summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/SPIRV-Cross/spirv_msl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/SPIRV-Cross/spirv_msl.cpp')
-rw-r--r--src/3rdparty/SPIRV-Cross/spirv_msl.cpp7715
1 files changed, 7715 insertions, 0 deletions
diff --git a/src/3rdparty/SPIRV-Cross/spirv_msl.cpp b/src/3rdparty/SPIRV-Cross/spirv_msl.cpp
new file mode 100644
index 0000000..41a3aaa
--- /dev/null
+++ b/src/3rdparty/SPIRV-Cross/spirv_msl.cpp
@@ -0,0 +1,7715 @@
+/*
+ * Copyright 2016-2019 The Brenwill Workshop Ltd.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "spirv_msl.hpp"
+#include "GLSL.std.450.h"
+
+#include <algorithm>
+#include <assert.h>
+#include <numeric>
+
+using namespace spv;
+using namespace spirv_cross;
+using namespace std;
+
+static const uint32_t k_unknown_location = ~0u;
+static const uint32_t k_unknown_component = ~0u;
+
+static const uint32_t k_aux_mbr_idx_swizzle_const = 0u;
+
+CompilerMSL::CompilerMSL(vector<uint32_t> spirv_)
+ : CompilerGLSL(move(spirv_))
+{
+}
+
+CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
+ : CompilerGLSL(ir_, word_count)
+{
+}
+
+CompilerMSL::CompilerMSL(const ParsedIR &ir_)
+ : CompilerGLSL(ir_)
+{
+}
+
+CompilerMSL::CompilerMSL(ParsedIR &&ir_)
+ : CompilerGLSL(std::move(ir_))
+{
+}
+
+void CompilerMSL::add_msl_vertex_attribute(const MSLVertexAttr &va)
+{
+ vtx_attrs_by_location[va.location] = va;
+ if (va.builtin != BuiltInMax && !vtx_attrs_by_builtin.count(va.builtin))
+ vtx_attrs_by_builtin[va.builtin] = va;
+}
+
+void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
+{
+ resource_bindings.push_back({ binding, false });
+}
+
+void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
+{
+ if (desc_set < kMaxArgumentBuffers)
+ argument_buffer_discrete_mask |= 1u << desc_set;
+}
+
+bool CompilerMSL::is_msl_vertex_attribute_used(uint32_t location)
+{
+ return vtx_attrs_in_use.count(location) != 0;
+}
+
+bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding)
+{
+ auto itr = find_if(begin(resource_bindings), end(resource_bindings),
+ [&](const std::pair<MSLResourceBinding, bool> &resource) -> bool {
+ return model == resource.first.stage && desc_set == resource.first.desc_set &&
+ binding == resource.first.binding;
+ });
+ return itr != end(resource_bindings) && itr->second;
+}
+
+void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
+{
+ fragment_output_components[location] = components;
+}
+
+void CompilerMSL::build_implicit_builtins()
+{
+ bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
+ bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex;
+ bool need_tesc_params = get_execution_model() == ExecutionModelTessellationControl;
+ if (need_subpass_input || need_sample_pos || need_vertex_params || need_tesc_params)
+ {
+ bool has_frag_coord = false;
+ bool has_sample_id = false;
+ bool has_vertex_idx = false;
+ bool has_base_vertex = false;
+ bool has_instance_idx = false;
+ bool has_base_instance = false;
+ bool has_invocation_id = false;
+ bool has_primitive_id = false;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage != StorageClassInput || !ir.meta[var.self].decoration.builtin)
+ return;
+
+ if (need_subpass_input && ir.meta[var.self].decoration.builtin_type == BuiltInFragCoord)
+ {
+ builtin_frag_coord_id = var.self;
+ has_frag_coord = true;
+ }
+
+ if (need_sample_pos && ir.meta[var.self].decoration.builtin_type == BuiltInSampleId)
+ {
+ builtin_sample_id_id = var.self;
+ has_sample_id = true;
+ }
+
+ if (need_vertex_params)
+ {
+ switch (ir.meta[var.self].decoration.builtin_type)
+ {
+ case BuiltInVertexIndex:
+ builtin_vertex_idx_id = var.self;
+ has_vertex_idx = true;
+ break;
+ case BuiltInBaseVertex:
+ builtin_base_vertex_id = var.self;
+ has_base_vertex = true;
+ break;
+ case BuiltInInstanceIndex:
+ builtin_instance_idx_id = var.self;
+ has_instance_idx = true;
+ break;
+ case BuiltInBaseInstance:
+ builtin_base_instance_id = var.self;
+ has_base_instance = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (need_tesc_params)
+ {
+ switch (ir.meta[var.self].decoration.builtin_type)
+ {
+ case BuiltInInvocationId:
+ builtin_invocation_id_id = var.self;
+ has_invocation_id = true;
+ break;
+ case BuiltInPrimitiveId:
+ builtin_primitive_id_id = var.self;
+ has_primitive_id = true;
+ break;
+ default:
+ break;
+ }
+ }
+ });
+
+ if (!has_frag_coord && need_subpass_input)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_FragCoord.
+ SPIRType vec4_type;
+ vec4_type.basetype = SPIRType::Float;
+ vec4_type.width = 32;
+ vec4_type.vecsize = 4;
+ set<SPIRType>(type_id, vec4_type);
+
+ SPIRType vec4_type_ptr;
+ vec4_type_ptr = vec4_type;
+ vec4_type_ptr.pointer = true;
+ vec4_type_ptr.parent_type = type_id;
+ vec4_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
+ ptr_type.self = type_id;
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
+ builtin_frag_coord_id = var_id;
+ }
+
+ if (!has_sample_id && need_sample_pos)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_SampleID.
+ SPIRType uint_type;
+ uint_type.basetype = SPIRType::UInt;
+ uint_type.width = 32;
+ set<SPIRType>(type_id, uint_type);
+
+ SPIRType uint_type_ptr;
+ uint_type_ptr = uint_type;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.parent_type = type_id;
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = type_id;
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
+ builtin_sample_id_id = var_id;
+ }
+
+ if (need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+
+ SPIRType uint_type;
+ uint_type.basetype = SPIRType::UInt;
+ uint_type.width = 32;
+ set<SPIRType>(type_id, uint_type);
+
+ SPIRType uint_type_ptr;
+ uint_type_ptr = uint_type;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.parent_type = type_id;
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = type_id;
+
+ if (!has_vertex_idx)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_VertexIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
+ builtin_vertex_idx_id = var_id;
+ }
+ if (!has_base_vertex)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_BaseVertex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
+ builtin_base_vertex_id = var_id;
+ }
+ if (!has_instance_idx)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_InstanceIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
+ builtin_instance_idx_id = var_id;
+ }
+ if (!has_base_instance)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_BaseInstance.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
+ builtin_base_instance_id = var_id;
+ }
+ }
+
+ if (need_tesc_params && (!has_invocation_id || !has_primitive_id))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+
+ SPIRType uint_type;
+ uint_type.basetype = SPIRType::UInt;
+ uint_type.width = 32;
+ set<SPIRType>(type_id, uint_type);
+
+ SPIRType uint_type_ptr;
+ uint_type_ptr = uint_type;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.parent_type = type_id;
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = type_id;
+
+ if (!has_invocation_id)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_InvocationID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
+ builtin_invocation_id_id = var_id;
+ }
+ if (!has_primitive_id)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_PrimitiveID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
+ builtin_primitive_id_id = var_id;
+ }
+ }
+ }
+
+ if (needs_aux_buffer_def)
+ {
+ uint32_t offset = ir.increase_bound_by(5);
+ uint32_t type_id = offset;
+ uint32_t type_arr_id = offset + 1;
+ uint32_t struct_id = offset + 2;
+ uint32_t struct_ptr_id = offset + 3;
+ uint32_t var_id = offset + 4;
+
+ // Create a buffer to hold extra data, including the swizzle constants.
+ SPIRType uint_type;
+ uint_type.basetype = SPIRType::UInt;
+ uint_type.width = 32;
+ set<SPIRType>(type_id, uint_type);
+
+ SPIRType uint_type_arr = uint_type;
+ uint_type_arr.array.push_back(0);
+ uint_type_arr.array_size_literal.push_back(true);
+ uint_type_arr.parent_type = type_id;
+ set<SPIRType>(type_arr_id, uint_type_arr);
+ set_decoration(type_arr_id, DecorationArrayStride, 4);
+
+ SPIRType struct_type;
+ struct_type.basetype = SPIRType::Struct;
+ struct_type.member_types.push_back(type_arr_id);
+ auto &type = set<SPIRType>(struct_id, struct_type);
+ type.self = struct_id;
+ set_decoration(struct_id, DecorationBlock);
+ set_name(struct_id, "spvAux");
+ set_member_name(struct_id, k_aux_mbr_idx_swizzle_const, "swizzleConst");
+ set_member_decoration(struct_id, k_aux_mbr_idx_swizzle_const, DecorationOffset, 0);
+
+ SPIRType struct_type_ptr = struct_type;
+ struct_type_ptr.pointer = true;
+ struct_type_ptr.parent_type = struct_id;
+ struct_type_ptr.storage = StorageClassUniform;
+ auto &ptr_type = set<SPIRType>(struct_ptr_id, struct_type_ptr);
+ ptr_type.self = struct_id;
+
+ set<SPIRVariable>(var_id, struct_ptr_id, StorageClassUniform);
+ set_name(var_id, "spvAuxBuffer");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, 0xFFFFFFFE);
+ set_decoration(var_id, DecorationBinding, msl_options.aux_buffer_index);
+ aux_buffer_id = var_id;
+ }
+}
+
+static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
+{
+ switch (addr)
+ {
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
+ return join(prefix, "address::clamp_to_edge");
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
+ return join(prefix, "address::clamp_to_zero");
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
+ return join(prefix, "address::clamp_to_border");
+ case MSL_SAMPLER_ADDRESS_REPEAT:
+ return join(prefix, "address::repeat");
+ case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
+ return join(prefix, "address::mirrored_repeat");
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
+ }
+}
+
+SPIRType &CompilerMSL::get_stage_in_struct_type()
+{
+ auto &si_var = get<SPIRVariable>(stage_in_var_id);
+ return get_variable_data_type(si_var);
+}
+
+SPIRType &CompilerMSL::get_stage_out_struct_type()
+{
+ auto &so_var = get<SPIRVariable>(stage_out_var_id);
+ return get_variable_data_type(so_var);
+}
+
+SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
+{
+ auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
+ return get_variable_data_type(si_var);
+}
+
+SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
+{
+ auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
+ return get_variable_data_type(so_var);
+}
+
+std::string CompilerMSL::get_tess_factor_struct_name()
+{
+ if (get_entry_point().flags.get(ExecutionModeTriangles))
+ return "MTLTriangleTessellationFactorsHalf";
+ return "MTLQuadTessellationFactorsHalf";
+}
+
+void CompilerMSL::emit_entry_point_declarations()
+{
+ // FIXME: Get test coverage here ...
+
+ // Emit constexpr samplers here.
+ for (auto &samp : constexpr_samplers)
+ {
+ auto &var = get<SPIRVariable>(samp.first);
+ auto &type = get<SPIRType>(var.basetype);
+ if (type.basetype == SPIRType::Sampler)
+ add_resource_name(samp.first);
+
+ vector<string> args;
+ auto &s = samp.second;
+
+ if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
+ args.push_back("coord::pixel");
+
+ if (s.min_filter == s.mag_filter)
+ {
+ if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("filter::linear");
+ }
+ else
+ {
+ if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("min_filter::linear");
+ if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("mag_filter::linear");
+ }
+
+ switch (s.mip_filter)
+ {
+ case MSL_SAMPLER_MIP_FILTER_NONE:
+ // Default
+ break;
+ case MSL_SAMPLER_MIP_FILTER_NEAREST:
+ args.push_back("mip_filter::nearest");
+ break;
+ case MSL_SAMPLER_MIP_FILTER_LINEAR:
+ args.push_back("mip_filter::linear");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid mip filter.");
+ }
+
+ if (s.s_address == s.t_address && s.s_address == s.r_address)
+ {
+ if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("", s.s_address));
+ }
+ else
+ {
+ if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("s_", s.s_address));
+ if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("t_", s.t_address));
+ if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("r_", s.r_address));
+ }
+
+ if (s.compare_enable)
+ {
+ switch (s.compare_func)
+ {
+ case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
+ args.push_back("compare_func::always");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_NEVER:
+ args.push_back("compare_func::never");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
+ args.push_back("compare_func::equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
+ args.push_back("compare_func::not_equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_LESS:
+ args.push_back("compare_func::less");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
+ args.push_back("compare_func::less_equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_GREATER:
+ args.push_back("compare_func::greater");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
+ args.push_back("compare_func::greater_equal");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler compare function.");
+ }
+ }
+
+ if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
+ s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
+ {
+ switch (s.border_color)
+ {
+ case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
+ args.push_back("border_color::opaque_black");
+ break;
+ case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
+ args.push_back("border_color::opaque_white");
+ break;
+ case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
+ args.push_back("border_color::transparent_black");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler border color.");
+ }
+ }
+
+ if (s.anisotropy_enable)
+ args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
+ if (s.lod_clamp_enable)
+ {
+ args.push_back(join("lod_clamp(", convert_to_string(s.lod_clamp_min, current_locale_radix_character), ", ",
+ convert_to_string(s.lod_clamp_max, current_locale_radix_character), ")"));
+ }
+
+ statement("constexpr sampler ",
+ type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
+ "(", merge(args), ");");
+ }
+
+ // Emit buffer arrays here.
