only
hash values which are less or equal than the maximum key length. The
implementation comes from InSiTo
*/
class BOTAN_DLL EMSA1_BSI : public EMSA1
   {
   public:
      /**
      * @param hash the hash object to use
      */
      EMSA1_BSI(HashFunction* hash) : EMSA1(hash) {}
   private:
      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator& rng);
   };

}


namespace Botan {

/**
* Serpent, an AES finalist
*/
class BOTAN_DLL Serpent : public Block_Cipher_Fixed_Params<16, 16, 32, 8>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(round_key); }
      std::string name() const { return "Serpent"; }
      BlockCipher* clone() const { return new Serpent; }

      Serpent() : round_key(132) {}
   protected:
      /**
      * For use by subclasses using SIMD, asm, etc
      * @return const reference to the key schedule
      */
      const SecureVector<u32bit>& get_round_keys() const
         { return round_key; }

      /**
      * For use by subclasses that implement the key schedule
      * @param ks is the new key schedule value to set
      */
      void set_round_keys(const u32bit ks[132])
         {
         copy_mem(&round_key[0], ks, 132);
         }

   private:
      void key_schedule(const byte key[], size_t length);
      SecureVector<u32bit> round_key;
   };

}


namespace Botan {

/**
* NIST's SHA-160
*/
class BOTAN_DLL SHA_160 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "SHA-160"; }
      size_t output_length() const { return 20; }
      HashFunction* clone() const { return new SHA_160; }

      void clear();

      SHA_160() : MDx_HashFunction(64, true, true), digest(5), W(80)
         {
         clear();
         }
   protected:
      /**
      * Set a custom size for the W array. Normally 80, but some
      * subclasses need slightly more for best performance/internal
      * constraints
      * @param W_size how big to make W
      */
      SHA_160(size_t W_size) :
         MDx_HashFunction(64, true, true), digest(5), W(W_size)
         {
         clear();
         }

      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      /**
      * The digest value, exposed for use by subclasses (asm, SSE2)
      */
      SecureVector<u32bit> digest;

      /**
      * The message buffer, exposed for use by subclasses (asm, SSE2)
      */
      SecureVector<u32bit> W;
   };

}


namespace Botan {

/**
* ANSI X9.31 RNG
*/
class BOTAN_DLL ANSI_X931_RNG : public RandomNumberGenerator
   {
   public:
      void randomize(byte[], size_t);
      bool is_seeded() const;
      void clear();
      std::string name() const;

      void reseed(size_t poll_bits);
      void add_entropy_source(EntropySource*);
      void add_entropy(const byte[], size_t);

      /**
      * @param cipher the block cipher to use in this PRNG
      * @param rng the underlying PRNG for generating inputs
      * (eg, an HMAC_RNG)
      */
      ANSI_X931_RNG(BlockCipher* cipher,
                    RandomNumberGenerator* rng);
      ~ANSI_X931_RNG();
   private:
      void rekey();
      void update_buffer();

      BlockCipher* cipher;
      RandomNumberGenerator* prng;
      SecureVector<byte> V, R;
      size_t position;
   };

}


namespace Botan {

/**
* This class represents ECDSA Public Keys.
*/
class BOTAN_DLL ECDSA_PublicKey : public virtual EC_PublicKey
   {
   public:

      /**
      * Construct a public key from a given public point.
      * @param dom_par the domain parameters associated with this key
      * @param public_point the public point defining this key
      */
      ECDSA_PublicKey(const EC_Group& dom_par,
                      const PointGFp& public_point) :
         EC_PublicKey(dom_par, public_point) {}

      ECDSA_PublicKey(const AlgorithmIdentifier& alg_id,
                      const MemoryRegion<byte>& key_bits) :
         EC_PublicKey(alg_id, key_bits) {}

      /**
      * Get this keys algorithm name.
      * @result this keys algorithm name ("ECDSA")
      */
      std::string algo_name() const { return "ECDSA"; }

      /**
      * Get the maximum number of bits allowed to be fed to this key.
      * This is the bitlength of the order of the base point.
      * @result the maximum number of input bits
      */
      size_t max_input_bits() const { return domain().get_order().bits(); }

      size_t message_parts() const { return 2; }

      size_t message_part_size() const
         { return domain().get_order().bytes(); }

   protected:
      ECDSA_PublicKey() {}
   };

/**
* This class represents ECDSA Private Keys
*/
class BOTAN_DLL ECDSA_PrivateKey : public ECDSA_PublicKey,
                                   public EC_PrivateKey
   {
   public:

      /**
      * Load a private key
      * @param alg_id the X.509 algorithm identifier
      * @param key_bits PKCS #8 structure
      */
      ECDSA_PrivateKey(const AlgorithmIdentifier& alg_id,
                       const MemoryRegion<byte>& key_bits) :
         EC_PrivateKey(alg_id, key_bits) {}

      /**
      * Generate a new private key
      * @param rng a random number generator
      * @param domain parameters to used for this key
      * @param x the private key (if zero, generate a ney random key)
      */
      ECDSA_PrivateKey(RandomNumberGenerator& rng,
                       const EC_Group& domain,
                       const BigInt& x = 0) :
         EC_PrivateKey(rng, domain, x) {}

      bool check_key(RandomNumberGenerator& rng, bool) const;
   };

/**
* ECDSA signature operation
*/
class BOTAN_DLL ECDSA_Signature_Operation : public PK_Ops::Signature
   {
   public:
      ECDSA_Signature_Operation(const ECDSA_PrivateKey& ecdsa);

      SecureVector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return order.bytes(); }
      size_t max_input_bits() const { return order.bits(); }

   private:
      const PointGFp& base_point;
      const BigInt& order;
      const BigInt& x;
      Modular_Reducer mod_order;
   };

/**
* ECDSA verification operation
*/
class BOTAN_DLL ECDSA_Verification_Operation : public PK_Ops::Verification
   {
   public:
      ECDSA_Verification_Operation(const ECDSA_PublicKey& ecdsa);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return order.bytes(); }
      size_t max_input_bits() const { return order.bits(); }

      bool with_recovery() const { return false; }

      bool verify(const byte msg[], size_t msg_len,
                  const byte sig[], size_t sig_len);
   private:
      const PointGFp& base_point;
      const PointGFp& public_point;
      const BigInt& order;
   };

}


namespace Botan {

/**
* BigInt Division
* @param x an integer
* @param y a non-zero integer
* @param q will be set to x / y
* @param r will be set to x % y
*/
void BOTAN_DLL divide(const BigInt& x,
                      const BigInt& y,
                      BigInt& q,
                      BigInt& r);

}


namespace Botan {

/**
* Square
*/
class BOTAN_DLL Square : public Block_Cipher_Fixed_Params<16, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();
      std::string name() const { return "Square"; }
      BlockCipher* clone() const { return new Square; }

      Square() : EK(28), DK(28), ME(32), MD(32) {}
   private:
      void key_schedule(const byte[], size_t);

      static void transform(u32bit[4]);

      static const byte SE[256];
      static const byte SD[256];
      static const byte Log[256];
      static const byte ALog[255];

      static const u32bit TE0[256];
      static const u32bit TE1[256];
      static const u32bit TE2[256];
      static const u32bit TE3[256];
      static const u32bit TD0[256];
      static const u32bit TD1[256];
      static const u32bit TD2[256];
      static const u32bit TD3[256];

      SecureVector<u32bit> EK, DK;
      SecureVector<byte> ME, MD;
   };

}


namespace Botan {

/**
* Perform hex encoding
* @param output an array of at least input_length*2 bytes
* @param input is some binary data
* @param input_length length of input in bytes
* @param uppercase should output be upper or lower case?
*/
void BOTAN_DLL hex_encode(char output[],
                          const byte input[],
                          size_t input_length,
                          bool uppercase = true);

/**
* Perform hex encoding
* @param input some input
* @param input_length length of input in bytes
* @param uppercase should output be upper or lower case?
* @return hexadecimal representation of input
*/
std::string BOTAN_DLL hex_encode(const byte input[],
                                 size_t input_length,
                                 bool uppercase = true);

/**
* Perform hex encoding
* @param input some input
* @param uppercase should output be upper or lower case?
* @return hexadecimal representation of input
*/
std::string BOTAN_DLL hex_encode(const MemoryRegion<byte>& input,
                                 bool uppercase = true);

/**
* Perform hex decoding
* @param output an array of at least input_length/2 bytes
* @param input some hex input
* @param input_length length of input in bytes
* @param input_consumed is an output parameter which says how many
*        bytes of input were actually consumed. If less than
*        input_length, then the range input[consumed:length]
*        should be passed in later along with more input.
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return number of bytes written to output
*/
size_t BOTAN_DLL hex_decode(byte output[],
                            const char input[],
                            size_t input_length,
                            size_t& input_consumed,
                            bool ignore_ws = true);

/**
* Perform hex decoding
* @param output an array of at least input_length/2 bytes
* @param input some hex input
* @param input_length length of input in bytes
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return number of bytes written to output
*/
size_t BOTAN_DLL hex_decode(byte output[],
                            const char input[],
                            size_t input_length,
                            bool ignore_ws = true);

/**
* Perform hex decoding
* @param output an array of at least input_length/2 bytes
* @param input some hex input
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return number of bytes written to output
*/
size_t BOTAN_DLL hex_decode(byte output[],
                            const std::string& input,
                            bool ignore_ws = true);

/**
* Perform hex decoding
* @param input some hex input
* @param input_length the length of input in bytes
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return decoded hex output
*/
SecureVector<byte> BOTAN_DLL hex_decode(const char input[],
                                        size_t input_length,
                                        bool ignore_ws = true);

/**
* Perform hex decoding
* @param input some hex input
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return decoded hex output
*/
SecureVector<byte> BOTAN_DLL hex_decode(const std::string& input,
                                        bool ignore_ws = true);

}


namespace Botan {

/**
* Block Cipher Cascade
*/
class BOTAN_DLL Cascade_Cipher : public BlockCipher
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      size_t block_size() const { return block; }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(cipher1->maximum_keylength() +
                                         cipher2->maximum_keylength());
         }

      void clear();
      std::string name() const;
      BlockCipher* clone() const;

      /**
      * Create a cascade of two block ciphers
      * @param cipher1 the first cipher
      * @param cipher2 the second cipher
      */
      Cascade_Cipher(BlockCipher* cipher1, BlockCipher* cipher2);

      ~Cascade_Cipher();
   private:
      void key_schedule(const byte[], size_t);

      size_t block;
      BlockCipher* cipher1;
      BlockCipher* cipher2;
   };


}


namespace Botan {

/**
* EME from PKCS #1 v1.5
*/
class BOTAN_DLL EME_PKCS1v15 : public EME
   {
   public:
      size_t maximum_input_size(size_t) const;
   private:
      SecureVector<byte> pad(const byte[], size_t, size_t,
                             RandomNumberGenerator&) const;
      SecureVector<byte> unpad(const byte[], size_t, size_t) const;
   };

}


namespace Botan {

/**
* Bit rotation left
* @param input the input word
* @param rot the number of bits to rotate
* @return input rotated left by rot bits
*/
template<typename T> inline T rotate_left(T input, size_t rot)
   {
   return static_cast<T>((input << rot) | (input >> (8*sizeof(T)-rot)));;
   }

/**
* Bit rotation right
* @param input the input word
* @param rot the number of bits to rotate
* @return input rotated right by rot bits
*/
template<typename T> inline T rotate_right(T input, size_t rot)
   {
   return static_cast<T>((input >> rot) | (input << (8*sizeof(T)-rot)));
   }

}


#if defined(BOTAN_TARGET_CPU_HAS_SSE2) && !defined(BOTAN_NO_SSE_INTRINSICS)
  #include <emmintrin.h>
#endif

namespace Botan {

/**
* Swap a 16 bit integer
*/
inline u16bit reverse_bytes(u16bit val)
   {
   return rotate_left(val, 8);
   }

/**
* Swap a 32 bit integer
*/
inline u32bit reverse_bytes(u32bit val)
   {
#if BOTAN_GCC_VERSION >= 430 && !defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)
   /*
   GCC intrinsic added in 4.3, works for a number of CPUs

   However avoid under ARM, as it branches to a function in libgcc
   instead of generating inline asm, so slower even than the generic
   rotate version below.
   */
   return __builtin_bswap32(val);

#elif BOTAN_USE_GCC_INLINE_ASM && defined(BOTAN_TARGET_CPU_IS_X86_FAMILY)

   // GCC-style inline assembly for x86 or x86-64
   asm("bswapl %0" : "=r" (val) : "0" (val));
   return val;

#elif BOTAN_USE_GCC_INLINE_ASM && defined(BOTAN_TARGET_CPU_IS_ARM_FAMILY)

   asm ("eor r3, %1, %1, ror #16\n\t"
        "bic r3, r3, #0x00FF0000\n\t"
        "mov %0, %1, ror #8\n\t"
        "eor %0, %0, r3, lsr #8"
        : "=r" (val)
        : "0" (val)
        : "r3", "cc");

   return val;

#else

   // Generic implementation
   return (rotate_right(val, 8) & 0xFF00FF00) |
          (rotate_left (val, 8) & 0x00FF00FF);

#endif
   }

/**
* Swap a 64 bit integer
*/
inline u64bit reverse_bytes(u64bit val)
   {
#if BOTAN_GCC_VERSION >= 430

   // GCC intrinsic added in 4.3, works for a number of CPUs
   return __builtin_bswap64(val);

#elif BOTAN_USE_GCC_INLINE_ASM && defined(BOTAN_TARGET_ARCH_IS_X86_64)
   // GCC-style inline assembly for x86-64
   asm("bswapq %0" : "=r" (val) : "0" (val));
   return val;

#else
   /* Generic implementation. Defined in terms of 32-bit bswap so any
    * optimizations in that version can help here (particularly
    * useful for 32-bit x86).
    */

   u32bit hi = static_cast<u32bit>(val >> 32);
   u32bit lo = static_cast<u32bit>(val);

   hi = reverse_bytes(hi);
   lo = reverse_bytes(lo);

   return (static_cast<u64bit>(lo) << 32) | hi;
#endif
   }

/**
* Swap 4 Ts in an array
*/
template<typename T>
inline void bswap_4(T x[4])
   {
   x[0] = reverse_bytes(x[0]);
   x[1] = reverse_bytes(x[1]);
   x[2] = reverse_bytes(x[2]);
   x[3] = reverse_bytes(x[3]);
   }

#if defined(BOTAN_TARGET_CPU_HAS_SSE2) && !defined(BOTAN_NO_SSE_INTRINSICS)

/**
* Swap 4 u32bits in an array using SSE2 shuffle instructions
*/
template<>
inline void bswap_4(u32bit x[4])
   {
   __m128i T = _mm_loadu_si128(reinterpret_cast<const __m128i*>(x));

   T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));
   T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1));

   T =  _mm_or_si128(_mm_srli_epi16(T, 8), _mm_slli_epi16(T, 8));

   _mm_storeu_si128(reinterpret_cast<__m128i*>(x), T);
   }

#endif

}


namespace Botan {

/**
* MD5
*/
class BOTAN_DLL MD5 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "MD5"; }
      size_t output_length() const { return 16; }
      HashFunction* clone() const { return new MD5; }

      void clear();

      MD5() : MDx_HashFunction(64, false, true), M(16), digest(4)
         { clear(); }
   protected:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      /**
      * The message buffer, exposed for use by subclasses (x86 asm)
      */
      SecureVector<u32bit> M;

      /**
      * The digest value, exposed for use by subclasses (x86 asm)
      */
      SecureVector<u32bit> digest;
   };

}


namespace Botan {

/**
* Filter mixin that breaks input into blocks, useful for
* cipher modes
*/
class BOTAN_DLL Buffered_Filter
   {
   public:
      /**
      * Write bytes into the buffered filter, which will them emit them
      * in calls to buffered_block in the subclass
      * @param in the input bytes
      * @param length of in in bytes
      */
      void write(const byte in[], size_t length);

      /**
      * Finish a message, emitting to buffered_block and buffered_final
      * Will throw an exception if less than final_minimum bytes were
      * written into the filter.
      */
      void end_msg();

      /**
      * Initialize a Buffered_Filter
      * @param block_size the function buffered_block will be called
      *        with inputs which are a multiple of this size
      * @param final_minimum the function buffered_final will be called
      *        with at least this many bytes.
      */
      Buffered_Filter(size_t block_size, size_t final_minimum);

      virtual ~Buffered_Filter() {}
   protected:
      /**
      * The block processor, implemented by subclasses
      * @param input some input bytes
      * @param length the size of input, guaranteed to be a multiple
      *        of block_size
      */
      virtual void buffered_block(const byte input[], size_t length) = 0;

      /**
      * The final block, implemented by subclasses
      * @param input some input bytes
      * @param length the size of input, guaranteed to be at least
      *        final_minimum bytes
      */
      virtual void buffered_final(const byte input[], size_t length) = 0;

      /**
      * @return block size of inputs
      */
      size_t buffered_block_size() const { return main_block_mod; }

      /**
      * @return current position in the buffer
      */
      size_t current_position() const { return buffer_pos; }

      /**
      * Reset the buffer position
      */
      void buffer_reset() { buffer_pos = 0; }
   private:
      size_t main_block_mod, final_minimum;

      SecureVector<byte> buffer;
      size_t buffer_pos;
   };

}


namespace Botan {

/**
* ECB Encryption
*/
class BOTAN_DLL ECB_Encryption : public Keyed_Filter,
                                 private Buffered_Filter
   {
   public:
      std::string name() const;

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      ECB_Encryption(BlockCipher* ciph,
                     BlockCipherModePaddingMethod* pad);

      ECB_Encryption(BlockCipher* ciph,
                     BlockCipherModePaddingMethod* pad,
                     const SymmetricKey& key);

      ~ECB_Encryption();
   private:
      void buffered_block(const byte input[], size_t input_length);
      void buffered_final(const byte input[], size_t input_length);

      void write(const byte input[], size_t input_length);
      void end_msg();

      BlockCipher* cipher;
      BlockCipherModePaddingMethod* padder;
      SecureVector<byte> temp;
   };

/**
* ECB Decryption
*/
class BOTAN_DLL ECB_Decryption : public Keyed_Filter,
                                 public Buffered_Filter
   {
   public:
      std::string name() const;

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      ECB_Decryption(BlockCipher* ciph,
                     BlockCipherModePaddingMethod* pad);

      ECB_Decryption(BlockCipher* ciph,
                     BlockCipherModePaddingMethod* pad,
                     const SymmetricKey& key);

      ~ECB_Decryption();
   private:
      void buffered_block(const byte input[], size_t input_length);
      void buffered_final(const byte input[], size_t input_length);

      void write(const byte input[], size_t input_length);
      void end_msg();

      BlockCipher* cipher;
      BlockCipherModePaddingMethod* padder;
      SecureVector<byte> temp;
   };

}


namespace Botan {

/**
* The different charsets (nominally) supported by Botan.
*/
enum Character_Set {
   LOCAL_CHARSET,
   UCS2_CHARSET,
   UTF8_CHARSET,
   LATIN1_CHARSET
};

namespace Charset {

/*
* Character Set Handling
*/
std::string BOTAN_DLL transcode(const std::string& str,
                                Character_Set to,
                                Character_Set from);

bool BOTAN_DLL is_digit(char c);
bool BOTAN_DLL is_space(char c);
bool BOTAN_DLL caseless_cmp(char x, char y);

byte BOTAN_DLL char2digit(char c);
char BOTAN_DLL digit2char(byte b);

}

}


namespace Botan {

/**
* This class represents public keys
* of integer factorization based (IF) public key schemes.
*/
class BOTAN_DLL IF_Scheme_PublicKey : public virtual Public_Key
   {
   public:
      IF_Scheme_PublicKey(const AlgorithmIdentifier& alg_id,
                          const MemoryRegion<byte>& key_bits);

      IF_Scheme_PublicKey(const BigInt& n, const BigInt& e) :
         n(n), e(e) {}

      bool check_key(RandomNumberGenerator& rng, bool) const;

      AlgorithmIdentifier algorithm_identifier() const;

      MemoryVector<byte> x509_subject_public_key() const;

      /**
      * @return public modulus
      */
      const BigInt& get_n() const { return n; }

      /**
      * @return public exponent
      */
      const BigInt& get_e() const { return e; }

      size_t max_input_bits() const { return (n.bits() - 1); }

   protected:
      IF_Scheme_PublicKey() {}

      BigInt n, e;
   };

/**
* This class represents public keys
* of integer factorization based (IF) public key schemes.
*/
class BOTAN_DLL IF_Scheme_PrivateKey : public virtual IF_Scheme_PublicKey,
                                       public virtual Private_Key
   {
   public:

      IF_Scheme_PrivateKey(RandomNumberGenerator& rng,
                           const BigInt& prime1, const BigInt& prime2,
                           const BigInt& exp, const BigInt& d_exp,
                           const BigInt& mod);

      IF_Scheme_PrivateKey(RandomNumberGenerator& rng,
                           const AlgorithmIdentifier& alg_id,
                           const MemoryRegion<byte>& key_bits);

      bool check_key(RandomNumberGenerator& rng, bool) const;

      /**
      * Get the first prime p.
      * @return prime p
      */
      const BigInt& get_p() const { return p; }

      /**
      * Get the second prime q.
      * @return prime q
      */
      const BigInt& get_q() const { return q; }

      /**
      * Get d with exp * d = 1 mod (p - 1, q - 1).
      * @return d
      */
      const BigInt& get_d() const { return d; }

      const BigInt& get_c() const { return c; }
      const BigInt& get_d1() const { return d1; }
      const BigInt& get_d2() const { return d2; }

      MemoryVector<byte> pkcs8_private_key() const;

   protected:
      IF_Scheme_PrivateKey() {}

      BigInt d, p, q, d1, d2, c;
   };

}


namespace Botan {

/**
* RSA Public Key
*/
class BOTAN_DLL RSA_PublicKey : public virtual IF_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "RSA"; }

      RSA_PublicKey(const AlgorithmIdentifier& alg_id,
                    const MemoryRegion<byte>& key_bits) :
         IF_Scheme_PublicKey(alg_id, key_bits)
         {}

      /**
      * Create a RSA_PublicKey
      * @arg n the modulus
      * @arg e the exponent
      */
      RSA_PublicKey(const BigInt& n, const BigInt& e) :
         IF_Scheme_PublicKey(n, e)
         {}

   protected:
      RSA_PublicKey() {}
   };

/**
* RSA Private Key
*/
class BOTAN_DLL RSA_PrivateKey : public RSA_PublicKey,
                                 public IF_Scheme_PrivateKey
   {
   public:
      bool check_key(RandomNumberGenerator& rng, bool) const;

      RSA_PrivateKey(const AlgorithmIdentifier& alg_id,
                     const MemoryRegion<byte>& key_bits,
                     RandomNumberGenerator& rng) :
         IF_Scheme_PrivateKey(rng, alg_id, key_bits) {}

      /**
      * Construct a private key from the specified parameters.
      * @param rng a random number generator
      * @param p the first prime
      * @param q the second prime
      * @param e the exponent
      * @param d if specified, this has to be d with
      * exp * d = 1 mod (p - 1, q - 1). Leave it as 0 if you wish to
      * the constructor to calculate it.
      * @param n if specified, this must be n = p * q. Leave it as 0
      * if you wish to the constructor to calculate it.
      */
      RSA_PrivateKey(RandomNumberGenerator& rng,
                     const BigInt& p, const BigInt& q,
                     const BigInt& e, const BigInt& d = 0,
                     const BigInt& n = 0) :
         IF_Scheme_PrivateKey(rng, p, q, e, d, n) {}

      /**
      * Create a new private key with the specified bit length
      * @param rng the random number generator to use
      * @param bits the desired bit length of the private key
      * @param exp the public exponent to be used
      */
      RSA_PrivateKey(RandomNumberGenerator& rng,
                     size_t bits, size_t exp = 65537);
   };

/**
* RSA private (decrypt/sign) operation
*/
class BOTAN_DLL RSA_Private_Operation : public PK_Ops::Signature,
                                        public PK_Ops::Decryption
   {
   public:
      RSA_Private_Operation(const RSA_PrivateKey& rsa);

      size_t max_input_bits() const { return (n.bits() - 1); }

      SecureVector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);

      SecureVector<byte> decrypt(const byte msg[], size_t msg_len);

   private:
      BigInt private_op(const BigInt& m) const;

      const BigInt& n;
      const BigInt& q;
      const BigInt& c;
      Fixed_Exponent_Power_Mod powermod_e_n, powermod_d1_p, powermod_d2_q;
      Modular_Reducer mod_p;
      Blinder blinder;
   };

/**
* RSA public (encrypt/verify) operation
*/
class BOTAN_DLL RSA_Public_Operation : public PK_Ops::Verification,
                                       public PK_Ops::Encryption
   {
   public:
      RSA_Public_Operation(const RSA_PublicKey& rsa) :
         n(rsa.get_n()), powermod_e_n(rsa.get_e(), rsa.get_n())
         {}

      size_t max_input_bits() const { return (n.bits() - 1); }
      bool with_recovery() const { return true; }

      SecureVector<byte> encrypt(const byte msg[], size_t msg_len,
                                 RandomNumberGenerator&)
         {
         BigInt m(msg, msg_len);
         return BigInt::encode_1363(public_op(m), n.bytes());
         }

      SecureVector<byte> verify_mr(const byte msg[], size_t msg_len)
         {
         BigInt m(msg, msg_len);
         return BigInt::encode(public_op(m));
         }

   private:
      BigInt public_op(const BigInt& m) const
         {
         if(m >= n)
            throw Invalid_Argument("RSA public op - input is too large");
         return powermod_e_n(m);
         }

      const BigInt& n;
      Fixed_Exponent_Power_Mod powermod_e_n;
   };

}


namespace Botan {

/**
* RIPEMD-160
*/
class BOTAN_DLL RIPEMD_160 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "RIPEMD-160"; }
      size_t output_length() const { return 20; }
      HashFunction* clone() const { return new RIPEMD_160; }

      void clear();

      RIPEMD_160() : MDx_HashFunction(64, false, true), M(16), digest(5)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u32bit> M, digest;
   };

}


namespace Botan {

/**
* Whirlpool
*/
class BOTAN_DLL Whirlpool : public MDx_HashFunction
   {
   public:
      std::string name() const { return "Whirlpool"; }
      size_t output_length() const { return 64; }
      HashFunction* clone() const { return new Whirlpool; }

      void clear();

      Whirlpool() : MDx_HashFunction(64, true, true, 32), M(8), digest(8)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      static const u64bit C0[256];
      static const u64bit C1[256];
      static const u64bit C2[256];
      static const u64bit C3[256];
      static const u64bit C4[256];
      static const u64bit C5[256];
      static const u64bit C6[256];
      static const u64bit C7[256];

      SecureVector<u64bit> M, digest;
   };

}


namespace Botan {

/**
* Tiger
*/
class BOTAN_DLL Tiger : public MDx_HashFunction
   {
   public:
      std::string name() const;
      size_t output_length() const { return hash_len; }

      HashFunction* clone() const
         {
         return new Tiger(output_length(), passes);
         }

      void clear();

      /**
      * @param out_size specifies the output length; can be 16, 20, or 24
      * @param passes to make in the algorithm
      */
      Tiger(size_t out_size = 24, size_t passes = 3);
   private:
      void compress_n(const byte[], size_t block);
      void copy_out(byte[]);

      static void pass(u64bit& A, u64bit& B, u64bit& C,
                       const MemoryRegion<u64bit>& M,
                       byte mul);

      static const u64bit SBOX1[256];
      static const u64bit SBOX2[256];
      static const u64bit SBOX3[256];
      static const u64bit SBOX4[256];

      SecureVector<u64bit> X, digest;
      const size_t hash_len, passes;
   };

}


namespace Botan {

/**
* SEED, a Korean block cipher
*/
class BOTAN_DLL SEED : public Block_Cipher_Fixed_Params<16, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(K); }
      std::string name() const { return "SEED"; }
      BlockCipher* clone() const { return new SEED; }

      SEED() : K(32) {}
   private:
      void key_schedule(const byte[], size_t);

      class G_FUNC
         {
         public:
            u32bit operator()(u32bit) const;
         private:
            static const u32bit S0[256], S1[256], S2[256], S3[256];
         };

      SecureVector<u32bit> K;
   };

}


namespace Botan {

/**
* EMSA3 from IEEE 1363
* aka PKCS #1 v1.5 signature padding
* aka PKCS #1 block type 1
*/
class BOTAN_DLL EMSA3 : public EMSA
   {
   public:
      /**
      * @param hash the hash object to use
      */
      EMSA3(HashFunction* hash);
      ~EMSA3();

      void update(const byte[], size_t);

      SecureVector<byte> raw_data();

      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator& rng);

      bool verify(const MemoryRegion<byte>&, const MemoryRegion<byte>&,
                  size_t);
   private:
      HashFunction* hash;
      SecureVector<byte> hash_id;
   };

/**
* EMSA3_Raw which is EMSA3 without a hash or digest id (which
* according to QCA docs is "identical to PKCS#11's CKM_RSA_PKCS
* mechanism", something I have not confirmed)
*/
class BOTAN_DLL EMSA3_Raw : public EMSA
   {
   public:
      void update(const byte[], size_t);

      SecureVector<byte> raw_data();

      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator& rng);

      bool verify(const MemoryRegion<byte>&, const MemoryRegion<byte>&,
                  size_t);

   private:
      SecureVector<byte> message;
   };

}


namespace Botan {

/**
* Twofish, an AES finalist
*/
class BOTAN_DLL Twofish : public Block_Cipher_Fixed_Params<16, 16, 32, 8>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();
      std::string name() const { return "Twofish"; }
      BlockCipher* clone() const { return new Twofish; }

      Twofish() : SB(1024), RK(40) {}
   private:
      void key_schedule(const byte[], size_t);

      static void rs_mul(byte[4], byte, size_t);

      static const u32bit MDS0[256];
      static const u32bit MDS1[256];
      static const u32bit MDS2[256];
      static const u32bit MDS3[256];
      static const byte Q0[256];
      static const byte Q1[256];
      static const byte RS[32];
      static const byte EXP_TO_POLY[255];
      static const byte POLY_TO_EXP[255];

      SecureVector<u32bit> SB, RK;
   };

}


namespace Botan {

/**
* Create a password hash using PBKDF2
* @param password the password
* @param rng a random number generator
* @param work_factor how much work to do to slow down guessing attacks
* @param alg_id specifies which PRF to use with PBKDF2
*        0 is HMAC(SHA-1)
*        1 is HMAC(SHA-256)
*        2 is CMAC(Blowfish)
*        all other values are currently undefined
*/
std::string BOTAN_DLL generate_passhash9(const std::string& password,
                                         RandomNumberGenerator& rng,
                                         u16bit work_factor = 10,
                                         byte alg_id = 0);

/**
* Check a previously created password hash
* @param password the password to check against
* @param hash the stored hash to check against
*/
bool BOTAN_DLL check_passhash9(const std::string& password,
                               const std::string& hash);

}


namespace Botan {

/**
* SHA-224
*/
class BOTAN_DLL SHA_224 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "SHA-224"; }
      size_t output_length() const { return 28; }
      HashFunction* clone() const { return new SHA_224; }

      void clear();

      SHA_224() : MDx_HashFunction(64, true, true), digest(8)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u32bit> digest;
   };

/**
* SHA-256
*/
class BOTAN_DLL SHA_256 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "SHA-256"; }
      size_t output_length() const { return 32; }
      HashFunction* clone() const { return new SHA_256; }

      void clear();

      SHA_256() : MDx_HashFunction(64, true, true), digest(8)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u32bit> digest;
   };

}


namespace Botan {

/**
* Blue Midnight Wish 512 (Round 2 tweaked version)
*/
class BOTAN_DLL BMW_512 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "BMW512"; }
      size_t output_length() const { return 64; }
      HashFunction* clone() const { return new BMW_512; }

      void clear();

      BMW_512() : MDx_HashFunction(128, false, true), H(16), M(16), Q(32)
         { clear(); }
   private:
      void compress_n(const byte input[], size_t blocks);
      void copy_out(byte output[]);

      SecureVector<u64bit> H, M, Q;
   };

}


namespace Botan {

/**
* @param input the input data
* @param length length of input in bytes
* @param label the human-readable label
* @param headers a set of key/value pairs included in the header
*/
BOTAN_DLL std::string PGP_encode(
   const byte input[],
   size_t length,
   const std::string& label,
   const std::map<std::string, std::string>& headers);

/**
* @param input the input data
* @param length length of input in bytes
* @param label the human-readable label
*/
BOTAN_DLL std::string PGP_encode(
   const byte input[],
   size_t length,
   const std::string& label);

/**
* @param source the input source
* @param label is set to the human-readable label
* @param headers is set to any headers
* @return decoded output as raw binary
*/
BOTAN_DLL SecureVector<byte> PGP_decode(
   DataSource& source,
   std::string& label,
   std::map<std::string, std::string>& headers);

/**
* @param source the input source
* @param label is set to the human-readable label
* @return decoded output as raw binary
*/
BOTAN_DLL SecureVector<byte> PGP_decode(
   DataSource& source,
   std::string& label);

}


namespace Botan {

/**
* Certificate Store Interface
*/
class BOTAN_DLL Certificate_Store
   {
   public:
      virtual ~Certificate_Store() {}

      virtual Certificate_Store* clone() const = 0;

      /**
      * Add a certificate; this may fail if the store is write-only
      */
      virtual void add_certificate(const X509_Certificate& cert) = 0;

      /**
      * Add a CRL; this may fail if the store is write-only
      */
      virtual void add_crl(const X509_CRL& crl) = 0;

      /**
      * Subject DN and (optionally) key identifier
      */
      virtual std::vector<X509_Certificate>
         find_cert_by_subject_and_key_id(
            const X509_DN& subject_dn,
            const MemoryRegion<byte>& key_id) const = 0;

      /**
      * Find CRLs by the DN and key id of the issuer
      */
      virtual std::vector<X509_CRL>
         find_crl_by_subject_and_key_id(
            const X509_DN& issuer_dn,
            const MemoryRegion<byte>& key_id) const = 0;
   };

/**
* In Memory Certificate Store
*/
class BOTAN_DLL Certificate_Store_Memory : public Certificate_Store
   {
   public:
      Certificate_Store* clone() const;

      void add_certificate(const X509_Certificate& cert);

      void add_crl(const X509_CRL& crl);

      std::vector<X509_Certificate> find_cert_by_subject_and_key_id(
         const X509_DN& subject_dn,
         const MemoryRegion<byte>& key_id) const;

      std::vector<X509_CRL> find_crl_by_subject_and_key_id(
         const X509_DN& issuer_dn,
         const MemoryRegion<byte>& key_id) const;

      Certificate_Store_Memory() {}
   private:
      // TODO: Add indexing on the DN and key id to avoid linear search?
      std::vector<X509_Certificate> certs;
      std::vector<X509_CRL> crls;
   };

// TODO: file-backed store

}


namespace Botan {

/**
* KDF2, from IEEE 1363
*/
class BOTAN_DLL KDF2 : public KDF
   {
   public:
      SecureVector<byte> derive(size_t, const byte[], size_t,
                                const byte[], size_t) const;

      std::string name() const { return "KDF2(" + hash->name() + ")"; }
      KDF* clone() const { return new KDF2(hash->clone()); }