+ for (uint32_t array_id : buffer_arrays)
+ {
+ const auto &var = get<SPIRVariable>(array_id);
+ const auto &type = get_variable_data_type(var);
+ string name = to_name(array_id);
+ statement(get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + name + "[] =");
+ begin_scope();
+ for (uint32_t i = 0; i < type.array[0]; ++i)
+ statement(name + "_" + convert_to_string(i) + ",");
+ end_scope_decl();
+ statement_no_indent("");
+ }
+ // For some reason, without this, we end up emitting the arrays twice.
+ buffer_arrays.clear();
+}
+
+string CompilerMSL::compile()
+{
+ // Do not deal with GLES-isms like precision, older extensions and such.
+ options.vulkan_semantics = true;
+ options.es = false;
+ options.version = 450;
+ backend.null_pointer_literal = "nullptr";
+ backend.float_literal_suffix = false;
+ backend.uint32_t_literal_suffix = true;
+ backend.int16_t_literal_suffix = "";
+ backend.uint16_t_literal_suffix = "u";
+ backend.basic_int_type = "int";
+ backend.basic_uint_type = "uint";
+ backend.basic_int8_type = "char";
+ backend.basic_uint8_type = "uchar";
+ backend.basic_int16_type = "short";
+ backend.basic_uint16_type = "ushort";
+ backend.discard_literal = "discard_fragment()";
+ backend.swizzle_is_function = false;
+ backend.shared_is_implied = false;
+ backend.use_initializer_list = true;
+ backend.use_typed_initializer_list = true;
+ backend.native_row_major_matrix = false;
+ backend.flexible_member_array_supported = false;
+ backend.can_declare_arrays_inline = false;
+ backend.can_return_array = false;
+ backend.boolean_mix_support = false;
+ backend.allow_truncated_access_chain = true;
+ backend.array_is_value_type = false;
+ backend.comparison_image_samples_scalar = true;
+
+ capture_output_to_buffer = msl_options.capture_output_to_buffer;
+ is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
+
+ replace_illegal_names();
+
+ struct_member_padding.clear();
+
+ build_function_control_flow_graphs_and_analyze();
+ update_active_builtins();
+ analyze_image_and_sampler_usage();
+ analyze_sampled_image_usage();
+ build_implicit_builtins();
+
+ fixup_image_load_store_access();
+
+ set_enabled_interface_variables(get_active_interface_variables());
+ if (aux_buffer_id)
+ active_interface_variables.insert(aux_buffer_id);
+
+ // Preprocess OpCodes to extract the need to output additional header content
+ preprocess_op_codes();
+
+ // Create structs to hold input, output and uniform variables.
+ // Do output first to ensure out. is declared at top of entry function.
+ qual_pos_var_name = "";
+ stage_out_var_id = add_interface_block(StorageClassOutput);
+ patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
+ stage_in_var_id = add_interface_block(StorageClassInput);
+ if (get_execution_model() == ExecutionModelTessellationEvaluation)
+ patch_stage_in_var_id = add_interface_block(StorageClassInput, true);
+
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
+ if (is_tessellation_shader())
+ stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);
+
+ // Metal vertex functions that define no output must disable rasterization and return void.
+ if (!stage_out_var_id)
+ is_rasterization_disabled = true;
+
+ // Convert the use of global variables to recursively-passed function parameters
+ localize_global_variables();
+ extract_global_variables_from_functions();
+
+ // Mark any non-stage-in structs to be tightly packed.
+ mark_packable_structs();
+
+ // Add fixup hooks required by shader inputs and outputs. This needs to happen before
+ // the loop, so the hooks aren't added multiple times.
+ fix_up_shader_inputs_outputs();
+
+ // If we are using argument buffers, we create argument buffer structures for them here.
+ // These buffers will be used in the entry point, not the individual resources.
+ if (msl_options.argument_buffers)
+ {
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
+ analyze_argument_buffers();
+ }
+
+ uint32_t pass_count = 0;
+ do
+ {
+ if (pass_count >= 3)
+ SPIRV_CROSS_THROW("Over 3 compilation loops detected. Must be a bug!");
+
+ reset();
+
+ // Start bindings at zero.
+ next_metal_resource_index_buffer = 0;
+ next_metal_resource_index_texture = 0;
+ next_metal_resource_index_sampler = 0;
+
+ // Move constructor for this type is broken on GCC 4.9 ...
+ buffer = unique_ptr<ostringstream>(new ostringstream());
+
+ emit_header();
+ emit_specialization_constants_and_structs();
+ emit_resources();
+ emit_custom_functions();
+ emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
+
+ pass_count++;
+ } while (force_recompile);
+
+ return buffer->str();
+}
+
+// Register the need to output any custom functions.
+void CompilerMSL::preprocess_op_codes()
+{
+ OpCodePreprocessor preproc(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);
+
+ if (preproc.suppress_missing_prototypes)
+ add_pragma_line("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
+
+ if (preproc.uses_atomics)
+ {
+ add_header_line("#include <metal_atomic>");
+ add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
+ }
+
+ // Metal vertex functions that write to resources must disable rasterization and return void.
+ if (preproc.uses_resource_write)
+ is_rasterization_disabled = true;
+
+ // Tessellation control shaders are run as compute functions in Metal, and so
+ // must capture their output to a buffer.
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ {
+ is_rasterization_disabled = true;
+ capture_output_to_buffer = true;
+ }
+}
+
+// Move the Private and Workgroup global variables to the entry function.
+// Non-constant variables cannot have global scope in Metal.
+void CompilerMSL::localize_global_variables()
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto iter = global_variables.begin();
+ while (iter != global_variables.end())
+ {
+ uint32_t v_id = *iter;
+ auto &var = get<SPIRVariable>(v_id);
+ if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
+ {
+ if (!variable_is_lut(var))
+ entry_func.add_local_variable(v_id);
+ iter = global_variables.erase(iter);
+ }
+ else
+ iter++;
+ }
+}
+
+// For any global variable accessed directly by a function,
+// extract that variable and add it as an argument to that function.
+void CompilerMSL::extract_global_variables_from_functions()
+{
+ // Uniforms
+ unordered_set<uint32_t> global_var_ids;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
+ var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
+ {
+ global_var_ids.insert(var.self);
+ }
+ });
+
+ // Local vars that are declared in the main function and accessed directly by a function
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ for (auto &var : entry_func.local_variables)
+ if (get<SPIRVariable>(var).storage != StorageClassFunction)
+ global_var_ids.insert(var);
+
+ std::set<uint32_t> added_arg_ids;
+ unordered_set<uint32_t> processed_func_ids;
+ extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
+}
+
+// MSL does not support the use of global variables for shader input content.
+// For any global variable accessed directly by the specified function, extract that variable,
+// add it as an argument to that function, and the arg to the added_arg_ids collection.
+void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
+ unordered_set<uint32_t> &global_var_ids,
+ unordered_set<uint32_t> &processed_func_ids)
+{
+ // Avoid processing a function more than once
+ if (processed_func_ids.find(func_id) != processed_func_ids.end())
+ {
+ // Return function global variables
+ added_arg_ids = function_global_vars[func_id];
+ return;
+ }
+
+ processed_func_ids.insert(func_id);
+
+ auto &func = get<SPIRFunction>(func_id);
+
+ // Recursively establish global args added to functions on which we depend.
+ for (auto block : func.blocks)
+ {
+ auto &b = get<SPIRBlock>(block);
+ for (auto &i : b.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ case OpLoad:
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ uint32_t base_id = ops[2];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData)
+ {
+ // Implicitly reads gl_FragCoord.
+ assert(builtin_frag_coord_id != 0);
+ added_arg_ids.insert(builtin_frag_coord_id);
+ }
+
+ break;
+ }
+
+ case OpFunctionCall:
+ {
+ // First see if any of the function call args are globals
+ for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
+ {
+ uint32_t arg_id = ops[arg_idx];
+ if (global_var_ids.find(arg_id) != global_var_ids.end())
+ added_arg_ids.insert(arg_id);
+ }
+
+ // Then recurse into the function itself to extract globals used internally in the function
+ uint32_t inner_func_id = ops[2];
+ std::set<uint32_t> inner_func_args;
+ extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
+ processed_func_ids);
+ added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
+ break;
+ }
+
+ case OpStore:
+ {
+ uint32_t base_id = ops[0];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ case OpSelect:
+ {
+ uint32_t base_id = ops[3];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ base_id = ops[4];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ // TODO: Add all other operations which can affect memory.
+ // We should consider a more unified system here to reduce boiler-plate.
+ // This kind of analysis is done in several places ...
+ }
+ }
+
+ function_global_vars[func_id] = added_arg_ids;
+
+ // Add the global variables as arguments to the function
+ if (func_id != ir.default_entry_point)
+ {
+ bool added_in = false;
+ bool added_out = false;
+ for (uint32_t arg_id : added_arg_ids)
+ {
+ auto &var = get<SPIRVariable>(arg_id);
+ uint32_t type_id = var.basetype;
+ auto *p_type = &get<SPIRType>(type_id);
+ BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));
+
+ if (((is_tessellation_shader() && var.storage == StorageClassInput) ||
+ (get_execution_model() == ExecutionModelTessellationControl && var.storage == StorageClassOutput)) &&
+ !(has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type)) &&
+ (!is_builtin_variable(var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
+ p_type->basetype == SPIRType::Struct))
+ {
+ // Tessellation control shaders see inputs and per-vertex outputs as arrays.
+ // Similarly, tessellation evaluation shaders see per-vertex inputs as arrays.
+ // We collected them into a structure; we must pass the array of this
+ // structure to the function.
+ std::string name;
+ if (var.storage == StorageClassInput)
+ {
+ if (added_in)
+ continue;
+ name = input_wg_var_name;
+ arg_id = stage_in_ptr_var_id;
+ added_in = true;
+ }
+ else if (var.storage == StorageClassOutput)
+ {
+ if (added_out)
+ continue;
+ name = "gl_out";
+ arg_id = stage_out_ptr_var_id;
+ added_out = true;
+ }
+ type_id = get<SPIRVariable>(arg_id).basetype;
+ p_type = &get<SPIRType>(type_id);
+ uint32_t next_id = ir.increase_bound_by(1);
+ func.add_parameter(type_id, next_id, true);
+ set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
+
+ set_name(next_id, name);
+ }
+ else if (is_builtin_variable(var) && p_type->basetype == SPIRType::Struct)
+ {
+ // Get the pointee type
+ type_id = get_pointee_type_id(type_id);
+ p_type = &get<SPIRType>(type_id);
+
+ uint32_t mbr_idx = 0;
+ for (auto &mbr_type_id : p_type->member_types)
+ {
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
+ if (is_builtin && has_active_builtin(builtin, var.storage))
+ {
+ // Add a arg variable with the same type and decorations as the member
+ uint32_t next_ids = ir.increase_bound_by(2);
+ uint32_t ptr_type_id = next_ids + 0;
+ uint32_t var_id = next_ids + 1;
+
+ // Make sure we have an actual pointer type,
+ // so that we will get the appropriate address space when declaring these builtins.
+ auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
+ ptr.self = mbr_type_id;
+ ptr.storage = var.storage;
+ ptr.pointer = true;
+ ptr.parent_type = mbr_type_id;
+
+ func.add_parameter(mbr_type_id, var_id, true);
+ set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
+ ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
+ }
+ mbr_idx++;
+ }
+ }
+ else
+ {
+ uint32_t next_id = ir.increase_bound_by(1);
+ func.add_parameter(type_id, next_id, true);
+ set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
+
+ // Ensure the existing variable has a valid name and the new variable has all the same meta info
+ set_name(arg_id, ensure_valid_name(to_name(arg_id), "v"));
+ ir.meta[next_id] = ir.meta[arg_id];
+ }
+ }
+ }
+}
+
+// For all variables that are some form of non-input-output interface block, mark that all the structs
+// that are recursively contained within the type referenced by that variable should be packed tightly.
+void CompilerMSL::mark_packable_structs()
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage != StorageClassFunction && !is_hidden_variable(var))
+ {
+ auto &type = this->get<SPIRType>(var.basetype);
+ if (type.pointer &&
+ (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
+ type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
+ (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
+ mark_as_packable(type);
+ }
+ });
+}
+
+// If the specified type is a struct, it and any nested structs
+// are marked as packable with the SPIRVCrossDecorationPacked decoration,
+void CompilerMSL::mark_as_packable(SPIRType &type)
+{
+ // If this is not the base type (eg. it's a pointer or array), tunnel down
+ if (type.parent_type)
+ {
+ mark_as_packable(get<SPIRType>(type.parent_type));
+ return;
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationPacked);
+
+ // Recurse
+ size_t mbr_cnt = type.member_types.size();
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ uint32_t mbr_type_id = type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ mark_as_packable(mbr_type);
+ if (mbr_type.type_alias)
+ {
+ auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
+ mark_as_packable(mbr_type_alias);
+ }
+ }
+ }
+}
+
+// If a vertex attribute exists at the location, it is marked as being used by this shader
+void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, StorageClass storage)
+{
+ if ((get_execution_model() == ExecutionModelVertex || is_tessellation_shader()) && (storage == StorageClassInput))
+ vtx_attrs_in_use.insert(location);
+}
+
+uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
+{
+ auto itr = fragment_output_components.find(location);
+ if (itr == end(fragment_output_components))
+ return 4;
+ else
+ return itr->second;
+}
+
+uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components)
+{
+ uint32_t new_type_id = ir.increase_bound_by(1);
+ auto &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
+ type.vecsize = components;
+ type.self = new_type_id;
+ type.parent_type = type_id;
+ type.pointer = false;
+
+ return new_type_id;
+}
+
+void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, bool strip_array)
+{
+ bool is_builtin = is_builtin_variable(var);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_flat = has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_decoration(var.self, DecorationCentroid);
+ bool is_sample = has_decoration(var.self, DecorationSample);
+
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
+ var.basetype = type_id;
+
+ type_id = get_pointee_type_id(var.basetype);
+ if (strip_array && is_array(get<SPIRType>(type_id)))
+ type_id = get<SPIRType>(type_id).parent_type;
+ auto &type = get<SPIRType>(type_id);
+ uint32_t target_components = 0;
+ uint32_t type_components = type.vecsize;
+ bool padded_output = false;
+
+ // Check if we need to pad fragment output to match a certain number of components.
+ if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ target_components = get_target_components_for_fragment_location(locn);
+ if (type_components < target_components)
+ {
+ // Make a new type here.
+ type_id = build_extended_vector_type(type_id, target_components);
+ padded_output = true;
+ }
+ }
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(to_expression(var.self), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Update the original variable reference to include the structure reference
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ if (padded_output)
+ {
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+
+ entry_func.fixup_hooks_out.push_back([=, &var]() {
+ SPIRType &padded_type = this->get<SPIRType>(type_id);
+ statement(qual_var_name, " = ", remap_swizzle(padded_type, type_components, to_name(var.self)), ";");
+ });
+ }
+ else if (!strip_array)
+ ir.meta[var.self].decoration.qualified_alias = qual_var_name;
+
+ if (var.storage == StorageClassOutput && var.initializer != 0)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=, &var]() { statement(qual_var_name, " = ", to_expression(var.initializer), ";"); });
+ }
+
+ // Copy the variable location from the original variable to the member
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
+ {
+ type_id = ensure_correct_attribute_type(var.basetype, locn);
+ var.basetype = type_id;
+ type_id = get_pointee_type_id(type_id);
+ if (strip_array && is_array(get<SPIRType>(type_id)))
+ type_id = get<SPIRType>(type_id).parent_type;
+ ib_type.member_types[ib_mbr_idx] = type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
+ {
+ uint32_t locn = vtx_attrs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationComponent))
+ {
+ uint32_t comp = get_decoration(var.self, DecorationComponent);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationIndex))
+ {
+ uint32_t index = get_decoration(var.self, DecorationIndex);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
+ }
+
+ // Mark the member as builtin if needed
+ if (is_builtin)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ if (builtin == BuiltInPosition && storage == StorageClassOutput)
+ qual_pos_var_name = qual_var_name;
+ }
+
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+}
+
+void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, bool strip_array)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ uint32_t elem_cnt = 0;
+
+ if (is_matrix(var_type))
+ {
+ if (is_array(var_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ elem_cnt = var_type.columns;
+ }
+ else if (is_array(var_type))
+ {
+ if (var_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ elem_cnt = to_array_size_literal(var_type);
+ }
+
+ bool is_builtin = is_builtin_variable(var);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_flat = has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_decoration(var.self, DecorationCentroid);
+ bool is_sample = has_decoration(var.self, DecorationSample);
+
+ auto *usable_type = &var_type;
+ if (usable_type->pointer)
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+ while (is_array(*usable_type) || is_matrix(*usable_type))
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+
+ // If a builtin, force it to have the proper name.
+ if (is_builtin)
+ set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
+
+ entry_func.add_local_variable(var.self);
+
+ // We need to declare the variable early and at entry-point scope.
+ vars_needing_early_declaration.push_back(var.self);
+
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ uint32_t target_components = 0;
+ bool padded_output = false;
+ uint32_t type_id = usable_type->self;
+
+ // Check if we need to pad fragment output to match a certain number of components.
+ if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
+ target_components = get_target_components_for_fragment_location(locn);
+ if (usable_type->vecsize < target_components)
+ {
+ // Make a new type here.
+ type_id = build_extended_vector_type(usable_type->self, target_components);
+ padded_output = true;
+ }
+ }
+
+ ib_type.member_types.push_back(get_pointee_type_id(type_id));
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // There is no qualified alias since we need to flatten the internal array on return.
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
+ if (storage == StorageClassInput &&
+ (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
+ {
+ var.basetype = ensure_correct_attribute_type(var.basetype, locn);
+ uint32_t mbr_type_id = ensure_correct_attribute_type(usable_type->self, locn);
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
+ {
+ uint32_t locn = vtx_attrs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationIndex))
+ {
+ uint32_t index = get_decoration(var.self, DecorationIndex);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
+ }
+
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+
+ if (!strip_array)
+ {
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back(
+ [=, &var]() { statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";"); });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=, &var]() {
+ if (padded_output)
+ {
+ auto &padded_type = this->get<SPIRType>(type_id);
+ statement(
+ ib_var_ref, ".", mbr_name, " = ",
+ remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
+ ";");
+ }
+ else
+ statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+}
+
+uint32_t CompilerMSL::get_accumulated_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array)
+{
+ auto &type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ uint32_t location = get_decoration(var.self, DecorationLocation);
+
+ for (uint32_t i = 0; i < mbr_idx; i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+
+ // Start counting from any place we have a new location decoration.
+ if (has_member_decoration(type.self, mbr_idx, DecorationLocation))
+ location = get_member_decoration(type.self, mbr_idx, DecorationLocation);
+
+ uint32_t location_count = 1;
+
+ if (mbr_type.columns > 1)
+ location_count = mbr_type.columns;
+
+ if (!mbr_type.array.empty())
+ for (uint32_t j = 0; j < uint32_t(mbr_type.array.size()); j++)
+ location_count *= to_array_size_literal(mbr_type, j);
+
+ location += location_count;
+ }
+
+ return location;
+}
+
+void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var,
+ uint32_t mbr_idx, bool strip_array)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+
+ BuiltIn builtin;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ bool is_flat =
+ has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
+ has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
+ has_decoration(var.self, DecorationCentroid);
+ bool is_sample =
+ has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
+
+ uint32_t mbr_type_id = var_type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ uint32_t elem_cnt = 0;
+
+ if (is_matrix(mbr_type))
+ {
+ if (is_array(mbr_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ elem_cnt = mbr_type.columns;
+ }
+ else if (is_array(mbr_type))
+ {
+ if (mbr_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ elem_cnt = to_array_size_literal(mbr_type);
+ }
+
+ auto *usable_type = &mbr_type;
+ if (usable_type->pointer)
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+ while (is_array(*usable_type) || is_matrix(*usable_type))
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(usable_type->self);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(join(to_qualified_member_name(var_type, mbr_idx), "_", i), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
+ {
+ uint32_t locn = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+ else if (has_decoration(var.self, DecorationLocation))
+ {
+ uint32_t locn = get_accumulated_member_location(var, mbr_idx, strip_array) + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
+ {
+ uint32_t locn = vtx_attrs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
+ SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays make little sense.");
+
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, mbr_idx);
+
+ // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
+ if (!strip_array)
+ {
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=, &var, &var_type]() {
+ statement(to_name(var.self), ".", to_member_name(var_type, mbr_idx), "[", i, "] = ", ib_var_ref,
+ ".", mbr_name, ";");
+ });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=, &var, &var_type]() {
+ statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), ".",
+ to_member_name(var_type, mbr_idx), "[", i, "];");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+}
+
+void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, uint32_t mbr_idx,
+ bool strip_array)
+{
+ auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ bool is_flat =
+ has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
+ has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
+ has_decoration(var.self, DecorationCentroid);
+ bool is_sample =
+ has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
+
+ // Add a reference to the member to the interface struct.
+ uint32_t mbr_type_id = var_type.member_types[mbr_idx];
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ ib_type.member_types.push_back(mbr_type_id);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(to_qualified_member_name(var_type, mbr_idx), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Update the original variable reference to include the structure reference
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+
+ if (is_builtin && !strip_array)
+ {
+ // For the builtin gl_PerVertex, we cannot treat it as a block anyways,
+ // so redirect to qualified name.
+ set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
+ }
+ else if (!strip_array)
+ {
+ // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=, &var, &var_type]() {
+ statement(to_name(var.self), ".", to_member_name(var_type, mbr_idx), " = ", qual_var_name, ";");
+ });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=, &var, &var_type]() {
+ statement(qual_var_name, " = ", to_name(var.self), ".", to_member_name(var_type, mbr_idx), ";");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Copy the variable location from the original variable to the member
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
+ {
+ uint32_t locn = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
+ if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
+ {
+ mbr_type_id = ensure_correct_attribute_type(mbr_type_id, locn);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+ else if (has_decoration(var.self, DecorationLocation))
+ {
+ // The block itself might have a location and in this case, all members of the block
+ // receive incrementing locations.
+ uint32_t locn = get_accumulated_member_location(var, mbr_idx, strip_array);
+ if (storage == StorageClassInput && (get_execution_model() == ExecutionModelVertex || is_tessellation_shader()))
+ {
+ mbr_type_id = ensure_correct_attribute_type(mbr_type_id, locn);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && vtx_attrs_by_builtin.count(builtin))
+ {
+ uint32_t locn = 0;
+ auto builtin_itr = vtx_attrs_by_builtin.find(builtin);
+ if (builtin_itr != end(vtx_attrs_by_builtin))
+ locn = builtin_itr->second.location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, storage);
+ }
+
+ // Copy the component location, if present.
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
+ {
+ uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ }
+
+ // Mark the member as builtin if needed
+ if (is_builtin)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ if (builtin == BuiltInPosition && storage == StorageClassOutput)
+ qual_pos_var_name = qual_var_name;
+ }
+
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, mbr_idx);
+}
+
+// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
+// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
+// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
+// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
+// float2 containing the inner levels.
+void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto &var_type = get_variable_element_type(var);
+
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+
+ // Force the variable to have the proper name.
+ set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
+
+ if (get_entry_point().flags.get(ExecutionModeTriangles))
+ {
+ // Triangles are tricky, because we want only one member in the struct.
+
+ // We need to declare the variable early and at entry-point scope.
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+
+ string mbr_name = "gl_TessLevel";
+
+ // If we already added the other one, we can skip this step.
+ if (!added_builtin_tess_level)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ uint32_t type_id = build_extended_vector_type(var_type.self, 4);
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // There is no qualified alias since we need to flatten the internal array on return.
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, StorageClassInput);
+ }
+ else if (vtx_attrs_by_builtin.count(builtin))
+ {
+ uint32_t locn = vtx_attrs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, StorageClassInput);
+ }
+
+ added_builtin_tess_level = true;
+ }
+
+ switch (builtin)
+ {
+ case BuiltInTessLevelOuter:
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ statement(to_name(var.self), "[0] = ", ib_var_ref, ".", mbr_name, ".x;");
+ statement(to_name(var.self), "[1] = ", ib_var_ref, ".", mbr_name, ".y;");
+ statement(to_name(var.self), "[2] = ", ib_var_ref, ".", mbr_name, ".z;");
+ });
+ break;
+
+ case BuiltInTessLevelInner:
+ entry_func.fixup_hooks_in.push_back(
+ [=, &var]() { statement(to_name(var.self), "[0] = ", ib_var_ref, ".", mbr_name, ".w;"); });
+ break;
+
+ default:
+ assert(false);
+ break;
+ }
+ }
+ else
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);
+ // Change the type of the variable, too.