      KDF2(HashFunction* h) : hash(h) {}
      KDF2(const KDF2& other) : KDF(), hash(other.hash->clone()) {}
      ~KDF2() { delete hash; }
   private:
      HashFunction* hash;
   };

}


namespace Botan {

namespace KeyPair {

/**
* Tests whether the key is consistent for encryption; whether
* encrypting and then decrypting gives to the original plaintext.
* @param rng the rng to use
* @param key the key to test
* @param padding the encryption padding method to use
* @return true if consistent otherwise false
*/
BOTAN_DLL bool
encryption_consistency_check(RandomNumberGenerator& rng,
                             const Private_Key& key,
                             const std::string& padding);

/**
* Tests whether the key is consistent for signatures; whether a
* signature can be created and then verified
* @param rng the rng to use
* @param key the key to test
* @param padding the signature padding method to use
* @return true if consistent otherwise false
*/
BOTAN_DLL bool
signature_consistency_check(RandomNumberGenerator& rng,
                            const Private_Key& key,
                            const std::string& padding);

}

}


namespace Botan {

/**
* This namespace holds various high-level crypto functions
*/
namespace CryptoBox {

/**
* Encrypt a message using a passphrase
* @param input the input data
* @param input_len the length of input in bytes
* @param passphrase the passphrase used to encrypt the message
* @param rng a ref to a random number generator, such as AutoSeeded_RNG
*/
BOTAN_DLL std::string encrypt(const byte input[], size_t input_len,
                              const std::string& passphrase,
                              RandomNumberGenerator& rng);

/**
* Decrypt a message encrypted with CryptoBox::encrypt
* @param input the input data
* @param input_len the length of input in bytes
* @param passphrase the passphrase used to encrypt the message
*/
BOTAN_DLL std::string decrypt(const byte input[], size_t input_len,
                              const std::string& passphrase);

/**
* Decrypt a message encrypted with CryptoBox::encrypt
* @param input the input data
* @param passphrase the passphrase used to encrypt the message
*/
BOTAN_DLL std::string decrypt(const std::string& input,
                              const std::string& passphrase);

}

}


namespace Botan {

/**
* X.509 Certificate Validation Result
*/
enum X509_Code {
   VERIFIED,
   UNKNOWN_X509_ERROR,
   CANNOT_ESTABLISH_TRUST,
   CERT_CHAIN_TOO_LONG,
   SIGNATURE_ERROR,
   POLICY_ERROR,
   INVALID_USAGE,

   CERT_FORMAT_ERROR,
   CERT_ISSUER_NOT_FOUND,
   CERT_NOT_YET_VALID,
   CERT_HAS_EXPIRED,
   CERT_IS_REVOKED,

   CRL_FORMAT_ERROR,
   CRL_ISSUER_NOT_FOUND,
   CRL_NOT_YET_VALID,
   CRL_HAS_EXPIRED,

   CA_CERT_CANNOT_SIGN,
   CA_CERT_NOT_FOR_CERT_ISSUER,
   CA_CERT_NOT_FOR_CRL_ISSUER
};

/**
* X.509 Certificate Store
*/
class BOTAN_DLL X509_Store
   {
   public:
      enum Cert_Usage {
         ANY              = 0x00,
         TLS_SERVER       = 0x01,
         TLS_CLIENT       = 0x02,
         CODE_SIGNING     = 0x04,
         EMAIL_PROTECTION = 0x08,
         TIME_STAMPING    = 0x10,
         CRL_SIGNING      = 0x20
      };

      X509_Code validate_cert(const X509_Certificate&, Cert_Usage = ANY);

      std::vector<X509_Certificate> get_cert_chain(const X509_Certificate&);
      std::string PEM_encode() const;

      X509_Code add_crl(const X509_CRL&);
      void add_cert(const X509_Certificate&, bool = false);
      void add_certs(DataSource&);
      void add_trusted_certs(DataSource&);

      void add_new_certstore(Certificate_Store*);

      X509_Store(u32bit time_slack = 24*60*60,
                 u32bit cache_results = 30*60);

      X509_Store(const X509_Store&);
      ~X509_Store();
   private:
      X509_Store& operator=(const X509_Store&) { return (*this); }

      class BOTAN_DLL CRL_Data
         {
         public:
            X509_DN issuer;
            MemoryVector<byte> serial, auth_key_id;
            bool operator==(const CRL_Data&) const;
            bool operator!=(const CRL_Data&) const;
            bool operator<(const CRL_Data&) const;
         };

      class BOTAN_DLL Cert_Info
         {
         public:
            bool is_verified(u32bit timeout) const;
            bool is_trusted() const;
            X509_Code verify_result() const;
            void set_result(X509_Code) const;
            Cert_Info(const X509_Certificate&, bool = false);

            X509_Certificate cert;
            bool trusted;
         private:
            mutable bool checked;
            mutable X509_Code result;
            mutable u64bit last_checked;
         };

      static X509_Code check_sig(const X509_Object&, Public_Key*);

      size_t find_cert(const X509_DN&, const MemoryRegion<byte>&) const;
      X509_Code check_sig(const Cert_Info&, const Cert_Info&) const;
      void recompute_revoked_info() const;

      void do_add_certs(DataSource&, bool);
      X509_Code construct_cert_chain(const X509_Certificate&,
                                     std::vector<size_t>&, bool = false);

      size_t find_parent_of(const X509_Certificate&);
      bool is_revoked(const X509_Certificate&) const;

      static const size_t NO_CERT_FOUND = 0xFFFFFFFF;
      std::vector<Cert_Info> certs;
      std::vector<CRL_Data> revoked;
      std::vector<Certificate_Store*> stores;
      u32bit time_slack, validation_cache_timeout;
      mutable bool revoked_info_valid;
   };

}


namespace Botan {

/**
* Noekeon
*/
class BOTAN_DLL Noekeon : public Block_Cipher_Fixed_Params<16, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();
      std::string name() const { return "Noekeon"; }
      BlockCipher* clone() const { return new Noekeon; }

      Noekeon() : EK(4), DK(4) {}
   protected:
      /**
      * The Noekeon round constants
      */
      static const byte RC[17];

      /**
      * @return const reference to encryption subkeys
      */
      const SecureVector<u32bit>& get_EK() const { return EK; }

      /**
      * @return const reference to decryption subkeys
      */
      const SecureVector<u32bit>& get_DK() const { return DK; }

   private:
      void key_schedule(const byte[], size_t);
      SecureVector<u32bit> EK, DK;
   };

}


namespace Botan {

/**
* Create a password hash using Bcrypt
* @param password the password
* @param rng a random number generator
* @param work_factor how much work to do to slow down guessing attacks
*
* @see http://www.usenix.org/events/usenix99/provos/provos_html/
*/
std::string BOTAN_DLL generate_bcrypt(const std::string& password,
                                      RandomNumberGenerator& rng,
                                      u16bit work_factor = 10);

/**
* Check a previously created password hash
* @param password the password to check against
* @param hash the stored hash to check against
*/
bool BOTAN_DLL check_bcrypt(const std::string& password,
                            const std::string& hash);

}


namespace Botan {

/**
* CFB Encryption
*/
class BOTAN_DLL CFB_Encryption : public Keyed_Filter
   {
   public:
      std::string name() const { return cipher->name() + "/CFB"; }

      void set_iv(const InitializationVector&);

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      CFB_Encryption(BlockCipher* cipher, size_t feedback = 0);

      CFB_Encryption(BlockCipher* cipher,
                     const SymmetricKey& key,
                     const InitializationVector& iv,
                     size_t feedback = 0);

      ~CFB_Encryption() { delete cipher; }
   private:
      void write(const byte[], size_t);

      BlockCipher* cipher;
      SecureVector<byte> buffer, state;
      size_t position, feedback;
   };

/**
* CFB Decryption
*/
class BOTAN_DLL CFB_Decryption : public Keyed_Filter
   {
   public:
      std::string name() const { return cipher->name() + "/CFB"; }

      void set_iv(const InitializationVector&);

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      CFB_Decryption(BlockCipher* cipher, size_t feedback = 0);

      CFB_Decryption(BlockCipher* cipher,
                     const SymmetricKey& key,
                     const InitializationVector& iv,
                     size_t feedback = 0);

      ~CFB_Decryption() { delete cipher; }
   private:
      void write(const byte[], size_t);

      BlockCipher* cipher;
      SecureVector<byte> buffer, state;
      size_t position, feedback;
   };

}


namespace Botan {

/**
* X.509 Certificate Extension
*/
class BOTAN_DLL Certificate_Extension
   {
   public:
      /**
      * @return OID representing this extension
      */
      OID oid_of() const;

      /**
      * Make a copy of this extension
      * @return copy of this
      */
      virtual Certificate_Extension* copy() const = 0;

      /*
      * Add the contents of this extension into the information
      * for the subject and/or issuer, as necessary.
      * @param subject the subject info
      * @param issuer the issuer info
      */
      virtual void contents_to(Data_Store& subject,
                               Data_Store& issuer) const = 0;

      /*
      * @return short readable name
      */
      virtual std::string config_id() const = 0;

      /*
      * @return specific OID name
      */
      virtual std::string oid_name() const = 0;

      virtual ~Certificate_Extension() {}
   protected:
      friend class Extensions;
      virtual bool should_encode() const { return true; }
      virtual MemoryVector<byte> encode_inner() const = 0;
      virtual void decode_inner(const MemoryRegion<byte>&) = 0;
   };

/**
* X.509 Certificate Extension List
*/
class BOTAN_DLL Extensions : public ASN1_Object
   {
   public:
      void encode_into(class DER_Encoder&) const;
      void decode_from(class BER_Decoder&);

      void contents_to(Data_Store&, Data_Store&) const;

      void add(Certificate_Extension* extn, bool critical = false);

      Extensions& operator=(const Extensions&);

      Extensions(const Extensions&);
      Extensions(bool st = true) : should_throw(st) {}
      ~Extensions();
   private:
      static Certificate_Extension* get_extension(const OID&);

      std::vector<std::pair<Certificate_Extension*, bool> > extensions;
      bool should_throw;
   };

namespace Cert_Extension {

static const size_t NO_CERT_PATH_LIMIT = 0xFFFFFFF0;

/**
* Basic Constraints Extension
*/
class BOTAN_DLL Basic_Constraints : public Certificate_Extension
   {
   public:
      Basic_Constraints* copy() const
         { return new Basic_Constraints(is_ca, path_limit); }

      Basic_Constraints(bool ca = false, size_t limit = 0) :
         is_ca(ca), path_limit(limit) {}

      bool get_is_ca() const { return is_ca; }
      size_t get_path_limit() const;
   private:
      std::string config_id() const { return "basic_constraints"; }
      std::string oid_name() const { return "X509v3.BasicConstraints"; }

      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      bool is_ca;
      size_t path_limit;
   };

/**
* Key Usage Constraints Extension
*/
class BOTAN_DLL Key_Usage : public Certificate_Extension
   {
   public:
      Key_Usage* copy() const { return new Key_Usage(constraints); }

      Key_Usage(Key_Constraints c = NO_CONSTRAINTS) : constraints(c) {}

      Key_Constraints get_constraints() const { return constraints; }
   private:
      std::string config_id() const { return "key_usage"; }
      std::string oid_name() const { return "X509v3.KeyUsage"; }

      bool should_encode() const { return (constraints != NO_CONSTRAINTS); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      Key_Constraints constraints;
   };

/**
* Subject Key Identifier Extension
*/
class BOTAN_DLL Subject_Key_ID : public Certificate_Extension
   {
   public:
      Subject_Key_ID* copy() const { return new Subject_Key_ID(key_id); }

      Subject_Key_ID() {}
      Subject_Key_ID(const MemoryRegion<byte>&);

      MemoryVector<byte> get_key_id() const { return key_id; }
   private:
      std::string config_id() const { return "subject_key_id"; }
      std::string oid_name() const { return "X509v3.SubjectKeyIdentifier"; }

      bool should_encode() const { return (key_id.size() > 0); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      MemoryVector<byte> key_id;
   };

/**
* Authority Key Identifier Extension
*/
class BOTAN_DLL Authority_Key_ID : public Certificate_Extension
   {
   public:
      Authority_Key_ID* copy() const { return new Authority_Key_ID(key_id); }

      Authority_Key_ID() {}
      Authority_Key_ID(const MemoryRegion<byte>& k) : key_id(k) {}

      MemoryVector<byte> get_key_id() const { return key_id; }
   private:
      std::string config_id() const { return "authority_key_id"; }
      std::string oid_name() const { return "X509v3.AuthorityKeyIdentifier"; }

      bool should_encode() const { return (key_id.size() > 0); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      MemoryVector<byte> key_id;
   };

/**
* Alternative Name Extension Base Class
*/
class BOTAN_DLL Alternative_Name : public Certificate_Extension
   {
   public:
      AlternativeName get_alt_name() const { return alt_name; }

   protected:
      Alternative_Name(const AlternativeName&,
                       const std::string&, const std::string&);

      Alternative_Name(const std::string&, const std::string&);
   private:
      std::string config_id() const { return config_name_str; }
      std::string oid_name() const { return oid_name_str; }

      bool should_encode() const { return alt_name.has_items(); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      std::string config_name_str, oid_name_str;
      AlternativeName alt_name;
   };

/**
* Subject Alternative Name Extension
*/
class BOTAN_DLL Subject_Alternative_Name : public Alternative_Name
   {
   public:
      Subject_Alternative_Name* copy() const
         { return new Subject_Alternative_Name(get_alt_name()); }

      Subject_Alternative_Name(const AlternativeName& = AlternativeName());
   };

/**
* Issuer Alternative Name Extension
*/
class BOTAN_DLL Issuer_Alternative_Name : public Alternative_Name
   {
   public:
      Issuer_Alternative_Name* copy() const
         { return new Issuer_Alternative_Name(get_alt_name()); }

      Issuer_Alternative_Name(const AlternativeName& = AlternativeName());
   };

/**
* Extended Key Usage Extension
*/
class BOTAN_DLL Extended_Key_Usage : public Certificate_Extension
   {
   public:
      Extended_Key_Usage* copy() const { return new Extended_Key_Usage(oids); }

      Extended_Key_Usage() {}
      Extended_Key_Usage(const std::vector<OID>& o) : oids(o) {}

      std::vector<OID> get_oids() const { return oids; }
   private:
      std::string config_id() const { return "extended_key_usage"; }
      std::string oid_name() const { return "X509v3.ExtendedKeyUsage"; }

      bool should_encode() const { return (oids.size() > 0); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      std::vector<OID> oids;
   };

/**
* Certificate Policies Extension
*/
class BOTAN_DLL Certificate_Policies : public Certificate_Extension
   {
   public:
      Certificate_Policies* copy() const
         { return new Certificate_Policies(oids); }

      Certificate_Policies() {}
      Certificate_Policies(const std::vector<OID>& o) : oids(o) {}

      std::vector<OID> get_oids() const { return oids; }
   private:
      std::string config_id() const { return "policy_info"; }
      std::string oid_name() const { return "X509v3.CertificatePolicies"; }

      bool should_encode() const { return (oids.size() > 0); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      std::vector<OID> oids;
   };

/**
* CRL Number Extension
*/
class BOTAN_DLL CRL_Number : public Certificate_Extension
   {
   public:
      CRL_Number* copy() const;

      CRL_Number() : has_value(false), crl_number(0) {}
      CRL_Number(size_t n) : has_value(true), crl_number(n) {}

      size_t get_crl_number() const;
   private:
      std::string config_id() const { return "crl_number"; }
      std::string oid_name() const { return "X509v3.CRLNumber"; }

      bool should_encode() const { return has_value; }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      bool has_value;
      size_t crl_number;
   };

/**
* CRL Entry Reason Code Extension
*/
class BOTAN_DLL CRL_ReasonCode : public Certificate_Extension
   {
   public:
      CRL_ReasonCode* copy() const { return new CRL_ReasonCode(reason); }

      CRL_ReasonCode(CRL_Code r = UNSPECIFIED) : reason(r) {}

      CRL_Code get_reason() const { return reason; }
   private:
      std::string config_id() const { return "crl_reason"; }
      std::string oid_name() const { return "X509v3.ReasonCode"; }

      bool should_encode() const { return (reason != UNSPECIFIED); }
      MemoryVector<byte> encode_inner() const;
      void decode_inner(const MemoryRegion<byte>&);
      void contents_to(Data_Store&, Data_Store&) const;

      CRL_Code reason;
   };

}

}


namespace Botan {

/**
* DSA Public Key
*/
class BOTAN_DLL DSA_PublicKey : public virtual DL_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "DSA"; }

      DL_Group::Format group_format() const { return DL_Group::ANSI_X9_57; }
      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return group_q().bytes(); }
      size_t max_input_bits() const { return group_q().bits(); }

      DSA_PublicKey(const AlgorithmIdentifier& alg_id,
                    const MemoryRegion<byte>& key_bits) :
         DL_Scheme_PublicKey(alg_id, key_bits, DL_Group::ANSI_X9_57)
         {
         }

      DSA_PublicKey(const DL_Group& group, const BigInt& y);
   protected:
      DSA_PublicKey() {}
   };

/**
* DSA Private Key
*/
class BOTAN_DLL DSA_PrivateKey : public DSA_PublicKey,
                                 public virtual DL_Scheme_PrivateKey
   {
   public:
      DSA_PrivateKey(const AlgorithmIdentifier& alg_id,
                     const MemoryRegion<byte>& key_bits,
                     RandomNumberGenerator& rng);

      DSA_PrivateKey(RandomNumberGenerator& rng,
                     const DL_Group& group,
                     const BigInt& private_key = 0);

      bool check_key(RandomNumberGenerator& rng, bool strong) const;
   };

/**
* Object that can create a DSA signature
*/
class BOTAN_DLL DSA_Signature_Operation : public PK_Ops::Signature
   {
   public:
      DSA_Signature_Operation(const DSA_PrivateKey& dsa);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return q.bytes(); }
      size_t max_input_bits() const { return q.bits(); }

      SecureVector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);
   private:
      const BigInt& q;
      const BigInt& x;
      Fixed_Base_Power_Mod powermod_g_p;
      Modular_Reducer mod_q;
   };

/**
* Object that can verify a DSA signature
*/
class BOTAN_DLL DSA_Verification_Operation : public PK_Ops::Verification
   {
   public:
      DSA_Verification_Operation(const DSA_PublicKey& dsa);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return q.bytes(); }
      size_t max_input_bits() const { return q.bits(); }

      bool with_recovery() const { return false; }

      bool verify(const byte msg[], size_t msg_len,
                  const byte sig[], size_t sig_len);
   private:
      const BigInt& q;
      const BigInt& y;

      Fixed_Base_Power_Mod powermod_g_p, powermod_y_p;
      Modular_Reducer mod_p, mod_q;
   };

}


namespace Botan {

/**
* PRF from ANSI X9.42
*/
class BOTAN_DLL X942_PRF : public KDF
   {
   public:
      SecureVector<byte> derive(size_t, const byte[], size_t,
                                const byte[], size_t) const;

      std::string name() const { return "X942_PRF(" + key_wrap_oid + ")"; }
      KDF* clone() const { return new X942_PRF(key_wrap_oid); }

      X942_PRF(const std::string& oid);
   private:
      std::string key_wrap_oid;
   };

}


namespace Botan {

/**
* TEA
*/
class BOTAN_DLL TEA : public Block_Cipher_Fixed_Params<8, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(K); }
      std::string name() const { return "TEA"; }
      BlockCipher* clone() const { return new TEA; }

      TEA() : K(4) {}
   private:
      void key_schedule(const byte[], size_t);
      SecureVector<u32bit> K;
   };

}


namespace Botan {

/**
* Nyberg-Rueppel Public Key
*/
class BOTAN_DLL NR_PublicKey : public virtual DL_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "NR"; }

      DL_Group::Format group_format() const { return DL_Group::ANSI_X9_57; }

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return group_q().bytes(); }
      size_t max_input_bits() const { return (group_q().bits() - 1); }

      NR_PublicKey(const AlgorithmIdentifier& alg_id,
                   const MemoryRegion<byte>& key_bits);

      NR_PublicKey(const DL_Group& group, const BigInt& pub_key);
   protected:
      NR_PublicKey() {}
   };

/**
* Nyberg-Rueppel Private Key
*/
class BOTAN_DLL NR_PrivateKey : public NR_PublicKey,
                                public virtual DL_Scheme_PrivateKey
   {
   public:
      bool check_key(RandomNumberGenerator& rng, bool strong) const;

      NR_PrivateKey(const AlgorithmIdentifier& alg_id,
                    const MemoryRegion<byte>& key_bits,
                    RandomNumberGenerator& rng);

      NR_PrivateKey(RandomNumberGenerator& rng,
                    const DL_Group& group,
                    const BigInt& x = 0);
   };

/**
* Nyberg-Rueppel signature operation
*/
class BOTAN_DLL NR_Signature_Operation : public PK_Ops::Signature
   {
   public:
      NR_Signature_Operation(const NR_PrivateKey& nr);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return q.bytes(); }
      size_t max_input_bits() const { return (q.bits() - 1); }

      SecureVector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);
   private:
      const BigInt& q;
      const BigInt& x;
      Fixed_Base_Power_Mod powermod_g_p;
      Modular_Reducer mod_q;
   };

/**
* Nyberg-Rueppel verification operation
*/
class BOTAN_DLL NR_Verification_Operation : public PK_Ops::Verification
   {
   public:
      NR_Verification_Operation(const NR_PublicKey& nr);

      size_t message_parts() const { return 2; }
      size_t message_part_size() const { return q.bytes(); }
      size_t max_input_bits() const { return (q.bits() - 1); }

      bool with_recovery() const { return true; }

      SecureVector<byte> verify_mr(const byte msg[], size_t msg_len);
   private:
      const BigInt& q;
      const BigInt& y;

      Fixed_Base_Power_Mod powermod_g_p, powermod_y_p;
      Modular_Reducer mod_p, mod_q;
   };

}


namespace Botan {

/**
* Alleged RC4
*/
class BOTAN_DLL ARC4 : public StreamCipher
   {
   public:
      void cipher(const byte in[], byte out[], size_t length);

      void clear();
      std::string name() const;

      StreamCipher* clone() const { return new ARC4(SKIP); }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(1, 256);
         }

      /**
      * @param skip skip this many initial bytes in the keystream
      */
      ARC4(size_t skip = 0);

      ~ARC4() { clear(); }
   private:
      void key_schedule(const byte[], size_t);
      void generate();

      const size_t SKIP;

      byte X, Y;
      SecureVector<byte> state;

      SecureVector<byte> buffer;
      size_t position;
   };

}


namespace Botan {

/**
* Rabin-Williams Public Key
*/
class BOTAN_DLL RW_PublicKey : public virtual IF_Scheme_PublicKey
   {
   public:
      std::string algo_name() const { return "RW"; }

      RW_PublicKey(const AlgorithmIdentifier& alg_id,
                   const MemoryRegion<byte>& key_bits) :
         IF_Scheme_PublicKey(alg_id, key_bits)
         {}

      RW_PublicKey(const BigInt& mod, const BigInt& exponent) :
         IF_Scheme_PublicKey(mod, exponent)
         {}

   protected:
      RW_PublicKey() {}
   };

/**
* Rabin-Williams Private Key
*/
class BOTAN_DLL RW_PrivateKey : public RW_PublicKey,
                                public IF_Scheme_PrivateKey
   {
   public:
      RW_PrivateKey(const AlgorithmIdentifier& alg_id,
                    const MemoryRegion<byte>& key_bits,
                    RandomNumberGenerator& rng) :
         IF_Scheme_PrivateKey(rng, alg_id, key_bits) {}

      RW_PrivateKey(RandomNumberGenerator& rng,
                    const BigInt& p, const BigInt& q,
                    const BigInt& e, const BigInt& d = 0,
                    const BigInt& n = 0) :
         IF_Scheme_PrivateKey(rng, p, q, e, d, n) {}

      RW_PrivateKey(RandomNumberGenerator& rng, size_t bits, size_t = 2);

      bool check_key(RandomNumberGenerator& rng, bool) const;
   };

/**
* Rabin-Williams Signature Operation
*/
class BOTAN_DLL RW_Signature_Operation : public PK_Ops::Signature
   {
   public:
      RW_Signature_Operation(const RW_PrivateKey& rw);

      size_t max_input_bits() const { return (n.bits() - 1); }

      SecureVector<byte> sign(const byte msg[], size_t msg_len,
                              RandomNumberGenerator& rng);
   private:
      const BigInt& n;
      const BigInt& e;
      const BigInt& q;
      const BigInt& c;

      Fixed_Exponent_Power_Mod powermod_d1_p, powermod_d2_q;
      Modular_Reducer mod_p;
      Blinder blinder;
   };

/**
* Rabin-Williams Verification Operation
*/
class BOTAN_DLL RW_Verification_Operation : public PK_Ops::Verification
   {
   public:
      RW_Verification_Operation(const RW_PublicKey& rw) :
         n(rw.get_n()), powermod_e_n(rw.get_e(), rw.get_n())
         {}

      size_t max_input_bits() const { return (n.bits() - 1); }
      bool with_recovery() const { return true; }

      SecureVector<byte> verify_mr(const byte msg[], size_t msg_len);

   private:
      const BigInt& n;
      Fixed_Exponent_Power_Mod powermod_e_n;
   };

}


#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK

#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)

#define BOTAN_ENDIAN_N2B(x) (x)
#define BOTAN_ENDIAN_B2N(x) (x)

#define BOTAN_ENDIAN_N2L(x) reverse_bytes(x)
#define BOTAN_ENDIAN_L2N(x) reverse_bytes(x)

#elif defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)

#define BOTAN_ENDIAN_N2L(x) (x)
#define BOTAN_ENDIAN_L2N(x) (x)

#define BOTAN_ENDIAN_N2B(x) reverse_bytes(x)
#define BOTAN_ENDIAN_B2N(x) reverse_bytes(x)

#endif

#endif

namespace Botan {

/**
* Make a u16bit from two bytes
* @param i0 the first byte
* @param i1 the second byte
* @return i0 || i1
*/
inline u16bit make_u16bit(byte i0, byte i1)
   {
   return ((static_cast<u16bit>(i0) << 8) | i1);
   }

/**
* Make a u32bit from four bytes
* @param i0 the first byte
* @param i1 the second byte
* @param i2 the third byte
* @param i3 the fourth byte
* @return i0 || i1 || i2 || i3
*/
inline u32bit make_u32bit(byte i0, byte i1, byte i2, byte i3)
   {
   return ((static_cast<u32bit>(i0) << 24) |
           (static_cast<u32bit>(i1) << 16) |
           (static_cast<u32bit>(i2) <<  8) |
           (static_cast<u32bit>(i3)));
   }

/**
* Make a u32bit from eight bytes
* @param i0 the first byte
* @param i1 the second byte
* @param i2 the third byte
* @param i3 the fourth byte
* @param i4 the fifth byte
* @param i5 the sixth byte
* @param i6 the seventh byte
* @param i7 the eighth byte
* @return i0 || i1 || i2 || i3 || i4 || i5 || i6 || i7
*/
inline u64bit make_u64bit(byte i0, byte i1, byte i2, byte i3,
                          byte i4, byte i5, byte i6, byte i7)
    {
   return ((static_cast<u64bit>(i0) << 56) |
           (static_cast<u64bit>(i1) << 48) |
           (static_cast<u64bit>(i2) << 40) |
           (static_cast<u64bit>(i3) << 32) |
           (static_cast<u64bit>(i4) << 24) |
           (static_cast<u64bit>(i5) << 16) |
           (static_cast<u64bit>(i6) <<  8) |
           (static_cast<u64bit>(i7)));
    }

/**
* Load a big-endian word
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th T of in, as a big-endian value
*/
template<typename T>
inline T load_be(const byte in[], size_t off)
   {
   in += off * sizeof(T);
   T out = 0;
   for(size_t i = 0; i != sizeof(T); ++i)
      out = (out << 8) | in[i];
   return out;
   }

/**
* Load a little-endian word
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th T of in, as a litte-endian value
*/
template<typename T>
inline T load_le(const byte in[], size_t off)
   {
   in += off * sizeof(T);
   T out = 0;
   for(size_t i = 0; i != sizeof(T); ++i)
      out = (out << 8) | in[sizeof(T)-1-i];
   return out;
   }

/**
* Load a big-endian u16bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u16bit of in, as a big-endian value
*/
template<>
inline u16bit load_be<u16bit>(const byte in[], size_t off)
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u16bit*>(in) + off));
#else
   in += off * sizeof(u16bit);
   return make_u16bit(in[0], in[1]);
#endif
   }

/**
* Load a little-endian u16bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u16bit of in, as a little-endian value
*/
template<>
inline u16bit load_le<u16bit>(const byte in[], size_t off)
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u16bit*>(in) + off));
#else
   in += off * sizeof(u16bit);
   return make_u16bit(in[1], in[0]);
#endif
   }

/**
* Load a big-endian u32bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u32bit of in, as a big-endian value
*/
template<>
inline u32bit load_be<u32bit>(const byte in[], size_t off)
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u32bit*>(in) + off));
#else
   in += off * sizeof(u32bit);
   return make_u32bit(in[0], in[1], in[2], in[3]);
#endif
   }

/**
* Load a little-endian u32bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u32bit of in, as a little-endian value
*/
template<>
inline u32bit load_le<u32bit>(const byte in[], size_t off)
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u32bit*>(in) + off));
#else
   in += off * sizeof(u32bit);
   return make_u32bit(in[3], in[2], in[1], in[0]);
#endif
   }

/**
* Load a big-endian u64bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u64bit of in, as a big-endian value
*/
template<>
inline u64bit load_be<u64bit>(const byte in[], size_t off)
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   return BOTAN_ENDIAN_N2B(*(reinterpret_cast<const u64bit*>(in) + off));
#else
   in += off * sizeof(u64bit);
   return make_u64bit(in[0], in[1], in[2], in[3],
                      in[4], in[5], in[6], in[7]);
#endif
   }

/**
* Load a little-endian u64bit
* @param in a pointer to some bytes
* @param off an offset into the array
* @return off'th u64bit of in, as a little-endian value
*/
template<>
inline u64bit load_le<u64bit>(const byte in[], size_t off)
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   return BOTAN_ENDIAN_N2L(*(reinterpret_cast<const u64bit*>(in) + off));
#else
   in += off * sizeof(u64bit);
   return make_u64bit(in[7], in[6], in[5], in[4],
                      in[3], in[2], in[1], in[0]);
#endif
   }

/**
* Load two little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
*/
template<typename T>
inline void load_le(const byte in[], T& x0, T& x1)
   {
   x0 = load_le<T>(in, 0);
   x1 = load_le<T>(in, 1);
   }

/**
* Load four little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
*/
template<typename T>
inline void load_le(const byte in[],
                    T& x0, T& x1, T& x2, T& x3)
   {
   x0 = load_le<T>(in, 0);
   x1 = load_le<T>(in, 1);
   x2 = load_le<T>(in, 2);
   x3 = load_le<T>(in, 3);
   }

/**
* Load eight little-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
* @param x4 where the fifth word will be written
* @param x5 where the sixth word will be written
* @param x6 where the seventh word will be written
* @param x7 where the eighth word will be written
*/
template<typename T>
inline void load_le(const byte in[],
                    T& x0, T& x1, T& x2, T& x3,
                    T& x4, T& x5, T& x6, T& x7)
   {
   x0 = load_le<T>(in, 0);
   x1 = load_le<T>(in, 1);
   x2 = load_le<T>(in, 2);
   x3 = load_le<T>(in, 3);
   x4 = load_le<T>(in, 4);
   x5 = load_le<T>(in, 5);
   x6 = load_le<T>(in, 6);
   x7 = load_le<T>(in, 7);
   }

/**
* Load a variable number of little-endian words
* @param out the output array of words
* @param in the input array of bytes
* @param count how many words are in in
*/
template<typename T>
inline void load_le(T out[],
                    const byte in[],
                    size_t count)
   {
#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
   std::memcpy(out, in, sizeof(T)*count);

#if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN)
   const size_t blocks = count - (count % 4);
   const size_t left = count - blocks;

   for(size_t i = 0; i != blocks; i += 4)
      bswap_4(out + i);

   for(size_t i = 0; i != left; ++i)
      out[blocks+i] = reverse_bytes(out[blocks+i]);
#endif

#else
   for(size_t i = 0; i != count; ++i)
      out[i] = load_le<T>(in, i);
#endif
   }

/**
* Load two big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
*/
template<typename T>
inline void load_be(const byte in[], T& x0, T& x1)
   {
   x0 = load_be<T>(in, 0);
   x1 = load_be<T>(in, 1);
   }

/**
* Load four big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
*/
template<typename T>
inline void load_be(const byte in[],
                    T& x0, T& x1, T& x2, T& x3)
   {
   x0 = load_be<T>(in, 0);
   x1 = load_be<T>(in, 1);
   x2 = load_be<T>(in, 2);
   x3 = load_be<T>(in, 3);
   }

/**
* Load eight big-endian words
* @param in a pointer to some bytes
* @param x0 where the first word will be written
* @param x1 where the second word will be written
* @param x2 where the third word will be written
* @param x3 where the fourth word will be written
* @param x4 where the fifth word will be written
* @param x5 where the sixth word will be written
* @param x6 where the seventh word will be written
* @param x7 where the eighth word will be written
*/
template<typename T>
inline void load_be(const byte in[],
                    T& x0, T& x1, T& x2, T& x3,
                    T& x4, T& x5, T& x6, T& x7)
   {
   x0 = load_be<T>(in, 0);
   x1 = load_be<T>(in, 1);
   x2 = load_be<T>(in, 2);
   x3 = load_be<T>(in, 3);
   x4 = load_be<T>(in, 4);
   x5 = load_be<T>(in, 5);
   x6 = load_be<T>(in, 6);
   x7 = load_be<T>(in, 7);
   }

/**
* Load a variable number of big-endian words
* @param out the output array of words
* @param in the input array of bytes
* @param count how many words are in in
*/
template<typename T>
inline void load_be(T out[],
                    const byte in[],
                    size_t count)
   {
#if defined(BOTAN_TARGET_CPU_HAS_KNOWN_ENDIANNESS)
   std::memcpy(out, in, sizeof(T)*count);

#if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN)
   const size_t blocks = count - (count % 4);
   const size_t left = count - blocks;

   for(size_t i = 0; i != blocks; i += 4)
      bswap_4(out + i);

   for(size_t i = 0; i != left; ++i)
      out[blocks+i] = reverse_bytes(out[blocks+i]);
#endif

#else
   for(size_t i = 0; i != count; ++i)
      out[i] = load_be<T>(in, i);
#endif
   }

/**
* Store a big-endian u16bit
* @param in the input u16bit
* @param out the byte array to write to
*/
inline void store_be(u16bit in, byte out[2])
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   *reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
   out[0] = get_byte(0, in);
   out[1] = get_byte(1, in);
#endif
   }

/**
* Store a little-endian u16bit
* @param in the input u16bit
* @param out the byte array to write to
*/
inline void store_le(u16bit in, byte out[2])
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   *reinterpret_cast<u16bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
   out[0] = get_byte(1, in);
   out[1] = get_byte(0, in);
#endif
   }

/**
* Store a big-endian u32bit
* @param in the input u32bit
* @param out the byte array to write to
*/
inline void store_be(u32bit in, byte out[4])
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   *reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
   out[0] = get_byte(0, in);
   out[1] = get_byte(1, in);
   out[2] = get_byte(2, in);
   out[3] = get_byte(3, in);
#endif
   }