+ uint32_t ptr_type_id = ir.increase_bound_by(1);
+ auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
+ new_var_type.pointer = true;
+ new_var_type.storage = StorageClassInput;
+ new_var_type.parent_type = type_id;
+ var.basetype = ptr_type_id;
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ string mbr_name = to_expression(var.self);
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Since vectors can be indexed like arrays, there is no need to unpack this. We can
+ // just refer to the vector directly. So give it a qualified alias.
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+ ir.meta[var.self].decoration.qualified_alias = qual_var_name;
+
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, StorageClassInput);
+ }
+ else if (vtx_attrs_by_builtin.count(builtin))
+ {
+ uint32_t locn = vtx_attrs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, StorageClassInput);
+ }
+ }
+}
+
+void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, bool strip_array)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ // Tessellation control I/O variables and tessellation evaluation per-point inputs are
+ // usually declared as arrays. In these cases, we want to add the element type to the
+ // interface block, since in Metal it's the interface block itself which is arrayed.
+ auto &var_type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ bool is_builtin = is_builtin_variable(var);
+ auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+
+ if (var_type.basetype == SPIRType::Struct)
+ {
+ if (!is_builtin_type(var_type) && (!capture_output_to_buffer || storage == StorageClassInput) && !strip_array)
+ {
+ // For I/O blocks or structs, we will need to pass the block itself around
+ // to functions if they are used globally in leaf functions.
+ // Rather than passing down member by member,
+ // we unflatten I/O blocks while running the shader,
+ // and pass the actual struct type down to leaf functions.
+ // We then unflatten inputs, and flatten outputs in the "fixup" stages.
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+ }
+
+ if (capture_output_to_buffer && storage != StorageClassInput && !has_decoration(var_type.self, DecorationBlock))
+ {
+ // In Metal tessellation shaders, the interface block itself is arrayed. This makes things
+ // very complicated, since stage-in structures in MSL don't support nested structures.
+ // Luckily, for stage-out when capturing output, we can avoid this and just add
+ // composite members directly, because the stage-out structure is stored to a buffer,
+ // not returned.
+ add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
+ }
+ else
+ {
+ // Flatten the struct members into the interface struct
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
+ {
+ builtin = BuiltInMax;
+ is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);
+
+ if (!is_builtin || has_active_builtin(builtin, storage))
+ {
+ if ((!is_builtin ||
+ (storage == StorageClassInput && get_execution_model() != ExecutionModelFragment)) &&
+ (storage == StorageClassInput || storage == StorageClassOutput) &&
+ (is_matrix(mbr_type) || is_array(mbr_type)))
+ {
+ add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_idx,
+ strip_array);
+ }
+ else
+ {
+ add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_idx,
+ strip_array);
+ }
+ }
+ }
+ }
+ }
+ else if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput &&
+ !strip_array && is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
+ {
+ add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
+ }
+ else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
+ type_is_integral(var_type) || type_is_floating_point(var_type) || var_type.basetype == SPIRType::Boolean)
+ {
+ if (!is_builtin || has_active_builtin(builtin, storage))
+ {
+ // MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
+ if ((!is_builtin || (storage == StorageClassInput && get_execution_model() != ExecutionModelFragment)) &&
+ (storage == StorageClassInput || (storage == StorageClassOutput && !capture_output_to_buffer)) &&
+ (is_matrix(var_type) || is_array(var_type)))
+ {
+ add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
+ }
+ else
+ {
+ add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, strip_array);
+ }
+ }
+ }
+}
+
+// Fix up the mapping of variables to interface member indices, which is used to compile access chains
+// for per-vertex variables in a tessellation control shader.
+void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
+{
+ // Only needed for tessellation shaders.
+ if (get_execution_model() != ExecutionModelTessellationControl &&
+ !(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput))
+ return;
+
+ bool in_array = false;
+ for (uint32_t i = 0; i < ir.meta[ib_type_id].members.size(); i++)
+ {
+ auto &mbr_dec = ir.meta[ib_type_id].members[i];
+ uint32_t var_id = mbr_dec.extended.ib_orig_id;
+ if (!var_id)
+ continue;
+ auto &var = get<SPIRVariable>(var_id);
+
+ // Unfortunately, all this complexity is needed to handle flattened structs and/or
+ // arrays.
+ if (storage == StorageClassInput)
+ {
+ auto &type = get_variable_element_type(var);
+ if (is_array(type) || is_matrix(type))
+ {
+ if (in_array)
+ continue;
+ in_array = true;
+ set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ else
+ {
+ if (type.basetype == SPIRType::Struct)
+ {
+ uint32_t mbr_idx =
+ get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);
+ auto &mbr_type = get<SPIRType>(type.member_types[mbr_idx]);
+
+ if (is_array(mbr_type) || is_matrix(mbr_type))
+ {
+ if (in_array)
+ continue;
+ in_array = true;
+ set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ else
+ {
+ in_array = false;
+ set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ }
+ else
+ {
+ in_array = false;
+ set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ }
+ }
+ else
+ set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+}
+
+// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
+// Returns the ID of the newly added variable, or zero if no variable was added.
+uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
+{
+ // Accumulate the variables that should appear in the interface struct
+ vector<SPIRVariable *> vars;
+ bool incl_builtins = (storage == StorageClassOutput || is_tessellation_shader());
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ BuiltIn bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
+ if (var.storage == storage && interface_variable_exists_in_entry_point(var.self) &&
+ !is_hidden_variable(var, incl_builtins) && type.pointer &&
+ (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch &&
+ (!is_builtin_variable(var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance || bi_type == BuiltInLayer ||
+ bi_type == BuiltInViewportIndex || bi_type == BuiltInFragDepth || bi_type == BuiltInSampleMask ||
+ (get_execution_model() == ExecutionModelTessellationEvaluation &&
+ (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))))
+ {
+ vars.push_back(&var);
+ }
+ });
+
+ // If no variables qualify, leave.
+ // For patch input in a tessellation evaluation shader, the per-vertex stage inputs
+ // are included in a special patch control point array.
+ if (vars.empty() && !(storage == StorageClassInput && patch && stage_in_var_id))
+ return 0;
+
+ // Add a new typed variable for this interface structure.
+ // The initializer expression is allocated here, but populated when the function
+ // declaraion is emitted, because it is cleared after each compilation pass.
+ uint32_t next_id = ir.increase_bound_by(3);
+ uint32_t ib_type_id = next_id++;
+ auto &ib_type = set<SPIRType>(ib_type_id);
+ ib_type.basetype = SPIRType::Struct;
+ ib_type.storage = storage;
+ set_decoration(ib_type_id, DecorationBlock);
+
+ uint32_t ib_var_id = next_id++;
+ auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
+ var.initializer = next_id++;
+
+ string ib_var_ref;
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ switch (storage)
+ {
+ case StorageClassInput:
+ ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ {
+ // Add a hook to populate the shared workgroup memory containing
+ // the gl_in array.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // Can't use PatchVertices yet; the hook for that may not have run yet.
+ statement("if (", to_expression(builtin_invocation_id_id), " < ", "spvIndirectParams[0])");
+ statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id), "] = ", ib_var_ref,
+ ";");
+ statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
+ statement("if (", to_expression(builtin_invocation_id_id), " >= ", get_entry_point().output_vertices,
+ ")");
+ statement(" return;");
+ });
+ }
+ break;
+
+ case StorageClassOutput:
+ {
+ ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
+
+ // Add the output interface struct as a local variable to the entry function.
+ // If the entry point should return the output struct, set the entry function
+ // to return the output interface struct, otherwise to return nothing.
+ // Indicate the output var requires early initialization.
+ bool ep_should_return_output = !get_is_rasterization_disabled();
+ uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
+ if (!capture_output_to_buffer)
+ {
+ entry_func.add_local_variable(ib_var_id);
+ for (auto &blk_id : entry_func.blocks)
+ {
+ auto &blk = get<SPIRBlock>(blk_id);
+ if (blk.terminator == SPIRBlock::Return)
+ blk.return_value = rtn_id;
+ }
+ vars_needing_early_declaration.push_back(ib_var_id);
+ }
+ else
+ {
+ switch (get_execution_model())
+ {
+ case ExecutionModelVertex:
+ case ExecutionModelTessellationEvaluation:
+ // Instead of declaring a struct variable to hold the output and then
+ // copying that to the output buffer, we'll declare the output variable
+ // as a reference to the final output element in the buffer. Then we can
+ // avoid the extra copy.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (stage_out_var_id)
+ {
+ // The first member of the indirect buffer is always the number of vertices
+ // to draw.
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ",
+ output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id), " - ",
+ to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
+ to_expression(builtin_vertex_idx_id), " - ", to_expression(builtin_base_vertex_id),
+ "];");
+ }
+ });
+ break;
+ case ExecutionModelTessellationControl:
+ if (patch)
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ",
+ patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "];");
+ });
+ else
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
+ output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
+ get_entry_point().output_vertices, "];");
+ });
+ break;
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
+ set_name(ib_var_id, ib_var_ref);
+
+ for (auto p_var : vars)
+ {
+ bool strip_array =
+ (get_execution_model() == ExecutionModelTessellationControl ||
+ (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput)) &&
+ !patch;
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, strip_array);
+ }
+
+ // Sort the members of the structure by their locations.
+ MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Location);
+ member_sorter.sort();
+
+ // The member indices were saved to the original variables, but after the members
+ // were sorted, those indices are now likely incorrect. Fix those up now.
+ if (!patch)
+ fix_up_interface_member_indices(storage, ib_type_id);
+
+ // For patch inputs, add one more member, holding the array of control point data.
+ if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput && patch &&
+ stage_in_var_id)
+ {
+ uint32_t pcp_type_id = ir.increase_bound_by(1);
+ auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
+ pcp_type.basetype = SPIRType::ControlPointArray;
+ pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
+ pcp_type.storage = storage;
+ ir.meta[pcp_type_id] = ir.meta[ib_type.self];
+ uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(pcp_type_id);
+ set_member_name(ib_type.self, mbr_idx, "gl_in");
+ }
+
+ return ib_var_id;
+}
+
+uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
+{
+ if (!ib_var_id)
+ return 0;
+
+ uint32_t ib_ptr_var_id;
+ uint32_t next_id = ir.increase_bound_by(3);
+ auto &ib_type = expression_type(ib_var_id);
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ {
+ // Tessellation control per-vertex I/O is presented as an array, so we must
+ // do the same with our struct here.
+ uint32_t ib_ptr_type_id = next_id++;
+ auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
+ ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
+ ib_ptr_type.pointer = true;
+ ib_ptr_type.storage = storage == StorageClassInput ? StorageClassWorkgroup : StorageClassStorageBuffer;
+ ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
+ // To ensure that get_variable_data_type() doesn't strip off the pointer,
+ // which we need, use another pointer.
+ uint32_t ib_ptr_ptr_type_id = next_id++;
+ auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
+ ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
+ ib_ptr_ptr_type.type_alias = ib_type.self;
+ ib_ptr_ptr_type.storage = StorageClassFunction;
+ ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
+
+ ib_ptr_var_id = next_id;
+ set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
+ set_name(ib_ptr_var_id, storage == StorageClassInput ? input_wg_var_name : "gl_out");
+ }
+ else
+ {
+ // Tessellation evaluation per-vertex inputs are also presented as arrays.
+ // But, in Metal, this array uses a very special type, 'patch_control_point<T>',
+ // which is a container that can be used to access the control point data.
+ // To represent this, a special 'ControlPointArray' type has been added to the
+ // SPIRV-Cross type system. It should only be generated by and seen in the MSL
+ // backend (i.e. this one).
+ uint32_t pcp_type_id = next_id++;
+ auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
+ pcp_type.basetype = SPIRType::ControlPointArray;
+ pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
+ pcp_type.storage = storage;
+ ir.meta[pcp_type_id] = ir.meta[ib_type.self];
+
+ ib_ptr_var_id = next_id;
+ set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
+ set_name(ib_ptr_var_id, "gl_in");
+ ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
+ }
+ return ib_ptr_var_id;
+}
+
+// Ensure that the type is compatible with the builtin.
+// If it is, simply return the given type ID.
+// Otherwise, create a new type, and return it's ID.
+uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
+{
+ auto &type = get<SPIRType>(type_id);
+
+ if ((builtin == BuiltInSampleMask && is_array(type)) ||
+ ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex) && type.basetype != SPIRType::UInt))
+ {
+ uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
+ uint32_t base_type_id = next_id++;
+ auto &base_type = set<SPIRType>(base_type_id);
+ base_type.basetype = SPIRType::UInt;
+ base_type.width = 32;
+
+ if (!type.pointer)
+ return base_type_id;
+
+ uint32_t ptr_type_id = next_id++;
+ auto &ptr_type = set<SPIRType>(ptr_type_id);
+ ptr_type = base_type;
+ ptr_type.pointer = true;
+ ptr_type.storage = type.storage;
+ ptr_type.parent_type = base_type_id;
+ return ptr_type_id;
+ }
+
+ return type_id;
+}
+
+// Ensure that the type is compatible with the vertex attribute.
+// If it is, simply return the given type ID.
+// Otherwise, create a new type, and return its ID.
+uint32_t CompilerMSL::ensure_correct_attribute_type(uint32_t type_id, uint32_t location)
+{
+ auto &type = get<SPIRType>(type_id);
+
+ auto p_va = vtx_attrs_by_location.find(location);
+ if (p_va == end(vtx_attrs_by_location))
+ return type_id;
+
+ switch (p_va->second.format)
+ {
+ case MSL_VERTEX_FORMAT_UINT8:
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::UByte:
+ case SPIRType::UShort:
+ case SPIRType::UInt:
+ return type_id;
+ case SPIRType::Short:
+ case SPIRType::Int:
+ break;
+ default:
+ SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
+ }
+ uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
+ uint32_t base_type_id = next_id++;
+ auto &base_type = set<SPIRType>(base_type_id);
+ base_type = type;
+ base_type.basetype = type.basetype == SPIRType::Short ? SPIRType::UShort : SPIRType::UInt;
+ base_type.pointer = false;
+
+ if (!type.pointer)
+ return base_type_id;
+
+ uint32_t ptr_type_id = next_id++;
+ auto &ptr_type = set<SPIRType>(ptr_type_id);
+ ptr_type = base_type;
+ ptr_type.pointer = true;
+ ptr_type.storage = type.storage;
+ ptr_type.parent_type = base_type_id;
+ return ptr_type_id;
+ }
+
+ case MSL_VERTEX_FORMAT_UINT16:
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::UShort:
+ case SPIRType::UInt:
+ return type_id;
+ case SPIRType::Int:
+ break;
+ default:
+ SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
+ }
+ uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1);
+ uint32_t base_type_id = next_id++;
+ auto &base_type = set<SPIRType>(base_type_id);
+ base_type = type;
+ base_type.basetype = SPIRType::UInt;
+ base_type.pointer = false;
+
+ if (!type.pointer)
+ return base_type_id;
+
+ uint32_t ptr_type_id = next_id++;
+ auto &ptr_type = set<SPIRType>(ptr_type_id);
+ ptr_type = base_type;
+ ptr_type.pointer = true;
+ ptr_type.storage = type.storage;
+ ptr_type.parent_type = base_type_id;
+ return ptr_type_id;
+ }
+
+ default:
+ case MSL_VERTEX_FORMAT_OTHER:
+ break;
+ }
+
+ return type_id;
+}
+
+// Sort the members of the struct type by offset, and pack and then pad members where needed
+// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
+// occurs first, followed by padding, because packing a member reduces both its size and its
+// natural alignment, possibly requiring a padding member to be added ahead of it.
+void CompilerMSL::align_struct(SPIRType &ib_type)
+{
+ uint32_t &ib_type_id = ib_type.self;
+
+ // Sort the members of the interface structure by their offset.
+ // They should already be sorted per SPIR-V spec anyway.
+ MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
+ member_sorter.sort();
+
+ uint32_t mbr_cnt = uint32_t(ib_type.member_types.size());
+
+ // Test the alignment of each member, and if a member should be closer to the previous
+ // member than the default spacing expects, it is likely that the previous member is in
+ // a packed format. If so, and the previous member is packable, pack it.
+ // For example...this applies to any 3-element vector that is followed by a scalar.
+ uint32_t curr_offset = 0;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ if (is_member_packable(ib_type, mbr_idx))
+ {
+ set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPacked);
+ set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPackedType,
+ ib_type.member_types[mbr_idx]);
+ }
+
+ // Align current offset to the current member's default alignment.
+ size_t align_mask = get_declared_struct_member_alignment(ib_type, mbr_idx) - 1;
+ uint32_t aligned_curr_offset = uint32_t((curr_offset + align_mask) & ~align_mask);
+
+ // Fetch the member offset as declared in the SPIRV.
+ uint32_t mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
+ if (mbr_offset > aligned_curr_offset)
+ {
+ // Since MSL and SPIR-V have slightly different struct member alignment and
+ // size rules, we'll pad to standard C-packing rules. If the member is farther
+ // away than C-packing, expects, add an inert padding member before the the member.
+ MSLStructMemberKey key = get_struct_member_key(ib_type_id, mbr_idx);
+ struct_member_padding[key] = mbr_offset - curr_offset;
+ }
+
+ // Increment the current offset to be positioned immediately after the current member.
+ // Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
+ if (mbr_idx + 1 < mbr_cnt)
+ curr_offset = mbr_offset + uint32_t(get_declared_struct_member_size(ib_type, mbr_idx));
+ }
+}
+
+// Returns whether the specified struct member supports a packable type
+// variation that is smaller than the unpacked variation of that type.
+bool CompilerMSL::is_member_packable(SPIRType &ib_type, uint32_t index)
+{
+ // We've already marked it as packable
+ if (has_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPacked))
+ return true;
+
+ auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
+
+ uint32_t component_size = mbr_type.width / 8;
+ uint32_t unpacked_mbr_size;
+ if (mbr_type.vecsize == 3)
+ unpacked_mbr_size = component_size * (mbr_type.vecsize + 1) * mbr_type.columns;
+ else
+ unpacked_mbr_size = component_size * mbr_type.vecsize * mbr_type.columns;
+
+ // Special case for packing. Check for float[] or vec2[] in std140 layout. Here we actually need to pad out instead,
+ // but we will use the same mechanism.
+ if (is_array(mbr_type) && (is_scalar(mbr_type) || is_vector(mbr_type)) && mbr_type.vecsize <= 2 &&
+ type_struct_member_array_stride(ib_type, index) == 4 * component_size)
+ {
+ return true;
+ }
+
+ // Check for array of struct, where the SPIR-V declares an array stride which is larger than the struct itself.
+ // This can happen for struct A { float a }; A a[]; in std140 layout.
+ // TODO: Emit a padded struct which can be used for this purpose.
+ if (is_array(mbr_type) && mbr_type.basetype == SPIRType::Struct)
+ {
+ size_t declared_struct_size = get_declared_struct_size(mbr_type);
+ size_t alignment = get_declared_struct_member_alignment(ib_type, index);
+ declared_struct_size = (declared_struct_size + alignment - 1) & ~(alignment - 1);
+ if (type_struct_member_array_stride(ib_type, index) > declared_struct_size)
+ return true;
+ }
+
+ // TODO: Another sanity check for matrices. We currently do not support std140 matrices which need to be padded out per column.
+ //if (is_matrix(mbr_type) && mbr_type.vecsize <= 2 && type_struct_member_matrix_stride(ib_type, index) == 16)
+ // SPIRV_CROSS_THROW("Currently cannot support matrices with small vector size in std140 layout.");
+
+ // Only vectors or 3-row matrices need to be packed.
+ if (mbr_type.vecsize == 1 || (is_matrix(mbr_type) && mbr_type.vecsize != 3))
+ return false;
+
+ // Only row-major matrices need to be packed.
+ if (is_matrix(mbr_type) && !has_member_decoration(ib_type.self, index, DecorationRowMajor))
+ return false;
+
+ if (is_array(mbr_type))
+ {
+ // If member is an array, and the array stride is larger than the type needs, don't pack it.
+ // Take into consideration multi-dimentional arrays.
+ uint32_t md_elem_cnt = 1;
+ size_t last_elem_idx = mbr_type.array.size() - 1;
+ for (uint32_t i = 0; i < last_elem_idx; i++)
+ md_elem_cnt *= max(to_array_size_literal(mbr_type, i), 1u);
+
+ uint32_t unpacked_array_stride = unpacked_mbr_size * md_elem_cnt;
+ uint32_t array_stride = type_struct_member_array_stride(ib_type, index);
+ return unpacked_array_stride > array_stride;
+ }
+ else
+ {
+ uint32_t mbr_offset_curr = get_member_decoration(ib_type.self, index, DecorationOffset);
+ // For vectors, pack if the member's offset doesn't conform to the
+ // type's usual alignment. For example, a float3 at offset 4.
+ if (!is_matrix(mbr_type) && (mbr_offset_curr % unpacked_mbr_size))
+ return true;
+ // Pack if there is not enough space between this member and next.
+ // If last member, only pack if it's a row-major matrix.
+ if (index < ib_type.member_types.size() - 1)
+ {
+ uint32_t mbr_offset_next = get_member_decoration(ib_type.self, index + 1, DecorationOffset);
+ return unpacked_mbr_size > mbr_offset_next - mbr_offset_curr;
+ }
+ else
+ return is_matrix(mbr_type);
+ }
+}
+
+// Returns a combination of type ID and member index for use as hash key
+MSLStructMemberKey CompilerMSL::get_struct_member_key(uint32_t type_id, uint32_t index)
+{
+ MSLStructMemberKey k = type_id;
+ k <<= 32;
+ k += index;
+ return k;
+}
+
+void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
+{
+ if (!has_extended_decoration(lhs_expression, SPIRVCrossDecorationPacked) ||
+ get_extended_decoration(lhs_expression, SPIRVCrossDecorationPackedType) == 0)
+ {
+ CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
+ }
+ else
+ {
+ // Special handling when storing to a float[] or float2[] in std140 layout.
+
+ auto &type = get<SPIRType>(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPackedType));
+ string lhs = to_dereferenced_expression(lhs_expression);
+ string rhs = to_pointer_expression(rhs_expression);
+
+ // Unpack the expression so we can store to it with a float or float2.
+ // It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
+ if (is_scalar(type) && is_array(type))
+ lhs = enclose_expression(lhs) + ".x";
+ else if (is_vector(type) && type.vecsize == 2 && is_array(type))
+ lhs = enclose_expression(lhs) + ".xy";
+
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ register_write(lhs_expression);
+ }
+}
+
+// Converts the format of the current expression from packed to unpacked,
+// by wrapping the expression in a constructor of the appropriate type.
+string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t packed_type_id)
+{
+ const SPIRType *packed_type = nullptr;
+ if (packed_type_id)
+ packed_type = &get<SPIRType>(packed_type_id);
+
+ // float[] and float2[] cases are really just padding, so directly swizzle from the backing float4 instead.
+ if (packed_type && is_array(*packed_type) && is_scalar(*packed_type))
+ return enclose_expression(expr_str) + ".x";
+ else if (packed_type && is_array(*packed_type) && is_vector(*packed_type) && packed_type->vecsize == 2)
+ return enclose_expression(expr_str) + ".xy";
+ else
+ return join(type_to_glsl(type), "(", expr_str, ")");
+}
+
+// Emits the file header info
+void CompilerMSL::emit_header()
+{
+ for (auto &pragma : pragma_lines)
+ statement(pragma);
+
+ if (!pragma_lines.empty())
+ statement("");
+
+ statement("#include <metal_stdlib>");
+ statement("#include <simd/simd.h>");
+
+ for (auto &header : header_lines)
+ statement(header);
+
+ statement("");
+ statement("using namespace metal;");
+ statement("");
+
+ for (auto &td : typedef_lines)
+ statement(td);
+
+ if (!typedef_lines.empty())
+ statement("");
+}
+
+void CompilerMSL::add_pragma_line(const string &line)
+{
+ auto rslt = pragma_lines.insert(line);
+ if (rslt.second)
+ force_recompile = true;
+}
+
+void CompilerMSL::add_typedef_line(const string &line)
+{
+ auto rslt = typedef_lines.insert(line);
+ if (rslt.second)
+ force_recompile = true;
+}
+
+// Emits any needed custom function bodies.