/**
* Store a little-endian u32bit
* @param in the input u32bit
* @param out the byte array to write to
*/
inline void store_le(u32bit in, byte out[4])
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   *reinterpret_cast<u32bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
   out[0] = get_byte(3, in);
   out[1] = get_byte(2, in);
   out[2] = get_byte(1, in);
   out[3] = get_byte(0, in);
#endif
   }

/**
* Store a big-endian u64bit
* @param in the input u64bit
* @param out the byte array to write to
*/
inline void store_be(u64bit in, byte out[8])
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   *reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_B2N(in);
#else
   out[0] = get_byte(0, in);
   out[1] = get_byte(1, in);
   out[2] = get_byte(2, in);
   out[3] = get_byte(3, in);
   out[4] = get_byte(4, in);
   out[5] = get_byte(5, in);
   out[6] = get_byte(6, in);
   out[7] = get_byte(7, in);
#endif
   }

/**
* Store a little-endian u64bit
* @param in the input u64bit
* @param out the byte array to write to
*/
inline void store_le(u64bit in, byte out[8])
   {
#if BOTAN_TARGET_UNALIGNED_MEMORY_ACCESS_OK
   *reinterpret_cast<u64bit*>(out) = BOTAN_ENDIAN_L2N(in);
#else
   out[0] = get_byte(7, in);
   out[1] = get_byte(6, in);
   out[2] = get_byte(5, in);
   out[3] = get_byte(4, in);
   out[4] = get_byte(3, in);
   out[5] = get_byte(2, in);
   out[6] = get_byte(1, in);
   out[7] = get_byte(0, in);
#endif
   }

/**
* Store two little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1)
   {
   store_le(x0, out + (0 * sizeof(T)));
   store_le(x1, out + (1 * sizeof(T)));
   }

/**
* Store two big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1)
   {
   store_be(x0, out + (0 * sizeof(T)));
   store_be(x1, out + (1 * sizeof(T)));
   }

/**
* Store four little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1, T x2, T x3)
   {
   store_le(x0, out + (0 * sizeof(T)));
   store_le(x1, out + (1 * sizeof(T)));
   store_le(x2, out + (2 * sizeof(T)));
   store_le(x3, out + (3 * sizeof(T)));
   }

/**
* Store four big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1, T x2, T x3)
   {
   store_be(x0, out + (0 * sizeof(T)));
   store_be(x1, out + (1 * sizeof(T)));
   store_be(x2, out + (2 * sizeof(T)));
   store_be(x3, out + (3 * sizeof(T)));
   }

/**
* Store eight little-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
* @param x4 the fifth word
* @param x5 the sixth word
* @param x6 the seventh word
* @param x7 the eighth word
*/
template<typename T>
inline void store_le(byte out[], T x0, T x1, T x2, T x3,
                                 T x4, T x5, T x6, T x7)
   {
   store_le(x0, out + (0 * sizeof(T)));
   store_le(x1, out + (1 * sizeof(T)));
   store_le(x2, out + (2 * sizeof(T)));
   store_le(x3, out + (3 * sizeof(T)));
   store_le(x4, out + (4 * sizeof(T)));
   store_le(x5, out + (5 * sizeof(T)));
   store_le(x6, out + (6 * sizeof(T)));
   store_le(x7, out + (7 * sizeof(T)));
   }

/**
* Store eight big-endian words
* @param out the output byte array
* @param x0 the first word
* @param x1 the second word
* @param x2 the third word
* @param x3 the fourth word
* @param x4 the fifth word
* @param x5 the sixth word
* @param x6 the seventh word
* @param x7 the eighth word
*/
template<typename T>
inline void store_be(byte out[], T x0, T x1, T x2, T x3,
                                 T x4, T x5, T x6, T x7)
   {
   store_be(x0, out + (0 * sizeof(T)));
   store_be(x1, out + (1 * sizeof(T)));
   store_be(x2, out + (2 * sizeof(T)));
   store_be(x3, out + (3 * sizeof(T)));
   store_be(x4, out + (4 * sizeof(T)));
   store_be(x5, out + (5 * sizeof(T)));
   store_be(x6, out + (6 * sizeof(T)));
   store_be(x7, out + (7 * sizeof(T)));
   }

}


namespace Botan {

/**
* CBC Encryption
*/
class BOTAN_DLL CBC_Encryption : public Keyed_Filter,
                                 private Buffered_Filter
   {
   public:
      std::string name() const;

      void set_iv(const InitializationVector& iv);

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      CBC_Encryption(BlockCipher* cipher,
                     BlockCipherModePaddingMethod* padding);

      CBC_Encryption(BlockCipher* cipher,
                     BlockCipherModePaddingMethod* padding,
                     const SymmetricKey& key,
                     const InitializationVector& iv);

      ~CBC_Encryption() { delete cipher; delete padder; }
   private:
      void buffered_block(const byte input[], size_t input_length);
      void buffered_final(const byte input[], size_t input_length);

      void write(const byte input[], size_t input_length);
      void end_msg();

      BlockCipher* cipher;
      const BlockCipherModePaddingMethod* padder;
      SecureVector<byte> state;
   };

/**
* CBC Decryption
*/
class BOTAN_DLL CBC_Decryption : public Keyed_Filter,
                                 private Buffered_Filter
   {
   public:
      std::string name() const;

      void set_iv(const InitializationVector& iv);

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      CBC_Decryption(BlockCipher* cipher,
                     BlockCipherModePaddingMethod* padding);

      CBC_Decryption(BlockCipher* cipher,
                     BlockCipherModePaddingMethod* padding,
                     const SymmetricKey& key,
                     const InitializationVector& iv);

      ~CBC_Decryption() { delete cipher; delete padder; }
   private:
      void buffered_block(const byte input[], size_t input_length);
      void buffered_final(const byte input[], size_t input_length);

      void write(const byte[], size_t);
      void end_msg();

      BlockCipher* cipher;
      const BlockCipherModePaddingMethod* padder;
      SecureVector<byte> state, temp;
   };

}


namespace Botan {

/**
* A class handling runtime CPU feature detection
*/
class BOTAN_DLL CPUID
   {
   public:
      /**
      * Probe the CPU and see what extensions are supported
      */
      static void initialize();

      /**
      * Return a best guess of the cache line size
      */
      static size_t cache_line_size() { return cache_line; }

      /**
      * Check if the processor supports RDTSC
      */
      static bool has_rdtsc()
         { return x86_processor_flags_has(CPUID_RDTSC_BIT); }

      /**
      * Check if the processor supports SSE2
      */
      static bool has_sse2()
         { return x86_processor_flags_has(CPUID_SSE2_BIT); }

      /**
      * Check if the processor supports SSSE3
      */
      static bool has_ssse3()
         { return x86_processor_flags_has(CPUID_SSSE3_BIT); }

      /**
      * Check if the processor supports SSE4.1
      */
      static bool has_sse41()
         { return x86_processor_flags_has(CPUID_SSE41_BIT); }

      /**
      * Check if the processor supports SSE4.2
      */
      static bool has_sse42()
         { return x86_processor_flags_has(CPUID_SSE42_BIT); }

      /**
      * Check if the processor supports extended AVX vector instructions
      */
      static bool has_avx()
         { return x86_processor_flags_has(CPUID_AVX_BIT); }

      /**
      * Check if the processor supports AES-NI
      */
      static bool has_aes_ni()
         { return x86_processor_flags_has(CPUID_AESNI_BIT); }

      /**
      * Check if the processor supports PCMULUDQ
      */
      static bool has_pcmuludq()
         { return x86_processor_flags_has(CPUID_PCMUL_BIT); }

      /**
      * Check if the processor supports MOVBE
      */
      static bool has_movbe()
         { return x86_processor_flags_has(CPUID_MOVBE_BIT); }

      /**
      * Check if the processor supports RDRAND
      */
      static bool has_rdrand()
         { return x86_processor_flags_has(CPUID_RDRAND_BIT); }

      /**
      * Check if the processor supports AltiVec/VMX
      */
      static bool has_altivec() { return altivec_capable; }
   private:
      enum CPUID_bits {
         CPUID_RDTSC_BIT = 4,
         CPUID_SSE2_BIT = 26,
         CPUID_PCMUL_BIT = 33,
         CPUID_SSSE3_BIT = 41,
         CPUID_SSE41_BIT = 51,
         CPUID_SSE42_BIT = 52,
         CPUID_MOVBE_BIT = 54,
         CPUID_AESNI_BIT = 57,
         CPUID_AVX_BIT = 60,
         CPUID_RDRAND_BIT = 62
      };

      static bool x86_processor_flags_has(u64bit bit)
         {
         return ((x86_processor_flags >> bit) & 1);
         }

      static u64bit x86_processor_flags;
      static size_t cache_line;
      static bool altivec_capable;
   };

}


namespace Botan {

/**
* Serpent implementation using SIMD
*/
class BOTAN_DLL Serpent_SIMD : public Serpent
   {
   public:
      size_t parallelism() const { return 4; }

      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      BlockCipher* clone() const { return new Serpent_SIMD; }
   };

}


namespace Botan {

/**
* PK_Encryptor Filter
*/
class BOTAN_DLL PK_Encryptor_Filter : public Filter
   {
   public:
      void write(const byte[], size_t);
      void end_msg();
      PK_Encryptor_Filter(PK_Encryptor* c,
                          RandomNumberGenerator& rng_ref) :
         cipher(c), rng(rng_ref) {}
      ~PK_Encryptor_Filter() { delete cipher; }
   private:
      PK_Encryptor* cipher;
      RandomNumberGenerator& rng;
      SecureVector<byte> buffer;
   };

/**
* PK_Decryptor Filter
*/
class BOTAN_DLL PK_Decryptor_Filter : public Filter
   {
   public:
      void write(const byte[], size_t);
      void end_msg();
      PK_Decryptor_Filter(PK_Decryptor* c) : cipher(c) {}
      ~PK_Decryptor_Filter() { delete cipher; }
   private:
      PK_Decryptor* cipher;
      SecureVector<byte> buffer;
   };

/**
* PK_Signer Filter
*/
class BOTAN_DLL PK_Signer_Filter : public Filter
   {
   public:
      void write(const byte[], size_t);
      void end_msg();

      PK_Signer_Filter(PK_Signer* s,
                       RandomNumberGenerator& rng_ref) :
         signer(s), rng(rng_ref) {}

      ~PK_Signer_Filter() { delete signer; }
   private:
      PK_Signer* signer;
      RandomNumberGenerator& rng;
   };

/**
* PK_Verifier Filter
*/
class BOTAN_DLL PK_Verifier_Filter : public Filter
   {
   public:
      void write(const byte[], size_t);
      void end_msg();

      void set_signature(const byte[], size_t);
      void set_signature(const MemoryRegion<byte>&);

      PK_Verifier_Filter(PK_Verifier* v) : verifier(v) {}
      PK_Verifier_Filter(PK_Verifier*, const byte[], size_t);
      PK_Verifier_Filter(PK_Verifier*, const MemoryRegion<byte>&);
      ~PK_Verifier_Filter() { delete verifier; }
   private:
      PK_Verifier* verifier;
      SecureVector<byte> signature;
   };

}


namespace Botan {

/**
* XTEA implemented using SIMD operations
*/
class BOTAN_DLL XTEA_SIMD : public XTEA
   {
   public:
      size_t parallelism() const { return 8; }

      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;
      BlockCipher* clone() const { return new XTEA_SIMD; }
   };

}


namespace Botan {

/**
* A queue that knows how to zeroize itself
*/
class BOTAN_DLL SecureQueue : public Fanout_Filter, public DataSource
   {
   public:
      std::string name() const { return "Queue"; }

      void write(const byte[], size_t);

      size_t read(byte[], size_t);
      size_t peek(byte[], size_t, size_t = 0) const;

      bool end_of_data() const;

      /**
      * @return number of bytes available in the queue
      */
      size_t size() const;

      bool attachable() { return false; }

      /**
      * SecureQueue assignment
      * @param other the queue to copy
      */
      SecureQueue& operator=(const SecureQueue& other);

      /**
      * SecureQueue default constructor (creates empty queue)
      */
      SecureQueue();

      /**
      * SecureQueue copy constructor
      * @param other the queue to copy
      */
      SecureQueue(const SecureQueue& other);

      ~SecureQueue() { destroy(); }
   private:
      void destroy();
      class SecureQueueNode* head;
      class SecureQueueNode* tail;
   };

}


namespace Botan {

/**
* HMAC
*/
class BOTAN_DLL HMAC : public MessageAuthenticationCode
   {
   public:
      void clear();
      std::string name() const;
      MessageAuthenticationCode* clone() const;

      size_t output_length() const { return hash->output_length(); }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(0, 2*hash->hash_block_size());
         }

      /**
      * @param hash the hash to use for HMACing
      */
      HMAC(HashFunction* hash);
      ~HMAC() { delete hash; }
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      void key_schedule(const byte[], size_t);

      HashFunction* hash;
      SecureVector<byte> i_key, o_key;
   };

}


namespace Botan {

/**
* OpenPGP's S2K
*/
class BOTAN_DLL OpenPGP_S2K : public PBKDF
   {
   public:
      /**
      * @param hash_in the hash function to use
      */
      OpenPGP_S2K(HashFunction* hash_in) : hash(hash_in) {}

      ~OpenPGP_S2K() { delete hash; }

      std::string name() const
         {
         return "OpenPGP-S2K(" + hash->name() + ")";
         }

      PBKDF* clone() const
         {
         return new OpenPGP_S2K(hash->clone());
         }

      OctetString derive_key(size_t output_len,
                             const std::string& passphrase,
                             const byte salt[], size_t salt_len,
                             size_t iterations) const;
   private:
      HashFunction* hash;
   };

}


namespace Botan {

/**
* Lion is a block cipher construction designed by Ross Anderson and
* Eli Biham, described in "Two Practical and Provably Secure Block
* Ciphers: BEAR and LION". It has a variable block size and is
* designed to encrypt very large blocks (up to a megabyte)

* http://www.cl.cam.ac.uk/~rja14/Papers/bear-lion.pdf
*/
class BOTAN_DLL Lion : public BlockCipher
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      size_t block_size() const { return BLOCK_SIZE; }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(2, 2*hash->output_length(), 2);
         }

      void clear();
      std::string name() const;
      BlockCipher* clone() const;

      /**
      * @param hash the hash to use internally
      * @param cipher the stream cipher to use internally
      * @param block_size the size of the block to use
      */
      Lion(HashFunction* hash,
           StreamCipher* cipher,
           size_t block_size);

      ~Lion() { delete hash; delete cipher; }
   private:
      void key_schedule(const byte[], size_t);

      const size_t BLOCK_SIZE, LEFT_SIZE, RIGHT_SIZE;

      HashFunction* hash;
      StreamCipher* cipher;
      SecureVector<byte> key1, key2;
   };

}


namespace Botan {

/**
* Skipjack, a NSA designed cipher used in Fortezza
*/
class BOTAN_DLL Skipjack : public Block_Cipher_Fixed_Params<8, 10>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();
      std::string name() const { return "Skipjack"; }
      BlockCipher* clone() const { return new Skipjack; }

      Skipjack() : FTAB(2560) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<byte> FTAB;
   };

}


namespace Botan {

namespace FPE {

/**
* Encrypt X from and onto the group Z_n using key and tweak
* @param n the modulus
* @param X the plaintext as a BigInt
* @param key a random key
* @param tweak will modify the ciphertext (think of as an IV)
*/
BigInt BOTAN_DLL fe1_encrypt(const BigInt& n, const BigInt& X,
                             const SymmetricKey& key,
                             const MemoryRegion<byte>& tweak);

/**
* Decrypt X from and onto the group Z_n using key and tweak
* @param n the modulus
* @param X the ciphertext as a BigInt
* @param key is the key used for encryption
* @param tweak the same tweak used for encryption
*/
BigInt BOTAN_DLL fe1_decrypt(const BigInt& n, const BigInt& X,
                             const SymmetricKey& key,
                             const MemoryRegion<byte>& tweak);

}

}


namespace Botan {

/**
* This class represents ECDH Public Keys.
*/
class BOTAN_DLL ECDH_PublicKey : public virtual EC_PublicKey
   {
   public:

      ECDH_PublicKey(const AlgorithmIdentifier& alg_id,
                     const MemoryRegion<byte>& key_bits) :
         EC_PublicKey(alg_id, key_bits) {}

      /**
      * Construct a public key from a given public point.
      * @param dom_par the domain parameters associated with this key
      * @param public_point the public point defining this key
      */
      ECDH_PublicKey(const EC_Group& dom_par,
                     const PointGFp& public_point) :
         EC_PublicKey(dom_par, public_point) {}

      /**
      * Get this keys algorithm name.
      * @return this keys algorithm name
      */
      std::string algo_name() const { return "ECDH"; }

      /**
      * Get the maximum number of bits allowed to be fed to this key.
      * This is the bitlength of the order of the base point.

      * @return maximum number of input bits
      */
      size_t max_input_bits() const { return domain().get_order().bits(); }

      /**
      * @return public point value
      */
      MemoryVector<byte> public_value() const
         { return EC2OSP(public_point(), PointGFp::UNCOMPRESSED); }

   protected:
      ECDH_PublicKey() {}
   };

/**
* This class represents ECDH Private Keys.
*/
class BOTAN_DLL ECDH_PrivateKey : public ECDH_PublicKey,
                                  public EC_PrivateKey,
                                  public PK_Key_Agreement_Key
   {
   public:

      ECDH_PrivateKey(const AlgorithmIdentifier& alg_id,
                      const MemoryRegion<byte>& key_bits) :
         EC_PrivateKey(alg_id, key_bits) {}

      /**
      * Generate a new private key
      * @param rng a random number generator
      * @param domain parameters to used for this key
      * @param x the private key; if zero, a new random key is generated
      */
      ECDH_PrivateKey(RandomNumberGenerator& rng,
                      const EC_Group& domain,
                      const BigInt& x = 0) :
         EC_PrivateKey(rng, domain, x) {}

      MemoryVector<byte> public_value() const
         { return ECDH_PublicKey::public_value(); }
   };

/**
* ECDH operation
*/
class BOTAN_DLL ECDH_KA_Operation : public PK_Ops::Key_Agreement
   {
   public:
      ECDH_KA_Operation(const ECDH_PrivateKey& key);

      SecureVector<byte> agree(const byte w[], size_t w_len);
   private:
      const CurveGFp& curve;
      const BigInt& cofactor;
      BigInt l_times_priv;
   };

}


namespace Botan {

/**
* AES-128
*/
class BOTAN_DLL AES_128 : public Block_Cipher_Fixed_Params<16, 16>
   {
   public:
      AES_128() : EK(40), DK(40), ME(16), MD(16) {}

      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();

      std::string name() const { return "AES-128"; }
      BlockCipher* clone() const { return new AES_128; }
   private:
      void key_schedule(const byte key[], size_t length);

      SecureVector<u32bit> EK, DK;
      SecureVector<byte> ME, MD;
   };

/**
* AES-192
*/
class BOTAN_DLL AES_192 : public Block_Cipher_Fixed_Params<16, 24>
   {
   public:
      AES_192() : EK(48), DK(48), ME(16), MD(16) {}

      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();

      std::string name() const { return "AES-192"; }
      BlockCipher* clone() const { return new AES_192; }
   private:
      void key_schedule(const byte key[], size_t length);

      SecureVector<u32bit> EK, DK;
      SecureVector<byte> ME, MD;
   };

/**
* AES-256
*/
class BOTAN_DLL AES_256 : public Block_Cipher_Fixed_Params<16, 32>
   {
   public:
      AES_256() : EK(56), DK(56), ME(16), MD(16) {}

      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear();

      std::string name() const { return "AES-256"; }
      BlockCipher* clone() const { return new AES_256; }
   private:
      void key_schedule(const byte key[], size_t length);

      SecureVector<u32bit> EK, DK;
      SecureVector<byte> ME, MD;
   };

}


namespace Botan {

/**
* Rivest's Package Tranform
* @param rng the random number generator to use
* @param cipher the block cipher to use
* @param input the input data buffer
* @param input_len the length of the input data in bytes
* @param output the output data buffer (must be at least
*        input_len + cipher->BLOCK_SIZE bytes long)
*/
void BOTAN_DLL aont_package(RandomNumberGenerator& rng,
                            BlockCipher* cipher,
                            const byte input[], size_t input_len,
                            byte output[]);

/**
* Rivest's Package Tranform (Inversion)
* @param cipher the block cipher to use
* @param input the input data buffer
* @param input_len the length of the input data in bytes
* @param output the output data buffer (must be at least
*        input_len - cipher->BLOCK_SIZE bytes long)
*/
void BOTAN_DLL aont_unpackage(BlockCipher* cipher,
                              const byte input[], size_t input_len,
                              byte output[]);

}


namespace Botan {

/**
* Combines two hash functions using a Feistel scheme. Described in
* "On the Security of Hash Function Combiners", Anja Lehmann
*/
class BOTAN_DLL Comb4P : public HashFunction
   {
   public:
      /**
      * @param h1 the first hash
      * @param h2 the second hash
      */
      Comb4P(HashFunction* h1, HashFunction* h2);

      ~Comb4P() { delete hash1; delete hash2; }

      size_t hash_block_size() const;

      size_t output_length() const
         {
         return hash1->output_length() + hash2->output_length();
         }

      HashFunction* clone() const
         {
         return new Comb4P(hash1->clone(), hash2->clone());
         }

      std::string name() const
         {
         return "Comb4P(" + hash1->name() + "," + hash2->name() + ")";
         }

      void clear();
   private:
      void add_data(const byte input[], size_t length);
      void final_result(byte out[]);

      HashFunction* hash1;
      HashFunction* hash2;
   };

}


namespace Botan {

/**
* A split secret, using the format from draft-mcgrew-tss-03
*/
class BOTAN_DLL RTSS_Share
   {
   public:
      /**
      * @param M the number of shares needed to reconstruct
      * @param N the number of shares generated
      * @param secret the secret to split
      * @param secret_len the length of the secret
      * @param identifier the 16 byte share identifier
      * @param rng the random number generator to use
      */
      static std::vector<RTSS_Share>
         split(byte M, byte N,
               const byte secret[], u16bit secret_len,
               const byte identifier[16],
               RandomNumberGenerator& rng);

      /**
      * @param shares the list of shares
      */
      static SecureVector<byte>
        reconstruct(const std::vector<RTSS_Share>& shares);

      RTSS_Share() {}

      /**
      * @param hex_input the share encoded in hexadecimal
      */
      RTSS_Share(const std::string& hex_input);

      /**
      * @return hex representation
      */
      std::string to_string() const;

      /**
      * @return share identifier
      */
      byte share_id() const;

      /**
      * @return size of this share in bytes
      */
      size_t size() const { return contents.size(); }

      /**
      * @return if this TSS share was initialized or not
      */
      bool initialized() const { return (contents.size() > 0); }
   private:
      SecureVector<byte> contents;
   };

}


namespace Botan {

/**
* RC2
*/
class BOTAN_DLL RC2 : public Block_Cipher_Fixed_Params<8, 1, 32>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      /**
      * Return the code of the effective key bits
      * @param bits key length
      * @return EKB code
      */
      static byte EKB_code(size_t bits);

      void clear() { zeroise(K); }
      std::string name() const { return "RC2"; }
      BlockCipher* clone() const { return new RC2; }

      RC2() : K(64) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u16bit> K;
   };

}


namespace Botan {

/**
* DJB's Salsa20 (and XSalsa20)
*/
class BOTAN_DLL Salsa20 : public StreamCipher
   {
   public:
      void cipher(const byte in[], byte out[], size_t length);

      void set_iv(const byte iv[], size_t iv_len);

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == 8 || iv_len == 24); }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(16, 32, 16);
         }

      void clear();
      std::string name() const;
      StreamCipher* clone() const { return new Salsa20; }

      Salsa20() : state(16), buffer(64), position(0) {}
   private:
      void key_schedule(const byte key[], size_t key_len);

      SecureVector<u32bit> state;
      SecureVector<byte> buffer;
      size_t position;
   };

}


namespace Botan {

/**
* RIPEMD-128
*/
class BOTAN_DLL RIPEMD_128 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "RIPEMD-128"; }
      size_t output_length() const { return 16; }
      HashFunction* clone() const { return new RIPEMD_128; }

      void clear();

      RIPEMD_128() : MDx_HashFunction(64, false, true), M(16), digest(4)
         { clear(); }
   private:
      void compress_n(const byte[], size_t blocks);
      void copy_out(byte[]);

      SecureVector<u32bit> M, digest;
   };

}


namespace Botan {

/**
* 24-bit cyclic redundancy check
*/
class BOTAN_DLL CRC24 : public HashFunction
   {
   public:
      std::string name() const { return "CRC24"; }
      size_t output_length() const { return 3; }
      HashFunction* clone() const { return new CRC24; }

      void clear() { crc = 0xB704CE; }

      CRC24() { clear(); }
      ~CRC24() { clear(); }
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      u32bit crc;
   };

}


namespace Botan {

/**
* PKCS #5 v1 PBKDF, aka PBKDF1
* Can only generate a key up to the size of the hash output.
* Unless needed for backwards compatability, use PKCS5_PBKDF2
*/
class BOTAN_DLL PKCS5_PBKDF1 : public PBKDF
   {
   public:
      /**
      * Create a PKCS #5 instance using the specified hash function.
      * @param hash_in pointer to a hash function object to use
      */
      PKCS5_PBKDF1(HashFunction* hash_in) : hash(hash_in) {}

      /**
      * Copy constructor
      * @param other the object to copy
      */
      PKCS5_PBKDF1(const PKCS5_PBKDF1& other) :
         PBKDF(), hash(other.hash->clone()) {}

      ~PKCS5_PBKDF1() { delete hash; }

      std::string name() const
         {
         return "PBKDF1(" + hash->name() + ")";
         }

      PBKDF* clone() const
         {
         return new PKCS5_PBKDF1(hash->clone());
         }

      OctetString derive_key(size_t output_len,
                             const std::string& passphrase,
                             const byte salt[], size_t salt_len,
                             size_t iterations) const;
   private:
      HashFunction* hash;
   };

}


namespace Botan {

/**
* This class represents X.509 Certificate Authorities (CAs).
*/
class BOTAN_DLL X509_CA
   {
   public:

      /**
      * Sign a PKCS#10 Request.
      * @param req the request to sign
      * @param rng the rng to use
      * @param not_before the starting time for the certificate
      * @param not_after the expiration time for the certificate
      * @return resulting certificate
      */
      X509_Certificate sign_request(const PKCS10_Request& req,
                                    RandomNumberGenerator& rng,
                                    const X509_Time& not_before,
                                    const X509_Time& not_after);

      /**
      * Get the certificate of this CA.
      * @return CA certificate
      */
      X509_Certificate ca_certificate() const;

      /**
      * Create a new and empty CRL for this CA.
      * @param rng the random number generator to use
      * @param next_update the time to set in next update in seconds
      * as the offset from the current time
      * @return new CRL
      */
      X509_CRL new_crl(RandomNumberGenerator& rng,
                       u32bit next_update = 0) const;

      /**
      * Create a new CRL by with additional entries.
      * @param last_crl the last CRL of this CA to add the new entries to
      * @param new_entries contains the new CRL entries to be added to the CRL
      * @param rng the random number generator to use
      * @param next_update the time to set in next update in seconds
      * as the offset from the current time
      */
      X509_CRL update_crl(const X509_CRL& last_crl,
                          const std::vector<CRL_Entry>& new_entries,
                          RandomNumberGenerator& rng,
                          u32bit next_update = 0) const;

      /**
      * Interface for creating new certificates
      * @param signer a signing object
      * @param rng a random number generator
      * @param sig_algo the signature algorithm identifier
      * @param pub_key the serialized public key
      * @param not_before the start time of the certificate
      * @param not_after the end time of the certificate
      * @param issuer_dn the DN of the issuer
      * @param subject_dn the DN of the subject
      * @param extensions an optional list of certificate extensions
      * @returns newly minted certificate
      */
      static X509_Certificate make_cert(PK_Signer* signer,
                                        RandomNumberGenerator& rng,
                                        const AlgorithmIdentifier& sig_algo,
                                        const MemoryRegion<byte>& pub_key,
                                        const X509_Time& not_before,
                                        const X509_Time& not_after,
                                        const X509_DN& issuer_dn,
                                        const X509_DN& subject_dn,
                                        const Extensions& extensions);

      /**
      * Create a new CA object.
      * @param ca_certificate the certificate of the CA
      * @param key the private key of the CA
      * @param hash_fn name of a hash function to use for signing
      */
      X509_CA(const X509_Certificate& ca_certificate,
              const Private_Key& key,
              const std::string& hash_fn);

      ~X509_CA();
   private:
      X509_CA(const X509_CA&) {}
      X509_CA& operator=(const X509_CA&) { return (*this); }

      X509_CRL make_crl(const std::vector<CRL_Entry>& entries,
                        u32bit crl_number, u32bit next_update,
                        RandomNumberGenerator& rng) const;

      AlgorithmIdentifier ca_sig_algo;
      X509_Certificate cert;
      PK_Signer* signer;
   };

/**
* Choose the default signature format for a certain public key signature
* scheme.
* @param key will be the key to choose a padding scheme for
* @param hash_fn is the desired hash function
* @param alg_id will be set to the chosen scheme
* @return A PK_Signer object for generating signatures
*/
BOTAN_DLL PK_Signer* choose_sig_format(const Private_Key& key,
                                       const std::string& hash_fn,
                                       AlgorithmIdentifier& alg_id);

}


namespace Botan {

namespace OIDS {

/**
* Register an OID to string mapping.
* @param oid the oid to register
* @param name the name to be associated with the oid
*/
BOTAN_DLL void add_oid(const OID& oid, const std::string& name);

/**
* See if an OID exists in the internal table.
* @param oid the oid to check for
* @return true if the oid is registered
*/
BOTAN_DLL bool have_oid(const std::string& oid);

/**
* Resolve an OID
* @param oid the OID to look up
* @return name associated with this OID
*/
BOTAN_DLL std::string lookup(const OID& oid);

/**
* Find the OID to a name. The lookup will be performed in the
* general OID section of the configuration.
* @param name the name to resolve
* @return OID associated with the specified name
*/
BOTAN_DLL OID lookup(const std::string& name);

/**
* Tests whether the specified OID stands for the specified name.
* @param oid the OID to check
* @param name the name to check
* @return true if the specified OID stands for the specified name
*/
BOTAN_DLL bool name_of(const OID& oid, const std::string& name);

}

}


namespace Botan {

/**
* EAX Base Class
*/
class BOTAN_DLL EAX_Base : public Keyed_Filter
   {
   public:
      void set_key(const SymmetricKey& key);
      void set_iv(const InitializationVector& iv);

      /**
      * Set some additional data that is not included in the
      * ciphertext but that will be authenticated.
      * @param header the header contents
      * @param header_len length of header in bytes
      */
      void set_header(const byte header[], size_t header_len);

      /**
      * @return name of this mode
      */
      std::string name() const;

      bool valid_keylength(size_t key_len) const;

      /**
      * EAX supports arbitrary IV lengths
      */
      bool valid_iv_length(size_t) const { return true; }

      ~EAX_Base() { delete ctr; delete cmac; }
   protected:
      /**
      * @param cipher the cipher to use
      * @param tag_size is how big the auth tag will be
      */
      EAX_Base(BlockCipher* cipher, size_t tag_size);
      void start_msg();

      /**
      * The block size of the underlying cipher
      */
      const size_t BLOCK_SIZE;

      /**
      * The requested tag name
      */
      const size_t TAG_SIZE;

      /**
      * The name of the cipher
      */
      std::string cipher_name;

      /**
      * The stream cipher (CTR mode)
      */
      StreamCipher* ctr;

      /**
      * The MAC (CMAC)
      */
      MessageAuthenticationCode* cmac;

      /**
      * The MAC of the nonce
      */
      SecureVector<byte> nonce_mac;

      /**
      * The MAC of the header
      */
      SecureVector<byte> header_mac;

      /**
      * A buffer for CTR mode encryption
      */
      SecureVector<byte> ctr_buf;
   };

/**
* EAX Encryption
*/
class BOTAN_DLL EAX_Encryption : public EAX_Base
   {
   public:
      /**
      * @param ciph the cipher to use
      * @param tag_size is how big the auth tag will be
      */
      EAX_Encryption(BlockCipher* ciph, size_t tag_size = 0) :
         EAX_Base(ciph, tag_size) {}

      /**
      * @param ciph the cipher to use
      * @param key the key to use
      * @param iv the initially set IV
      * @param tag_size is how big the auth tag will be
      */
      EAX_Encryption(BlockCipher* ciph, const SymmetricKey& key,
                     const InitializationVector& iv,
                     size_t tag_size) : EAX_Base(ciph, tag_size)
         {
         set_key(key);
         set_iv(iv);
         }
   private:
      void write(const byte[], size_t);
      void end_msg();
   };

/**
* EAX Decryption
*/
class BOTAN_DLL EAX_Decryption : public EAX_Base
   {
   public:
      /**
      * @param ciph the cipher to use
      * @param tag_size is how big the auth tag will be
      */
      EAX_Decryption(BlockCipher* ciph, size_t tag_size = 0);

      /**
      * @param ciph the cipher to use
      * @param key the key to use
      * @param iv the initially set IV
      * @param tag_size is how big the auth tag will be
      */
      EAX_Decryption(BlockCipher* ciph, const SymmetricKey& key,
                     const InitializationVector& iv,
                     size_t tag_size = 0);
   private:
      void write(const byte[], size_t);
      void do_write(const byte[], size_t);
      void end_msg();

      SecureVector<byte> queue;
      size_t queue_start, queue_end;
   };

}


namespace Botan {

/**
* CMAC, also known as OMAC1
*/
class BOTAN_DLL CMAC : public MessageAuthenticationCode
   {
   public:
      std::string name() const;
      size_t output_length() const { return e->block_size(); }
      MessageAuthenticationCode* clone() const;

      void clear();

      Key_Length_Specification key_spec() const
         {
         return e->key_spec();
         }

      /**
      * CMAC's polynomial doubling operation
      * @param in the input
      * @param polynomial the byte value of the polynomial
      */
      static SecureVector<byte> poly_double(const MemoryRegion<byte>& in,
                                            byte polynomial);

      /**
      * @param cipher the underlying block cipher to use
      */
      CMAC(BlockCipher* cipher);
      ~CMAC();
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      void key_schedule(const byte[], size_t);

      BlockCipher* e;
      SecureVector<byte> buffer, state, B, P;
      size_t position;
      byte polynomial;
   };

}


namespace Botan {

/**
* Skein-512, a SHA-3 candidate
*/
class BOTAN_DLL Skein_512 : public HashFunction
   {
   public:
      /**
      * @param output_bits the output size of Skein in bits
      * @param personalization is a string that will paramaterize the
      * hash output
      */
      Skein_512(size_t output_bits = 512,
                const std::string& personalization = "");

      size_t hash_block_size() const { return 64; }
      size_t output_length() const { return output_bits / 8; }

      HashFunction* clone() const;
      std::string name() const;
      void clear();
   private:
      void add_data(const byte input[], size_t length);
      void final_result(byte out[]);

      std::string personalization;
      size_t output_bits;