+void CompilerMSL::emit_custom_functions()
+{
+ for (uint32_t i = SPVFuncImplArrayCopyMultidimMax; i >= 2; i--)
+ if (spv_function_implementations.count(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i)))
+ spv_function_implementations.insert(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i - 1));
+
+ for (auto &spv_func : spv_function_implementations)
+ {
+ switch (spv_func)
+ {
+ case SPVFuncImplMod:
+ statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
+ statement("template<typename Tx, typename Ty>");
+ statement("Tx mod(Tx x, Ty y)");
+ begin_scope();
+ statement("return x - y * floor(x / y);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRadians:
+ statement("// Implementation of the GLSL radians() function");
+ statement("template<typename T>");
+ statement("T radians(T d)");
+ begin_scope();
+ statement("return d * T(0.01745329251);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplDegrees:
+ statement("// Implementation of the GLSL degrees() function");
+ statement("template<typename T>");
+ statement("T degrees(T r)");
+ begin_scope();
+ statement("return r * T(57.2957795131);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindILsb:
+ statement("// Implementation of the GLSL findLSB() function");
+ statement("template<typename T>");
+ statement("T findLSB(T x)");
+ begin_scope();
+ statement("return select(ctz(x), T(-1), x == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindUMsb:
+ statement("// Implementation of the unsigned GLSL findMSB() function");
+ statement("template<typename T>");
+ statement("T findUMSB(T x)");
+ begin_scope();
+ statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindSMsb:
+ statement("// Implementation of the signed GLSL findMSB() function");
+ statement("template<typename T>");
+ statement("T findSMSB(T x)");
+ begin_scope();
+ statement("T v = select(x, T(-1) - x, x < T(0));");
+ statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSSign:
+ statement("// Implementation of the GLSL sign() function for integer types");
+ statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
+ statement("T sign(T x)");
+ begin_scope();
+ statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplArrayCopy:
+ statement("// Implementation of an array copy function to cover GLSL's ability to copy an array via "
+ "assignment.");
+ statement("template<typename T, uint N>");
+ statement("void spvArrayCopyFromStack1(thread T (&dst)[N], thread const T (&src)[N])");
+ begin_scope();
+ statement("for (uint i = 0; i < N; dst[i] = src[i], i++);");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, uint N>");
+ statement("void spvArrayCopyFromConstant1(thread T (&dst)[N], constant T (&src)[N])");
+ begin_scope();
+ statement("for (uint i = 0; i < N; dst[i] = src[i], i++);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplArrayOfArrayCopy2Dim:
+ case SPVFuncImplArrayOfArrayCopy3Dim:
+ case SPVFuncImplArrayOfArrayCopy4Dim:
+ case SPVFuncImplArrayOfArrayCopy5Dim:
+ case SPVFuncImplArrayOfArrayCopy6Dim:
+ {
+ static const char *function_name_tags[] = {
+ "FromStack",
+ "FromConstant",
+ };
+
+ static const char *src_address_space[] = {
+ "thread const",
+ "constant",
+ };
+
+ for (uint32_t variant = 0; variant < 2; variant++)
+ {
+ uint32_t dimensions = spv_func - SPVFuncImplArrayCopyMultidimBase;
+ string tmp = "template<typename T";
+ for (uint8_t i = 0; i < dimensions; i++)
+ {
+ tmp += ", uint ";
+ tmp += 'A' + i;
+ }
+ tmp += ">";
+ statement(tmp);
+
+ string array_arg;
+ for (uint8_t i = 0; i < dimensions; i++)
+ {
+ array_arg += "[";
+ array_arg += 'A' + i;
+ array_arg += "]";
+ }
+
+ statement("void spvArrayCopy", function_name_tags[variant], dimensions, "(thread T (&dst)", array_arg,
+ ", ", src_address_space[variant], " T (&src)", array_arg, ")");
+
+ begin_scope();
+ statement("for (uint i = 0; i < A; i++)");
+ begin_scope();
+ statement("spvArrayCopy", function_name_tags[variant], dimensions - 1, "(dst[i], src[i]);");
+ end_scope();
+ end_scope();
+ statement("");
+ }
+ break;
+ }
+
+ case SPVFuncImplTexelBufferCoords:
+ {
+ string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
+ statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
+ statement("uint2 spvTexelBufferCoord(uint tc)");
+ begin_scope();
+ statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
+ end_scope();
+ statement("");
+ break;
+ }
+
+ case SPVFuncImplInverse4x4:
+ statement("// Returns the determinant of a 2x2 matrix.");
+ statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
+ begin_scope();
+ statement("return a1 * b2 - b1 * a2;");
+ end_scope();
+ statement("");
+
+ statement("// Returns the determinant of a 3x3 matrix.");
+ statement("inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
+ "float c2, float c3)");
+ begin_scope();
+ statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
+ "b2, b3);");
+ end_scope();
+ statement("");
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement("float4x4 spvInverse4x4(float4x4 m)");
+ begin_scope();
+ statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
+ "m[2][2]);");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
+ "* m[3][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse3x3:
+ if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
+ {
+ statement("// Returns the determinant of a 2x2 matrix.");
+ statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
+ begin_scope();
+ statement("return a1 * b2 - b1 * a2;");
+ end_scope();
+ statement("");
+ }
+
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement("float3x3 spvInverse3x3(float3x3 m)");
+ begin_scope();
+ statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
+ statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
+ statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
+ statement_no_indent("");
+ statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
+ statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
+ statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
+ statement_no_indent("");
+ statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
+ statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
+ statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse2x2:
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement("float2x2 spvInverse2x2(float2x2 m)");
+ begin_scope();
+ statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = m[1][1];");
+ statement("adj[0][1] = -m[0][1];");
+ statement_no_indent("");
+ statement("adj[1][0] = -m[1][0];");
+ statement("adj[1][1] = m[0][0];");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRowMajor2x3:
+ statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
+ statement("float2x3 spvConvertFromRowMajor2x3(float2x3 m)");
+ begin_scope();
+ statement("return float2x3(float3(m[0][0], m[0][2], m[1][1]), float3(m[0][1], m[1][0], m[1][2]));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRowMajor2x4:
+ statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
+ statement("float2x4 spvConvertFromRowMajor2x4(float2x4 m)");
+ begin_scope();
+ statement("return float2x4(float4(m[0][0], m[0][2], m[1][0], m[1][2]), float4(m[0][1], m[0][3], m[1][1], "
+ "m[1][3]));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRowMajor3x2:
+ statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
+ statement("float3x2 spvConvertFromRowMajor3x2(float3x2 m)");
+ begin_scope();
+ statement("return float3x2(float2(m[0][0], m[1][1]), float2(m[0][1], m[2][0]), float2(m[1][0], m[2][1]));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRowMajor3x4:
+ statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
+ statement("float3x4 spvConvertFromRowMajor3x4(float3x4 m)");
+ begin_scope();
+ statement("return float3x4(float4(m[0][0], m[0][3], m[1][2], m[2][1]), float4(m[0][1], m[1][0], m[1][3], "
+ "m[2][2]), float4(m[0][2], m[1][1], m[2][0], m[2][3]));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRowMajor4x2:
+ statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
+ statement("float4x2 spvConvertFromRowMajor4x2(float4x2 m)");
+ begin_scope();
+ statement("return float4x2(float2(m[0][0], m[2][0]), float2(m[0][1], m[2][1]), float2(m[1][0], m[3][0]), "
+ "float2(m[1][1], m[3][1]));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRowMajor4x3:
+ statement("// Implementation of a conversion of matrix content from RowMajor to ColumnMajor organization.");
+ statement("float4x3 spvConvertFromRowMajor4x3(float4x3 m)");
+ begin_scope();
+ statement("return float4x3(float3(m[0][0], m[1][1], m[2][2]), float3(m[0][1], m[1][2], m[3][0]), "
+ "float3(m[0][2], m[2][0], m[3][1]), float3(m[1][0], m[2][1], m[3][2]));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplTextureSwizzle:
+ statement("enum class spvSwizzle : uint");
+ begin_scope();
+ statement("none = 0,");
+ statement("zero,");
+ statement("one,");
+ statement("red,");
+ statement("green,");
+ statement("blue,");
+ statement("alpha");
+ end_scope_decl();
+ statement("");
+ statement("template<typename T> struct spvRemoveReference { typedef T type; };");
+ statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
+ statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
+ statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
+ "spvRemoveReference<T>::type& x)");
+ begin_scope();
+ statement("return static_cast<thread T&&>(x);");
+ end_scope();
+ statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
+ "spvRemoveReference<T>::type&& x)");
+ begin_scope();
+ statement("return static_cast<thread T&&>(x);");
+ end_scope();
+ statement("");
+ statement("template<typename T>");
+ statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
+ begin_scope();
+ statement("switch (s)");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement(" return c;");
+ statement("case spvSwizzle::zero:");
+ statement(" return 0;");
+ statement("case spvSwizzle::one:");
+ statement(" return 1;");
+ statement("case spvSwizzle::red:");
+ statement(" return x.r;");
+ statement("case spvSwizzle::green:");
+ statement(" return x.g;");
+ statement("case spvSwizzle::blue:");
+ statement(" return x.b;");
+ statement("case spvSwizzle::alpha:");
+ statement(" return x.a;");
+ end_scope();
+ end_scope();
+ statement("");
+ statement("// Wrapper function that swizzles texture samples and fetches.");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
+ begin_scope();
+ statement("if (!s)");
+ statement(" return x;");
+ statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
+ "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
+ "& 0xFF)), "
+ "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
+ end_scope();
+ statement("");
+ statement("template<typename T>");
+ statement("inline T spvTextureSwizzle(T x, uint s)");
+ begin_scope();
+ statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
+ end_scope();
+ statement("");
+ statement("// Wrapper function that swizzles texture gathers.");
+ statement("template<typename T, typename Tex, typename... Ts>");
+ statement(
+ "inline vec<T, 4> spvGatherSwizzle(sampler s, const thread Tex& t, Ts... params, component c, uint sw) "
+ "METAL_CONST_ARG(c)");
+ begin_scope();
+ statement("if (sw)");
+ begin_scope();
+ statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement(" break;");
+ statement("case spvSwizzle::zero:");
+ statement(" return vec<T, 4>(0, 0, 0, 0);");
+ statement("case spvSwizzle::one:");
+ statement(" return vec<T, 4>(1, 1, 1, 1);");
+ statement("case spvSwizzle::red:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
+ statement("case spvSwizzle::green:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
+ statement("case spvSwizzle::blue:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
+ statement("case spvSwizzle::alpha:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
+ end_scope();
+ end_scope();
+ // texture::gather insists on its component parameter being a constant
+ // expression, so we need this silly workaround just to compile the shader.
+ statement("switch (c)");
+ begin_scope();
+ statement("case component::x:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
+ statement("case component::y:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
+ statement("case component::z:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
+ statement("case component::w:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
+ end_scope();
+ end_scope();
+ statement("");
+ statement("// Wrapper function that swizzles depth texture gathers.");
+ statement("template<typename T, typename Tex, typename... Ts>");
+ statement(
+ "inline vec<T, 4> spvGatherCompareSwizzle(sampler s, const thread Tex& t, Ts... params, uint sw) ");
+ begin_scope();
+ statement("if (sw)");
+ begin_scope();
+ statement("switch (spvSwizzle(sw & 0xFF))");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement("case spvSwizzle::red:");
+ statement(" break;");
+ statement("case spvSwizzle::zero:");
+ statement("case spvSwizzle::green:");
+ statement("case spvSwizzle::blue:");
+ statement("case spvSwizzle::alpha:");
+ statement(" return vec<T, 4>(0, 0, 0, 0);");
+ statement("case spvSwizzle::one:");
+ statement(" return vec<T, 4>(1, 1, 1, 1);");
+ end_scope();
+ end_scope();
+ statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
+ end_scope();
+ statement("");
+
+ default:
+ break;
+ }
+ }
+}
+
+// Undefined global memory is not allowed in MSL.
+// Declare constant and init to zeros. Use {}, as global constructors can break Metal.
+void CompilerMSL::declare_undefined_values()
+{
+ bool emitted = false;
+ ir.for_each_typed_id<SPIRUndef>([&](uint32_t, SPIRUndef &undef) {
+ auto &type = this->get<SPIRType>(undef.basetype);
+ statement("constant ", variable_decl(type, to_name(undef.self), undef.self), " = {};");
+ emitted = true;
+ });
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::declare_constant_arrays()
+{
+ // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
+ // global constants directly, so we are able to use constants as variable expressions.
+ bool emitted = false;
+
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ if (c.specialization)
+ return;
+
+ auto &type = this->get<SPIRType>(c.constant_type);
+ if (!type.array.empty())
+ {
+ auto name = to_name(c.self);
+ statement("constant ", variable_decl(type, name), " = ", constant_expression(c), ";");
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::emit_resources()
+{
+ declare_constant_arrays();
+ declare_undefined_values();
+
+ // Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
+ emit_interface_block(stage_out_var_id);
+ emit_interface_block(patch_stage_out_var_id);
+ emit_interface_block(stage_in_var_id);
+ emit_interface_block(patch_stage_in_var_id);
+}
+
+// Emit declarations for the specialization Metal function constants
+void CompilerMSL::emit_specialization_constants_and_structs()
+{
+ SpecializationConstant wg_x, wg_y, wg_z;
+ uint32_t workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+ bool emitted = false;
+
+ unordered_set<uint32_t> declared_structs;
+
+ for (auto &id_ : ir.ids_for_constant_or_type)
+ {
+ auto &id = ir.ids[id_];
+
+ if (id.get_type() == TypeConstant)
+ {
+ auto &c = id.get<SPIRConstant>();
+
+ if (c.self == workgroup_size_id)
+ {
+ // TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
+ // the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
+ // The work group size may be a specialization constant.
+ statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup), " [[maybe_unused]] = ",
+ constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
+ emitted = true;
+ }
+ else if (c.specialization)
+ {
+ auto &type = get<SPIRType>(c.constant_type);
+ string sc_type_name = type_to_glsl(type);
+ string sc_name = to_name(c.self);
+ string sc_tmp_name = sc_name + "_tmp";
+
+ // Function constants are only supported in MSL 1.2 and later.
+ // If we don't support it just declare the "default" directly.
+ // This "default" value can be overridden to the true specialization constant by the API user.
+ // Specialization constants which are used as array length expressions cannot be function constants in MSL,
+ // so just fall back to macros.
+ if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
+ !c.is_used_as_array_length)
+ {
+ uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
+ // Only scalar, non-composite values can be function constants.
+ statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
+ ")]];");
+ statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
+ ") ? ", sc_tmp_name, " : ", constant_expression(c), ";");
+ }
+ else if (has_decoration(c.self, DecorationSpecId))
+ {
+ // Fallback to macro overrides.
+ c.specialization_constant_macro_name =
+ constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
+
+ statement("#ifndef ", c.specialization_constant_macro_name);
+ statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
+ statement("#endif");
+ statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
+ ";");
+ }
+ else
+ {
+ // Composite specialization constants must be built from other specialization constants.
+ statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
+ }
+ emitted = true;
+ }
+ }
+ else if (id.get_type() == TypeConstantOp)
+ {
+ auto &c = id.get<SPIRConstantOp>();
+ auto &type = get<SPIRType>(c.basetype);
+ auto name = to_name(c.self);
+ statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
+ emitted = true;
+ }
+ else if (id.get_type() == TypeType)
+ {
+ // Output non-builtin interface structs. These include local function structs
+ // and structs nested within uniform and read-write buffers.
+ auto &type = id.get<SPIRType>();
+ uint32_t type_id = type.self;
+
+ bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty();
+ bool is_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ bool is_builtin_block = is_block && is_builtin_type(type);
+ bool is_declarable_struct = is_struct && !is_builtin_block;
+
+ // We'll declare this later.
+ if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
+ is_declarable_struct = false;
+
+ // Align and emit declarable structs...but avoid declaring each more than once.
+ if (is_declarable_struct && declared_structs.count(type_id) == 0)
+ {
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ declared_structs.insert(type_id);
+
+ if (has_extended_decoration(type_id, SPIRVCrossDecorationPacked))
+ align_struct(type);
+
+ // Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
+ emit_struct(get<SPIRType>(type_id));
+ }
+ }
+ }
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1);
+ emit_op(result_type, result_id,
+ join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
+ ") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
+ ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
+{
+ // If this is a per-vertex output, remap it to the I/O array buffer.
+ auto *var = maybe_get<SPIRVariable>(ops[2]);
+ BuiltIn bi_type = BuiltIn(get_decoration(ops[2], DecorationBuiltIn));
+ if (var &&
+ (var->storage == StorageClassInput ||
+ (get_execution_model() == ExecutionModelTessellationControl && var->storage == StorageClassOutput)) &&
+ !(has_decoration(ops[2], DecorationPatch) || is_patch_block(get_variable_data_type(*var))) &&
+ (!is_builtin_variable(*var) || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
+ get_variable_data_type(*var).basetype == SPIRType::Struct))
+ {
+ AccessChainMeta meta;
+ std::vector<uint32_t> indices;
+ uint32_t next_id = ir.increase_bound_by(2);
+
+ indices.reserve(length - 3 + 1);
+ uint32_t type_id = next_id++;
+ SPIRType new_uint_type;
+ new_uint_type.basetype = SPIRType::UInt;
+ new_uint_type.width = 32;
+ set<SPIRType>(type_id, new_uint_type);
+
+ indices.push_back(ops[3]);
+
+ uint32_t const_mbr_id = next_id++;
+ uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
+ uint32_t ptr = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
+ if (var->storage == StorageClassInput || has_decoration(get_variable_element_type(*var).self, DecorationBlock))
+ {
+ uint32_t i = 4;
+ auto *type = &get_variable_element_type(*var);
+ if (index == uint32_t(-1) && length >= 5)
+ {
+ // Maybe this is a struct type in the input class, in which case
+ // we put it as a decoration on the corresponding member.
+ index = get_extended_member_decoration(ops[2], get_constant(ops[4]).scalar(),
+ SPIRVCrossDecorationInterfaceMemberIndex);
+ assert(index != uint32_t(-1));
+ i++;
+ type = &get<SPIRType>(type->member_types[get_constant(ops[4]).scalar()]);
+ }
+ // In this case, we flattened structures and arrays, so now we have to
+ // combine the following indices. If we encounter a non-constant index,
+ // we're hosed.
+ for (; i < length; ++i)
+ {
+ if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
+ break;
+
+ auto &c = get_constant(ops[i]);
+ index += c.scalar();
+ if (type->parent_type)
+ type = &get<SPIRType>(type->parent_type);
+ else if (type->basetype == SPIRType::Struct)
+ type = &get<SPIRType>(type->member_types[c.scalar()]);
+ }
+ // If the access chain terminates at a composite type, the composite
+ // itself might be copied. In that case, we must unflatten it.
+ if (is_matrix(*type) || is_array(*type) || type->basetype == SPIRType::Struct)
+ {
+ std::string temp_name = join(to_name(var->self), "_", ops[1]);
+ statement(variable_decl(*type, temp_name, var->self), ";");
+ // Set up the initializer for this temporary variable.
+ indices.push_back(const_mbr_id);
+ if (type->basetype == SPIRType::Struct)
+ {
+ for (uint32_t j = 0; j < type->member_types.size(); j++)
+ {
+ index = get_extended_member_decoration(ops[2], j, SPIRVCrossDecorationInterfaceMemberIndex);
+ const auto &mbr_type = get<SPIRType>(type->member_types[j]);
+ if (is_matrix(mbr_type))
+ {
+ for (uint32_t k = 0; k < mbr_type.columns; k++, index++)
+ {
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr,
+ true);
+ statement(temp_name, ".", to_member_name(*type, j), "[", k, "] = ", e, ";");
+ }
+ }
+ else if (is_array(mbr_type))
+ {
+ for (uint32_t k = 0; k < mbr_type.array[0]; k++, index++)
+ {
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr,
+ true);
+ statement(temp_name, ".", to_member_name(*type, j), "[", k, "] = ", e, ";");
+ }
+ }
+ else
+ {
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ auto e =
+ access_chain(ptr, indices.data(), uint32_t(indices.size()), mbr_type, nullptr, true);
+ statement(temp_name, ".", to_member_name(*type, j), " = ", e, ";");
+ }
+ }
+ }
+ else if (is_matrix(*type))
+ {
+ for (uint32_t j = 0; j < type->columns; j++, index++)
+ {
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), *type, nullptr, true);
+ statement(temp_name, "[", j, "] = ", e, ";");
+ }
+ }
+ else // Must be an array
+ {
+ assert(is_array(*type));
+ for (uint32_t j = 0; j < type->array[0]; j++, index++)
+ {
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), *type, nullptr, true);
+ statement(temp_name, "[", j, "] = ", e, ";");
+ }
+ }
+
+ // This needs to be a variable instead of an expression so we don't
+ // try to dereference this as a variable pointer.
+ set<SPIRVariable>(ops[1], ops[0], var->storage);
+ ir.meta[ops[1]] = ir.meta[ops[2]];
+ set_name(ops[1], temp_name);
+ if (has_decoration(var->self, DecorationInvariant))
+ set_decoration(ops[1], DecorationInvariant);
+ for (uint32_t j = 2; j < length; j++)
+ inherit_expression_dependencies(ops[1], ops[j]);
+ return true;
+ }
+ else
+ {
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ indices.push_back(const_mbr_id);
+
+ if (i < length)
+ indices.insert(indices.end(), ops + i, ops + length);
+ }
+ }
+ else
+ {
+ assert(index != uint32_t(-1));
+ set<SPIRConstant>(const_mbr_id, type_id, index, false);
+ indices.push_back(const_mbr_id);
+
+ indices.insert(indices.end(), ops + 4, ops + length);
+ }
+
+ // We use the pointer to the base of the input/output array here,
+ // so this is always a pointer chain.
+ auto e = access_chain(ptr, indices.data(), uint32_t(indices.size()), get<SPIRType>(ops[0]), &meta, true);
+ auto &expr = set<SPIRExpression>(ops[1], move(e), ops[0], should_forward(ops[2]));
+ expr.loaded_from = var->self;
+ expr.need_transpose = meta.need_transpose;
+ expr.access_chain = true;
+
+ // Mark the result as being packed if necessary.
+ if (meta.storage_is_packed)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPacked);
+ if (meta.storage_packed_type != 0)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPackedType, meta.storage_packed_type);
+ if (meta.storage_is_invariant)
+ set_decoration(ops[1], DecorationInvariant);
+
+ for (uint32_t i = 2; i < length; i++)
+ {
+ inherit_expression_dependencies(ops[1], ops[i]);
+ add_implied_read_expression(expr, ops[i]);
+ }
+
+ return true;
+ }
+
+ // If this is the inner tessellation level, and we're tessellating triangles,
+ // drop the last index. It isn't an array in this case, so we can't have an
+ // array reference here. We need to make this ID a variable instead of an
+ // expression so we don't try to dereference it as a variable pointer.
+ // Don't do this if the index is a constant 1, though. We need to drop stores
+ // to that one.
+ auto *m = ir.find_meta(var ? var->self : 0);
+ if (get_execution_model() == ExecutionModelTessellationControl && var && m &&
+ m->decoration.builtin_type == BuiltInTessLevelInner && get_entry_point().flags.get(ExecutionModeTriangles))
+ {
+ auto *c = maybe_get<SPIRConstant>(ops[3]);
+ if (c && c->scalar() == 1)
+ return false;
+ auto &dest_var = set<SPIRVariable>(ops[1], *var);
+ dest_var.basetype = ops[0];
+ ir.meta[ops[1]] = ir.meta[ops[2]];
+ inherit_expression_dependencies(ops[1], ops[2]);
+ return true;
+ }
+
+ return false;
+}
+
+bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
+{
+ if (!get_entry_point().flags.get(ExecutionModeTriangles))
+ return false;
+
+ // In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
+ // four. This is true even if we are tessellating triangles. This allows clients
+ // to use a single tessellation control shader with multiple tessellation evaluation
+ // shaders.
+ // In Metal, however, only the first element of TessLevelInner and the first three
+ // of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
+ // levels must be stored to a dedicated buffer in a particular format that depends
+ // on the patch type. Therefore, in Triangles mode, any access to the second
+ // inner level or the fourth outer level must be dropped.