      SecureVector<u64bit> H;
      SecureVector<u64bit> T;
      SecureVector<byte> buffer;
      size_t buf_pos;
   };

}


namespace Botan {

/**
* CBC encryption with ciphertext stealing
*/
class BOTAN_DLL CTS_Encryption : public Keyed_Filter
   {
   public:
      std::string name() const { return cipher->name() + "/CTS"; }

      void set_iv(const InitializationVector&);

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      CTS_Encryption(BlockCipher* cipher);

      CTS_Encryption(BlockCipher* cipher,
                     const SymmetricKey& key,
                     const InitializationVector& iv);

      ~CTS_Encryption() { delete cipher; }
   private:
      void write(const byte[], size_t);
      void end_msg();
      void encrypt(const byte[]);

      BlockCipher* cipher;
      SecureVector<byte> buffer, state;
      size_t position;
   };

/**
* CBC decryption with ciphertext stealing
*/
class BOTAN_DLL CTS_Decryption : public Keyed_Filter
   {
   public:
      std::string name() const { return cipher->name() + "/CTS"; }

      void set_iv(const InitializationVector&);

      void set_key(const SymmetricKey& key) { cipher->set_key(key); }

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      CTS_Decryption(BlockCipher* cipher);

      CTS_Decryption(BlockCipher* cipher,
                     const SymmetricKey& key,
                     const InitializationVector& iv);

      ~CTS_Decryption() { delete cipher; }
   private:
      void write(const byte[], size_t);
      void end_msg();
      void decrypt(const byte[]);

      BlockCipher* cipher;
      SecureVector<byte> buffer, state, temp;
      size_t position;
   };

}


namespace Botan {

/**
* Factory function for PBEs.
* @param algo_spec the name of the PBE algorithm to retrieve
* @return pointer to a PBE with randomly created parameters
*/
BOTAN_DLL PBE* get_pbe(const std::string& algo_spec);

/**
* Factory function for PBEs.
* @param pbe_oid the oid of the desired PBE
* @param params a DataSource providing the DER encoded parameters to use
* @return pointer to the PBE with the specified parameters
*/
BOTAN_DLL PBE* get_pbe(const OID& pbe_oid,
                       DataSource& params);

}


namespace Botan {

/**
* Public key encryptor factory method.
* @deprecated Instantiate object from pubkey.h directly
*
* @param key the key that will work inside the encryptor
* @param eme determines the algorithm and encoding
* @return public key encryptor object
*/
BOTAN_DEPRECATED("Instantiate object directly")
inline PK_Encryptor* get_pk_encryptor(const Public_Key& key,
                                      const std::string& eme)
   {
   return new PK_Encryptor_EME(key, eme);
   }

/**
* Public key decryptor factory method.
* @deprecated Instantiate object from pubkey.h directly
*
* @param key the key that will work inside the decryptor
* @param eme determines the algorithm and encoding
* @return public key decryptor object
*/
BOTAN_DEPRECATED("Instantiate object directly")
inline PK_Decryptor* get_pk_decryptor(const Private_Key& key,
                                      const std::string& eme)
   {
   return new PK_Decryptor_EME(key, eme);
   }

/**
* Public key signer factory method.
* @deprecated Instantiate object from pubkey.h directly
*
* @param key the key that will work inside the signer
* @param emsa determines the algorithm, encoding and hash algorithm
* @param sig_format the signature format to be used
* @return public key signer object
*/
BOTAN_DEPRECATED("Instantiate object directly")
inline PK_Signer* get_pk_signer(const Private_Key& key,
                                const std::string& emsa,
                                Signature_Format sig_format = IEEE_1363)
   {
   return new PK_Signer(key, emsa, sig_format);
   }

/**
* Public key verifier factory method.
* @deprecated Instantiate object from pubkey.h directly
*
* @param key the key that will work inside the verifier
* @param emsa determines the algorithm, encoding and hash algorithm
* @param sig_format the signature format to be used
* @return public key verifier object
*/
BOTAN_DEPRECATED("Instantiate object directly")
inline PK_Verifier* get_pk_verifier(const Public_Key& key,
                                    const std::string& emsa,
                                    Signature_Format sig_format = IEEE_1363)
   {
   return new PK_Verifier(key, emsa, sig_format);
   }

/**
* Public key key agreement factory method.
* @deprecated Instantiate object from pubkey.h directly
*
* @param key the key that will work inside the key agreement
* @param kdf the kdf algorithm to use
* @return key agreement algorithm
*/
BOTAN_DEPRECATED("Instantiate object directly")
inline PK_Key_Agreement* get_pk_kas(const PK_Key_Agreement_Key& key,
                                    const std::string& kdf)
   {
   return new PK_Key_Agreement(key, kdf);
   }

}


namespace Botan {

/**
* IDEA
*/
class BOTAN_DLL IDEA : public Block_Cipher_Fixed_Params<8, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); zeroise(DK); }
      std::string name() const { return "IDEA"; }
      BlockCipher* clone() const { return new IDEA; }

      IDEA() : EK(52), DK(52) {}
   protected:
      /**
      * @return const reference to encryption subkeys
      */
      const SecureVector<u16bit>& get_EK() const { return EK; }

      /**
      * @return const reference to decryption subkeys
      */
      const SecureVector<u16bit>& get_DK() const { return DK; }

   private:
      void key_schedule(const byte[], size_t);
      SecureVector<u16bit> EK, DK;
   };

}


namespace Botan {

/**
* Return the PKCS #1 hash identifier
* @see RFC 3447 section 9.2
* @param hash_name the name of the hash function
* @return byte sequence identifying the hash
* @throw Invalid_Argument if the hash has no known PKCS #1 hash id
*/
BOTAN_DLL MemoryVector<byte> pkcs_hash_id(const std::string& hash_name);

/**
* Return the IEEE 1363 hash identifier
* @param hash_name the name of the hash function
* @return byte code identifying the hash, or 0 if not known
*/
BOTAN_DLL byte ieee1363_hash_id(const std::string& hash_name);

}


namespace Botan {

/**
* MGF1 from PKCS #1 v2.0
*/
class BOTAN_DLL MGF1 : public MGF
   {
   public:
      void mask(const byte[], size_t, byte[], size_t) const;

      /**
      MGF1 constructor: takes ownership of hash
      */
      MGF1(HashFunction* hash);

      ~MGF1();
   private:
      HashFunction* hash;
   };

}


namespace Botan {

/**
* IEEE P1619 XTS Encryption
*/
class BOTAN_DLL XTS_Encryption : public Keyed_Filter,
                                 private Buffered_Filter
   {
   public:
      void set_key(const SymmetricKey& key);
      void set_iv(const InitializationVector& iv);

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      std::string name() const;

      XTS_Encryption(BlockCipher* ciph);

      XTS_Encryption(BlockCipher* ciph,
                     const SymmetricKey& key,
                     const InitializationVector& iv);

      ~XTS_Encryption() { delete cipher; delete cipher2; }
   private:
      void write(const byte[], size_t);
      void end_msg();

      void buffered_block(const byte input[], size_t input_length);
      void buffered_final(const byte input[], size_t input_length);

      BlockCipher* cipher;
      BlockCipher* cipher2;
      SecureVector<byte> tweak;
   };

/**
* IEEE P1619 XTS Encryption
*/
class BOTAN_DLL XTS_Decryption : public Keyed_Filter,
                                 private Buffered_Filter
   {
   public:
      void set_key(const SymmetricKey& key);
      void set_iv(const InitializationVector& iv);

      bool valid_keylength(size_t key_len) const
         { return cipher->valid_keylength(key_len); }

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len == cipher->block_size()); }

      std::string name() const;

      XTS_Decryption(BlockCipher* ciph);

      XTS_Decryption(BlockCipher* ciph,
                     const SymmetricKey& key,
                     const InitializationVector& iv);

      ~XTS_Decryption() { delete cipher; delete cipher2; }
   private:
      void write(const byte[], size_t);
      void end_msg();

      void buffered_block(const byte input[], size_t input_length);
      void buffered_final(const byte input[], size_t input_length);

      BlockCipher* cipher;
      BlockCipher* cipher2;
      SecureVector<byte> tweak;
   };

}


namespace Botan {

/**
* Struct representing a particular date and time
*/
struct BOTAN_DLL calendar_point
   {
   /** The year */
   u32bit year;

   /** The month, 1 through 12 for Jan to Dec */
   byte month;

   /** The day of the month, 1 through 31 (or 28 or 30 based on month */
   byte day;

   /** Hour in 24-hour form, 0 to 23 */
   byte hour;

   /** Minutes in the hour, 0 to 60 */
   byte minutes;

   /** Seconds in the minute, 0 to 60, but might be slightly
       larger to deal with leap seconds on some systems
   */
   byte seconds;

   /**
   * Initialize a calendar_point
   * @param y the year
   * @param mon the month
   * @param d the day
   * @param h the hour
   * @param min the minute
   * @param sec the second
   */
   calendar_point(u32bit y, byte mon, byte d, byte h, byte min, byte sec) :
      year(y), month(mon), day(d), hour(h), minutes(min), seconds(sec) {}
   };

/**
* @param time_point a time point from the system clock
* @return calendar_point object representing this time point
*/
BOTAN_DLL calendar_point calendar_value(u64bit time_point);

/**
* @return seconds resolution timestamp, unknown epoch
*/
BOTAN_DLL u64bit system_time();

/**
* @return nanoseconds resolution timestamp, unknown epoch
*/
BOTAN_DLL u64bit get_nanoseconds_clock();

}


namespace Botan {

/**
* EMSA-Raw - sign inputs directly
* Don't use this unless you know what you are doing.
*/
class BOTAN_DLL EMSA_Raw : public EMSA
   {
   private:
      void update(const byte[], size_t);
      SecureVector<byte> raw_data();

      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator&);
      bool verify(const MemoryRegion<byte>&, const MemoryRegion<byte>&,
                  size_t);

      SecureVector<byte> message;
   };

}


namespace Botan {

/**
* Perform base64 encoding
* @param output an array of at least input_length*4/3 bytes
* @param input is some binary data
* @param input_length length of input in bytes
* @param input_consumed is an output parameter which says how many
*        bytes of input were actually consumed. If less than
*        input_length, then the range input[consumed:length]
*        should be passed in later along with more input.
* @param final_inputs true iff this is the last input, in which case
         padding chars will be applied if needed
* @return number of bytes written to output
*/
size_t BOTAN_DLL base64_encode(char output[],
                               const byte input[],
                               size_t input_length,
                               size_t& input_consumed,
                               bool final_inputs);

/**
* Perform base64 encoding
* @param input some input
* @param input_length length of input in bytes
* @return base64adecimal representation of input
*/
std::string BOTAN_DLL base64_encode(const byte input[],
                                    size_t input_length);

/**
* Perform base64 encoding
* @param input some input
* @return base64adecimal representation of input
*/
std::string BOTAN_DLL base64_encode(const MemoryRegion<byte>& input);

/**
* Perform base64 decoding
* @param output an array of at least input_length*3/4 bytes
* @param input some base64 input
* @param input_length length of input in bytes
* @param input_consumed is an output parameter which says how many
*        bytes of input were actually consumed. If less than
*        input_length, then the range input[consumed:length]
*        should be passed in later along with more input.
* @param final_inputs true iff this is the last input, in which case
         padding is allowed
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return number of bytes written to output
*/
size_t BOTAN_DLL base64_decode(byte output[],
                               const char input[],
                               size_t input_length,
                               size_t& input_consumed,
                               bool final_inputs,
                               bool ignore_ws = true);

/**
* Perform base64 decoding
* @param output an array of at least input_length*3/4 bytes
* @param input some base64 input
* @param input_length length of input in bytes
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return number of bytes written to output
*/
size_t BOTAN_DLL base64_decode(byte output[],
                               const char input[],
                               size_t input_length,
                               bool ignore_ws = true);

/**
* Perform base64 decoding
* @param output an array of at least input_length/3*4 bytes
* @param input some base64 input
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return number of bytes written to output
*/
size_t BOTAN_DLL base64_decode(byte output[],
                               const std::string& input,
                               bool ignore_ws = true);

/**
* Perform base64 decoding
* @param input some base64 input
* @param input_length the length of input in bytes
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return decoded base64 output
*/
SecureVector<byte> BOTAN_DLL base64_decode(const char input[],
                                           size_t input_length,
                                           bool ignore_ws = true);

/**
* Perform base64 decoding
* @param input some base64 input
* @param ignore_ws ignore whitespace on input; if false, throw an
                   exception if whitespace is encountered
* @return decoded base64 output
*/
SecureVector<byte> BOTAN_DLL base64_decode(const std::string& input,
                                           bool ignore_ws = true);

}


namespace Botan {

/**
* PRF used in TLS 1.0/1.1
*/
class BOTAN_DLL TLS_PRF : public KDF
   {
   public:
      SecureVector<byte> derive(size_t key_len,
                                const byte secret[], size_t secret_len,
                                const byte seed[], size_t seed_len) const;

      std::string name() const { return "TLS-PRF"; }
      KDF* clone() const { return new TLS_PRF; }

      TLS_PRF();
      ~TLS_PRF();
   private:
      MessageAuthenticationCode* hmac_md5;
      MessageAuthenticationCode* hmac_sha1;
   };

/**
* PRF used in TLS 1.2
*/
class BOTAN_DLL TLS_12_PRF : public KDF
   {
   public:
      SecureVector<byte> derive(size_t key_len,
                                const byte secret[], size_t secret_len,
                                const byte seed[], size_t seed_len) const;

      std::string name() const { return "TLSv12-PRF(" + hmac->name() + ")"; }
      KDF* clone() const { return new TLS_12_PRF(hmac->clone()); }

      TLS_12_PRF(MessageAuthenticationCode* hmac);
      ~TLS_12_PRF();
   private:
      MessageAuthenticationCode* hmac;
   };

}


namespace Botan {

/**
* EMSA4 aka PSS-R
*/
class BOTAN_DLL EMSA4 : public EMSA
   {
   public:
      /**
      * @param hash the hash object to use
      */
      EMSA4(HashFunction* hash);

      /**
      * @param hash the hash object to use
      * @param salt_size the size of the salt to use in bytes
      */
      EMSA4(HashFunction* hash, size_t salt_size);

      ~EMSA4() { delete hash; delete mgf; }
   private:
      void update(const byte[], size_t);
      SecureVector<byte> raw_data();

      SecureVector<byte> encoding_of(const MemoryRegion<byte>&, size_t,
                                     RandomNumberGenerator& rng);
      bool verify(const MemoryRegion<byte>&, const MemoryRegion<byte>&,
                  size_t);

      size_t SALT_SIZE;
      HashFunction* hash;
      const MGF* mgf;
   };

}


namespace Botan {

/**
* Camellia-128
*/
class BOTAN_DLL Camellia_128 : public Block_Cipher_Fixed_Params<16, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { SK.clear(); }
      std::string name() const { return "Camellia-128"; }
      BlockCipher* clone() const { return new Camellia_128; }
   private:
      void key_schedule(const byte key[], size_t length);

      SecureVector<u64bit> SK;
   };

/**
* Camellia-192
*/
class BOTAN_DLL Camellia_192 : public Block_Cipher_Fixed_Params<16, 24>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { SK.clear(); }
      std::string name() const { return "Camellia-192"; }
      BlockCipher* clone() const { return new Camellia_192; }
   private:
      void key_schedule(const byte key[], size_t length);

      SecureVector<u64bit> SK;
   };

/**
* Camellia-256
*/
class BOTAN_DLL Camellia_256 : public Block_Cipher_Fixed_Params<16, 32>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { SK.clear(); }
      std::string name() const { return "Camellia-256"; }
      BlockCipher* clone() const { return new Camellia_256; }
   private:
      void key_schedule(const byte key[], size_t length);

      SecureVector<u64bit> SK;
   };

}


namespace Botan {

/**
* MD4
*/
class BOTAN_DLL MD4 : public MDx_HashFunction
   {
   public:
      std::string name() const { return "MD4"; }
      size_t output_length() const { return 16; }
      HashFunction* clone() const { return new MD4; }

      void clear();

      MD4() : MDx_HashFunction(64, false, true), M(16), digest(4)
         { clear(); }
   protected:
      void compress_n(const byte input[], size_t blocks);
      void copy_out(byte[]);

      /**
      * The message buffer, exposed for use by subclasses (x86 asm)
      */
      SecureVector<u32bit> M;

      /**
      * The digest value, exposed for use by subclasses (x86 asm)
      */
      SecureVector<u32bit> digest;
   };

}


namespace Botan {

/**
* Turing
*/
class BOTAN_DLL Turing : public StreamCipher
   {
   public:
      void cipher(const byte in[], byte out[], size_t length);
      void set_iv(const byte iv[], size_t iv_length);

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len % 4 == 0 && iv_len <= 16); }

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(4, 32, 4);
         }

      void clear();
      std::string name() const { return "Turing"; }
      StreamCipher* clone() const { return new Turing; }

      Turing() : S0(256), S1(256), S2(256), S3(256),
                 R(17), buffer(340), position(0) {}

   private:
      void key_schedule(const byte[], size_t);
      void generate();

      static u32bit fixedS(u32bit);

      static const u32bit Q_BOX[256];
      static const byte SBOX[256];

      SecureVector<u32bit> S0, S1, S2, S3;
      SecureVector<u32bit> R;
      SecureVector<u32bit> K;
      SecureVector<byte> buffer;
      size_t position;
   };

}


namespace Botan {

/**
* SRP6a Client side
* @param username the username we are attempting login for
* @param password the password we are attempting to use
* @param group_id specifies the shared SRP group
* @param hash_id specifies a secure hash function
* @param salt is the salt value sent by the server
* @param B is the server's public value
* @param rng is a random number generator
*
* @return (A,K) the client public key and the shared secret key
*/
std::pair<BigInt,SymmetricKey>
BOTAN_DLL srp6_client_agree(const std::string& username,
                            const std::string& password,
                            const std::string& group_id,
                            const std::string& hash_id,
                            const MemoryRegion<byte>& salt,
                            const BigInt& B,
                            RandomNumberGenerator& rng);

/**
* Generate a new SRP-6 verifier
* @param identifier a username or other client identifier
* @param password the secret used to authenticate user
* @param salt a randomly chosen value, at least 128 bits long
*/
BigInt BOTAN_DLL generate_srp6_verifier(const std::string& identifier,
                                        const std::string& password,
                                        const MemoryRegion<byte>& salt,
                                        const std::string& group_id,
                                        const std::string& hash_id);

/**
* Return the group id for this SRP param set, or else thrown an
* exception
*/
std::string BOTAN_DLL srp6_group_identifier(const BigInt& N, const BigInt& g);

/**
* Represents a SRP-6a server session
*/
class BOTAN_DLL SRP6_Server_Session
   {
   public:
      /**
      * Server side step 1
      * @param v the verification value saved from client registration
      */
      BigInt step1(const BigInt& v,
                   const std::string& group_id,
                   const std::string& hash_id,
                   RandomNumberGenerator& rng);

      SymmetricKey step2(const BigInt& A);

   private:
      std::string hash_id;
      BigInt B, b, v, S, p;
      size_t p_bytes;
   };

}


namespace Botan {

/**
* SAFER-SK
*/
class BOTAN_DLL SAFER_SK : public Block_Cipher_Fixed_Params<8, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); }
      std::string name() const;
      BlockCipher* clone() const;

      /**
      * @param rounds the number of rounds to use - must be between 1
      * and 13
      */
      SAFER_SK(size_t rounds);
   private:
      size_t get_rounds() const { return (EK.size() - 8) / 16; }
      void key_schedule(const byte[], size_t);

      SecureVector<byte> EK;
   };

}


namespace Botan {

/**
* CAST-128
*/
class BOTAN_DLL CAST_128 : public Block_Cipher_Fixed_Params<8, 11, 16>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(MK); zeroise(RK); }
      std::string name() const { return "CAST-128"; }
      BlockCipher* clone() const { return new CAST_128; }

      CAST_128() : MK(16), RK(16) {}
   private:
      void key_schedule(const byte[], size_t);

      static void cast_ks(MemoryRegion<u32bit>& ks,
                          MemoryRegion<u32bit>& user_key);

      static const u32bit S5[256];
      static const u32bit S6[256];
      static const u32bit S7[256];
      static const u32bit S8[256];

      SecureVector<u32bit> MK, RK;
   };

extern const u32bit CAST_SBOX1[256];
extern const u32bit CAST_SBOX2[256];
extern const u32bit CAST_SBOX3[256];
extern const u32bit CAST_SBOX4[256];

}


namespace Botan {

/**
* PKCS #5 v2.0 PBE
*/
class BOTAN_DLL PBE_PKCS5v20 : public PBE
   {
   public:
      /**
      * @param cipher names a block cipher
      * @return true iff PKCS #5 knows how to use this cipher
      */
      static bool known_cipher(const std::string& cipher);

      std::string name() const;

      void write(const byte[], size_t);
      void start_msg();
      void end_msg();

      /**
      * Load a PKCS #5 v2.0 encrypted stream
      * @param input is the input source
      */
      PBE_PKCS5v20(DataSource& input);

      /**
      * @param cipher the block cipher to use
      * @param hash the hash function to use
      */
      PBE_PKCS5v20(BlockCipher* cipher, HashFunction* hash);

      ~PBE_PKCS5v20();
   private:
      void set_key(const std::string&);
      void new_params(RandomNumberGenerator& rng);
      MemoryVector<byte> encode_params() const;
      void decode_params(DataSource&);
      OID get_oid() const;

      void flush_pipe(bool);

      Cipher_Dir direction;
      BlockCipher* block_cipher;
      HashFunction* hash_function;
      SecureVector<byte> salt, key, iv;
      size_t iterations, key_length;
      Pipe pipe;
   };

}


namespace Botan {

/**
* Algorithm benchmark
* @param name the name of the algorithm to test (cipher, hash, or MAC)
* @param af the algorithm factory used to create objects
* @param rng the rng to use to generate random inputs
* @param milliseconds total time for the benchmark to run
* @param buf_size size of buffer to benchmark against, in KiB
* @return results a map from provider to speed in mebibytes per second
*/
std::map<std::string, double>
BOTAN_DLL algorithm_benchmark(const std::string& name,
                              Algorithm_Factory& af,
                              RandomNumberGenerator& rng,
                              u32bit milliseconds,
                              size_t buf_size);

}


namespace Botan {

/**
* CBC-MAC
*/
class BOTAN_DLL CBC_MAC : public MessageAuthenticationCode
   {
   public:
      std::string name() const;
      MessageAuthenticationCode* clone() const;
      size_t output_length() const { return e->block_size(); }
      void clear();

      Key_Length_Specification key_spec() const
         {
         return e->key_spec();
         }

      /**
      * @param cipher the underlying block cipher to use
      */
      CBC_MAC(BlockCipher* cipher);
      ~CBC_MAC();
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      void key_schedule(const byte[], size_t);

      BlockCipher* e;
      SecureVector<byte> state;
      size_t position;
   };

}


namespace Botan {

/**
* MARS, IBM's candidate for AES
*/
class BOTAN_DLL MARS : public Block_Cipher_Fixed_Params<16, 16, 32, 4>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(EK); }
      std::string name() const { return "MARS"; }
      BlockCipher* clone() const { return new MARS; }

      MARS() : EK(40) {}
   private:
      void key_schedule(const byte[], size_t);

      SecureVector<u32bit> EK;
   };

}


namespace Botan {

/**
* PKCS #5 PBKDF2
*/
class BOTAN_DLL PKCS5_PBKDF2 : public PBKDF
   {
   public:
      std::string name() const
         {
         return "PBKDF2(" + mac->name() + ")";
         }

      PBKDF* clone() const
         {
         return new PKCS5_PBKDF2(mac->clone());
         }

      OctetString derive_key(size_t output_len,
                             const std::string& passphrase,
                             const byte salt[], size_t salt_len,
                             size_t iterations) const;

      /**
      * Create a PKCS #5 instance using the specified message auth code
      * @param mac_fn the MAC to use
      */
      PKCS5_PBKDF2(MessageAuthenticationCode* mac_fn) : mac(mac_fn) {}

      /**
      * Destructor
      */
      ~PKCS5_PBKDF2() { delete mac; }
   private:
      MessageAuthenticationCode* mac;
   };

}


namespace Botan {

class Algorithm_Factory;

/**
* Encrypt a key under a key encryption key using the algorithm
* described in RFC 3394
*
* @param key the plaintext key to encrypt
* @param kek the key encryption key
* @param af an algorithm factory
* @return key encrypted under kek
*/
SecureVector<byte> BOTAN_DLL rfc3394_keywrap(const MemoryRegion<byte>& key,
                                             const SymmetricKey& kek,
                                             Algorithm_Factory& af);

/**
* Decrypt a key under a key encryption key using the algorithm
* described in RFC 3394
*
* @param key the encrypted key to decrypt
* @param kek the key encryption key
* @param af an algorithm factory
* @return key decrypted under kek
*/
SecureVector<byte> BOTAN_DLL rfc3394_keyunwrap(const MemoryRegion<byte>& key,
                                               const SymmetricKey& kek,
                                               Algorithm_Factory& af);

}


namespace Botan {

/**
* DLIES Encryption
*/
class BOTAN_DLL DLIES_Encryptor : public PK_Encryptor
   {
   public:
      DLIES_Encryptor(const PK_Key_Agreement_Key&,
                      KDF* kdf,
                      MessageAuthenticationCode* mac,
                      size_t mac_key_len = 20);

      ~DLIES_Encryptor();

      void set_other_key(const MemoryRegion<byte>&);
   private:
      SecureVector<byte> enc(const byte[], size_t,
                             RandomNumberGenerator&) const;
      size_t maximum_input_size() const;

      SecureVector<byte> other_key, my_key;

      PK_Key_Agreement ka;
      KDF* kdf;
      MessageAuthenticationCode* mac;
      size_t mac_keylen;
   };

/**
* DLIES Decryption
*/
class BOTAN_DLL DLIES_Decryptor : public PK_Decryptor
   {
   public:
      DLIES_Decryptor(const PK_Key_Agreement_Key&,
                      KDF* kdf,
                      MessageAuthenticationCode* mac,
                      size_t mac_key_len = 20);

      ~DLIES_Decryptor();

   private:
      SecureVector<byte> dec(const byte[], size_t) const;

      SecureVector<byte> my_key;

      PK_Key_Agreement ka;
      KDF* kdf;
      MessageAuthenticationCode* mac;
      size_t mac_keylen;
   };

}


namespace Botan {

/**
* Output Feedback Mode
*/
class BOTAN_DLL OFB : public StreamCipher
   {
   public:
      void cipher(const byte in[], byte out[], size_t length);

      void set_iv(const byte iv[], size_t iv_len);

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len <= permutation->block_size()); }

      Key_Length_Specification key_spec() const
         {
         return permutation->key_spec();
         }

      std::string name() const;

      OFB* clone() const
         { return new OFB(permutation->clone()); }

      void clear();

      /**
      * @param cipher the underlying block cipher to use
      */
      OFB(BlockCipher* cipher);
      ~OFB();
   private:
      void key_schedule(const byte key[], size_t key_len);

      BlockCipher* permutation;
      SecureVector<byte> buffer;
      size_t position;
   };

}


namespace Botan {

/**
* Blowfish
*/
class BOTAN_DLL Blowfish : public Block_Cipher_Fixed_Params<8, 1, 56>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      /**
      * Modified EKSBlowfish key schedule, used for bcrypt password hashing
      */
      void eks_key_schedule(const byte key[], size_t key_length,
                            const byte salt[16], size_t workfactor);

      void clear();
      std::string name() const { return "Blowfish"; }
      BlockCipher* clone() const { return new Blowfish; }

      Blowfish() : S(1024), P(18) {}
   private:
      void key_schedule(const byte key[], size_t length);

      void key_expansion(const byte key[],
                         size_t key_length,
                         const byte salt[16]);

      void generate_sbox(MemoryRegion<u32bit>& box,
                         u32bit& L, u32bit& R,
                         const byte salt[16],
                         size_t salt_off) const;

      static const u32bit P_INIT[18];
      static const u32bit S_INIT[1024];

      SecureVector<u32bit> S;
      SecureVector<u32bit> P;
   };

}


namespace Botan {

/**
* The Adler32 checksum, used in zlib
*/
class BOTAN_DLL Adler32 : public HashFunction
   {
   public:
      std::string name() const { return "Adler32"; }
      size_t output_length() const { return 4; }
      HashFunction* clone() const { return new Adler32; }

      void clear() { S1 = 1; S2 = 0; }

      Adler32() { clear(); }
      ~Adler32() { clear(); }
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      u16bit S1, S2;
   };

}


namespace Botan {

/**
* Parallel Hashes
*/
class BOTAN_DLL Parallel : public HashFunction
   {
   public:
      void clear();
      std::string name() const;
      HashFunction* clone() const;

      size_t output_length() const;

      /**
      * @param hashes a set of hashes to compute in parallel
      */
      Parallel(const std::vector<HashFunction*>& hashes);
      ~Parallel();
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      std::vector<HashFunction*> hashes;
   };

}


namespace Botan {

/**
* RC5
*/
class BOTAN_DLL RC5 : public Block_Cipher_Fixed_Params<8, 1, 32>
   {
   public:
      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      void clear() { zeroise(S); }
      std::string name() const;
      BlockCipher* clone() const { return new RC5(get_rounds()); }

      /**
      * @param rounds the number of RC5 rounds to run. Must be between
      * 8 and 32 and a multiple of 4.
      */
      RC5(size_t rounds);
   private:
      size_t get_rounds() const { return (S.size() - 2) / 2; }

      void key_schedule(const byte[], size_t);

      SecureVector<u32bit> S;
   };

}


namespace Botan {

/**
* Run a set of self tests on some basic algorithms like AES and SHA-1
* @param af an algorithm factory
* @throws Self_Test_Error if a failure occured
*/
BOTAN_DLL void confirm_startup_self_tests(Algorithm_Factory& af);

/**
* Run a set of self tests on some basic algorithms like AES and SHA-1
* @param af an algorithm factory
* @returns false if a failure occured, otherwise true
*/
BOTAN_DLL bool passes_self_tests(Algorithm_Factory& af);

/**
* Run a set of algorithm KATs (known answer tests)
* @param algo_name the algorithm we are testing
* @param vars a set of input variables for this test, all
         hex encoded. Keys used: "input", "output", "key", and "iv"
* @param af an algorithm factory
* @returns map from provider name to test result for that provider
*/
BOTAN_DLL std::map<std::string, bool>
algorithm_kat(const SCAN_Name& algo_name,
              const std::map<std::string, std::string>& vars,
              Algorithm_Factory& af);

}


namespace Botan {

/**
* Noekeon implementation using SIMD operations
*/
class BOTAN_DLL Noekeon_SIMD : public Noekeon
   {
   public:
      size_t parallelism() const { return 4; }

      void encrypt_n(const byte in[], byte out[], size_t blocks) const;
      void decrypt_n(const byte in[], byte out[], size_t blocks) const;

      BlockCipher* clone() const { return new Noekeon_SIMD; }
   };

}


namespace Botan {

/**
* PKCS #5 v1.5 PBE
*/
class BOTAN_DLL PBE_PKCS5v15 : public PBE
   {
   public:
      std::string name() const;

      void write(const byte[], size_t);
      void start_msg();
      void end_msg();

      /**
      * @param cipher the block cipher to use (DES or RC2)
      * @param hash the hash function to use
      * @param direction are we encrypting or decrypting
      */
      PBE_PKCS5v15(BlockCipher* cipher,
                   HashFunction* hash,
                   Cipher_Dir direction);

      ~PBE_PKCS5v15();
   private:
      void set_key(const std::string&);
      void new_params(RandomNumberGenerator& rng);
      MemoryVector<byte> encode_params() const;
      void decode_params(DataSource&);
      OID get_oid() const;

      void flush_pipe(bool);

      Cipher_Dir direction;
      BlockCipher* block_cipher;
      HashFunction* hash_function;

      SecureVector<byte> salt, key, iv;
      size_t iterations;
      Pipe pipe;
   };

}


namespace Botan {

/**
* CTR-BE (Counter mode, big-endian)
*/
class BOTAN_DLL CTR_BE : public StreamCipher
   {
   public:
      void cipher(const byte in[], byte out[], size_t length);

      void set_iv(const byte iv[], size_t iv_len);

      bool valid_iv_length(size_t iv_len) const
         { return (iv_len <= permutation->block_size()); }

      Key_Length_Specification key_spec() const
         {
         return permutation->key_spec();
         }

      std::string name() const;

      CTR_BE* clone() const
         { return new CTR_BE(permutation->clone()); }

      void clear();

      /**
      * @param cipher the underlying block cipher to use
      */
      CTR_BE(BlockCipher* cipher);
      ~CTR_BE();
   private:
      void key_schedule(const byte key[], size_t key_len);
      void increment_counter();

      BlockCipher* permutation;
      SecureVector<byte> counter, buffer;
      size_t position;
   };

}


namespace Botan {

/**
* Randpool
*/
class BOTAN_DLL Randpool : public RandomNumberGenerator
   {
   public:
      void randomize(byte[], size_t);
      bool is_seeded() const { return seeded; }
      void clear();
      std::string name() const;

      void reseed(size_t bits_to_collect);
      void add_entropy_source(EntropySource* es);
      void add_entropy(const byte input[], size_t length);

      /**
      * @param cipher a block cipher to use
      * @param mac a message authentication code to use
      * @param pool_blocks how many cipher blocks to use for the pool
      * @param iterations_before_reseed how many times we'll use the
      * internal state to generate output before reseeding
      */
      Randpool(BlockCipher* cipher,
               MessageAuthenticationCode* mac,
               size_t pool_blocks = 32,
               size_t iterations_before_reseed = 128);

      ~Randpool();
   private:
      void update_buffer();
      void mix_pool();

      size_t ITERATIONS_BEFORE_RESEED, POOL_BLOCKS;
      BlockCipher* cipher;
      MessageAuthenticationCode* mac;

      std::vector<EntropySource*> entropy_sources;
      SecureVector<byte> pool, buffer, counter;
      bool seeded;
   };

}


namespace Botan {

/**
* PRF used in SSLv3
*/
class BOTAN_DLL SSL3_PRF : public KDF
   {
   public:
      SecureVector<byte> derive(size_t, const byte[], size_t,
                                const byte[], size_t) const;

      std::string name() const { return "SSL3-PRF"; }
      KDF* clone() const { return new SSL3_PRF; }
   };

}


namespace Botan {

/**
* DES/3DES-based MAC from ANSI X9.19
*/
class BOTAN_DLL ANSI_X919_MAC : public MessageAuthenticationCode
   {
   public:
      void clear();
      std::string name() const;
      size_t output_length() const { return e->block_size(); }
      MessageAuthenticationCode* clone() const;

      Key_Length_Specification key_spec() const
         {
         return Key_Length_Specification(8, 16, 8);
         }

      /**
      * @param cipher the underlying block cipher to use
      */
      ANSI_X919_MAC(BlockCipher* cipher);
      ~ANSI_X919_MAC();
   private:
      void add_data(const byte[], size_t);
      void final_result(byte[]);
      void key_schedule(const byte[], size_t);

      BlockCipher* e;
      BlockCipher* d;
      SecureVector<byte> state;
      size_t position;
   };

}

#endif // USE_SYSTEM_BOTAN
#endif // BOTAN_AMALGAMATION_H__