+ const auto *e = maybe_get<SPIRExpression>(id_lhs);
+ if (!e || !e->access_chain)
+ return false;
+ BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
+ if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
+ return false;
+ auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
+ if (!c)
+ return false;
+ return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
+ (builtin == BuiltInTessLevelOuter && c->scalar() == 3);
+}
+
+// Override for MSL-specific syntax instructions
+void CompilerMSL::emit_instruction(const Instruction &instruction)
+{
+#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define MSL_BOP_CAST(op, type) \
+ emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
+#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
+#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
+#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
+#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define MSL_BFOP_CAST(op, type) \
+ emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
+#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
+#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
+
+ auto ops = stream(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(instruction);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ switch (opcode)
+ {
+
+ // Comparisons
+ case OpIEqual:
+ MSL_BOP_CAST(==, int_type);
+ break;
+
+ case OpLogicalEqual:
+ case OpFOrdEqual:
+ MSL_BOP(==);
+ break;
+
+ case OpINotEqual:
+ MSL_BOP_CAST(!=, int_type);
+ break;
+
+ case OpLogicalNotEqual:
+ case OpFOrdNotEqual:
+ MSL_BOP(!=);
+ break;
+
+ case OpUGreaterThan:
+ MSL_BOP_CAST(>, uint_type);
+ break;
+
+ case OpSGreaterThan:
+ MSL_BOP_CAST(>, int_type);
+ break;
+
+ case OpFOrdGreaterThan:
+ MSL_BOP(>);
+ break;
+
+ case OpUGreaterThanEqual:
+ MSL_BOP_CAST(>=, uint_type);
+ break;
+
+ case OpSGreaterThanEqual:
+ MSL_BOP_CAST(>=, int_type);
+ break;
+
+ case OpFOrdGreaterThanEqual:
+ MSL_BOP(>=);
+ break;
+
+ case OpULessThan:
+ MSL_BOP_CAST(<, uint_type);
+ break;
+
+ case OpSLessThan:
+ MSL_BOP_CAST(<, int_type);
+ break;
+
+ case OpFOrdLessThan:
+ MSL_BOP(<);
+ break;
+
+ case OpULessThanEqual:
+ MSL_BOP_CAST(<=, uint_type);
+ break;
+
+ case OpSLessThanEqual:
+ MSL_BOP_CAST(<=, int_type);
+ break;
+
+ case OpFOrdLessThanEqual:
+ MSL_BOP(<=);
+ break;
+
+ case OpFUnordEqual:
+ MSL_UNORD_BOP(==);
+ break;
+
+ case OpFUnordNotEqual:
+ MSL_UNORD_BOP(!=);
+ break;
+
+ case OpFUnordGreaterThan:
+ MSL_UNORD_BOP(>);
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ MSL_UNORD_BOP(>=);
+ break;
+
+ case OpFUnordLessThan:
+ MSL_UNORD_BOP(<);
+ break;
+
+ case OpFUnordLessThanEqual:
+ MSL_UNORD_BOP(<=);
+ break;
+
+ // Derivatives
+ case OpDPdx:
+ case OpDPdxFine:
+ case OpDPdxCoarse:
+ MSL_UFOP(dfdx);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdy:
+ case OpDPdyFine:
+ case OpDPdyCoarse:
+ MSL_UFOP(dfdy);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidth:
+ case OpFwidthCoarse:
+ case OpFwidthFine:
+ MSL_UFOP(fwidth);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ // Bitfield
+ case OpBitFieldInsert:
+ MSL_QFOP(insert_bits);
+ break;
+
+ case OpBitFieldSExtract:
+ case OpBitFieldUExtract:
+ MSL_TFOP(extract_bits);
+ break;
+
+ case OpBitReverse:
+ MSL_UFOP(reverse_bits);
+ break;
+
+ case OpBitCount:
+ MSL_UFOP(popcount);
+ break;
+
+ case OpFRem:
+ MSL_BFOP(fmod);
+ break;
+
+ // Atomics
+ case OpAtomicExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem = ops[4];
+ uint32_t val = ops[5];
+ emit_atomic_func_op(result_type, id, "atomic_exchange_explicit", mem_sem, mem_sem, false, ptr, val);
+ break;
+ }
+
+ case OpAtomicCompareExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem_pass = ops[4];
+ uint32_t mem_sem_fail = ops[5];
+ uint32_t val = ops[6];
+ uint32_t comp = ops[7];
+ emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak_explicit", mem_sem_pass, mem_sem_fail, true,
+ ptr, comp, true, false, val);
+ break;
+ }
+
+ case OpAtomicCompareExchangeWeak:
+ SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
+
+ case OpAtomicLoad:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem = ops[4];
+ emit_atomic_func_op(result_type, id, "atomic_load_explicit", mem_sem, mem_sem, false, ptr, 0);
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ uint32_t result_type = expression_type(ops[0]).self;
+ uint32_t id = ops[0];
+ uint32_t ptr = ops[0];
+ uint32_t mem_sem = ops[2];
+ uint32_t val = ops[3];
+ emit_atomic_func_op(result_type, id, "atomic_store_explicit", mem_sem, mem_sem, false, ptr, val);
+ break;
+ }
+
+#define MSL_AFMO_IMPL(op, valsrc, valconst) \
+ do \
+ { \
+ uint32_t result_type = ops[0]; \
+ uint32_t id = ops[1]; \
+ uint32_t ptr = ops[2]; \
+ uint32_t mem_sem = ops[4]; \
+ uint32_t val = valsrc; \
+ emit_atomic_func_op(result_type, id, "atomic_fetch_" #op "_explicit", mem_sem, mem_sem, false, ptr, val, \
+ false, valconst); \
+ } while (false)
+
+#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
+#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
+
+ case OpAtomicIIncrement:
+ MSL_AFMIO(add);
+ break;
+
+ case OpAtomicIDecrement:
+ MSL_AFMIO(sub);
+ break;
+
+ case OpAtomicIAdd:
+ MSL_AFMO(add);
+ break;
+
+ case OpAtomicISub:
+ MSL_AFMO(sub);
+ break;
+
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ MSL_AFMO(min);
+ break;
+
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ MSL_AFMO(max);
+ break;
+
+ case OpAtomicAnd:
+ MSL_AFMO(and);
+ break;
+
+ case OpAtomicOr:
+ MSL_AFMO(or);
+ break;
+
+ case OpAtomicXor:
+ MSL_AFMO(xor);
+ break;
+
+ // Images
+
+ // Reads == Fetches in Metal
+ case OpImageRead:
+ {
+ // Mark that this shader reads from this image
+ uint32_t img_id = ops[2];
+ auto &type = expression_type(img_id);
+ if (type.image.dim != DimSubpassData)
+ {
+ auto *p_var = maybe_get_backing_variable(img_id);
+ if (p_var && has_decoration(p_var->self, DecorationNonReadable))
+ {
+ unset_decoration(p_var->self, DecorationNonReadable);
+ force_recompile = true;
+ }
+ }
+
+ emit_texture_op(instruction);
+ break;
+ }
+
+ case OpImageWrite:
+ {
+ uint32_t img_id = ops[0];
+ uint32_t coord_id = ops[1];
+ uint32_t texel_id = ops[2];
+ const uint32_t *opt = &ops[3];
+ uint32_t length = instruction.length - 3;
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img_id);
+ auto &img_type = get<SPIRType>(type.self);
+
+ // Ensure this image has been marked as being written to and force a
+ // recommpile so that the image type output will include write access
+ auto *p_var = maybe_get_backing_variable(img_id);
+ if (p_var && has_decoration(p_var->self, DecorationNonWritable))
+ {
+ unset_decoration(p_var->self, DecorationNonWritable);
+ force_recompile = true;
+ }
+
+ bool forward = false;
+ uint32_t bias = 0;
+ uint32_t lod = 0;
+ uint32_t flags = 0;
+
+ if (length)
+ {
+ flags = *opt++;
+ length--;
+ }
+
+ auto test = [&](uint32_t &v, uint32_t flag) {
+ if (length && (flags & flag))
+ {
+ v = *opt++;
+ length--;
+ }
+ };
+
+ test(bias, ImageOperandsBiasMask);
+ test(lod, ImageOperandsLodMask);
+
+ auto &texel_type = expression_type(texel_id);
+ auto store_type = texel_type;
+ store_type.vecsize = 4;
+
+ statement(join(
+ to_expression(img_id), ".write(", remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)),
+ ", ",
+ to_function_args(img_id, img_type, true, false, false, coord_id, 0, 0, 0, 0, lod, 0, 0, 0, 0, 0, &forward),
+ ");"));
+
+ if (p_var && variable_storage_is_aliased(*p_var))
+ flush_all_aliased_variables();
+
+ break;
+ }
+
+ case OpImageQuerySize:
+ case OpImageQuerySizeLod:
+ {
+ uint32_t rslt_type_id = ops[0];
+ auto &rslt_type = get<SPIRType>(rslt_type_id);
+
+ uint32_t id = ops[1];
+
+ uint32_t img_id = ops[2];
+ string img_exp = to_expression(img_id);
+ auto &img_type = expression_type(img_id);
+ Dim img_dim = img_type.image.dim;
+ bool img_is_array = img_type.image.arrayed;
+
+ if (img_type.basetype != SPIRType::Image)
+ SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
+
+ string lod;
+ if (opcode == OpImageQuerySizeLod)
+ {
+ // LOD index defaults to zero, so don't bother outputing level zero index
+ string decl_lod = to_expression(ops[3]);
+ if (decl_lod != "0")
+ lod = decl_lod;
+ }
+
+ string expr = type_to_glsl(rslt_type) + "(";
+ expr += img_exp + ".get_width(" + lod + ")";
+
+ if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
+ expr += ", " + img_exp + ".get_height(" + lod + ")";
+
+ if (img_dim == Dim3D)
+ expr += ", " + img_exp + ".get_depth(" + lod + ")";
+
+ if (img_is_array)
+ expr += ", " + img_exp + ".get_array_size()";
+
+ expr += ")";
+
+ emit_op(rslt_type_id, id, expr, should_forward(img_id));
+
+ break;
+ }
+
+ case OpImageQueryLod:
+ SPIRV_CROSS_THROW("MSL does not support textureQueryLod().");
+
+#define MSL_ImgQry(qrytype) \
+ do \
+ { \
+ uint32_t rslt_type_id = ops[0]; \
+ auto &rslt_type = get<SPIRType>(rslt_type_id); \
+ uint32_t id = ops[1]; \
+ uint32_t img_id = ops[2]; \
+ string img_exp = to_expression(img_id); \
+ string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
+ emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
+ } while (false)
+
+ case OpImageQueryLevels:
+ MSL_ImgQry(mip_levels);
+ break;
+
+ case OpImageQuerySamples:
+ MSL_ImgQry(samples);
+ break;
+
+ case OpImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
+
+ if (combined)
+ {
+ auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
+ auto *var = maybe_get_backing_variable(combined->image);
+ if (var)
+ e.loaded_from = var->self;
+ }
+ else
+ {
+ auto &e = emit_op(result_type, id, to_expression(ops[2]), true, true);
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (var)
+ e.loaded_from = var->self;
+ }
+ break;
+ }
+
+ // Casting
+ case OpQuantizeToF16:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+
+ string exp;
+ auto &type = get<SPIRType>(result_type);
+
+ switch (type.vecsize)
+ {
+ case 1:
+ exp = join("float(half(", to_expression(arg), "))");
+ break;
+ case 2:
+ exp = join("float2(half2(", to_expression(arg), "))");
+ break;
+ case 3:
+ exp = join("float3(half3(", to_expression(arg), "))");
+ break;
+ case 4:
+ exp = join("float4(half4(", to_expression(arg), "))");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Illegal argument to OpQuantizeToF16.");
+ }
+
+ emit_op(result_type, id, exp, should_forward(arg));
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ if (is_tessellation_shader())
+ {
+ if (!emit_tessellation_access_chain(ops, instruction.length))
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ else
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+
+ case OpStore:
+ if (is_out_of_bounds_tessellation_level(ops[0]))
+ break;
+
+ if (maybe_emit_array_assignment(ops[0], ops[1]))
+ break;
+
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+
+ // Compute barriers
+ case OpMemoryBarrier:
+ emit_barrier(0, ops[0], ops[1]);
+ break;
+
+ case OpControlBarrier:
+ // In GLSL a memory barrier is often followed by a control barrier.
+ // But in MSL, memory barriers are also control barriers, so don't
+ // emit a simple control barrier if a memory barrier has just been emitted.
+ if (previous_instruction_opcode != OpMemoryBarrier)
+ emit_barrier(ops[0], ops[1], ops[2]);
+ break;
+
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ {
+ // If the matrix needs transpose and it is square or packed, just flip the multiply order.
+ uint32_t mtx_id = ops[opcode == OpMatrixTimesVector ? 2 : 3];
+ auto *e = maybe_get<SPIRExpression>(mtx_id);
+ auto &t = expression_type(mtx_id);
+ bool is_packed = has_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
+ if (e && e->need_transpose && (t.columns == t.vecsize || is_packed))
+ {
+ e->need_transpose = false;
+
+ // This is important for matrices. Packed matrices
+ // are generally transposed, so unpacking using a constructor argument
+ // will result in an error.
+ // The simplest solution for now is to just avoid unpacking the matrix in this operation.
+ unset_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
+
+ emit_binary_op(ops[0], ops[1], ops[3], ops[2], "*");
+ if (is_packed)
+ set_extended_decoration(mtx_id, SPIRVCrossDecorationPacked);
+ e->need_transpose = true;
+ }
+ else
+ MSL_BOP(*);
+ break;
+ }
+
+ // OpOuterProduct
+
+ case OpIAddCarry:
+ case OpISubBorrow:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ forced_temporaries.insert(result_id);
+ auto &type = get<SPIRType>(result_type);
+ statement(variable_decl(type, to_name(result_id)), ";");
+ set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
+
+ auto &res_type = get<SPIRType>(type.member_types[1]);
+ if (opcode == OpIAddCarry)
+ {
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " + ",
+ to_enclosed_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
+ "(1), ", type_to_glsl(res_type), "(0), ", to_expression(result_id), ".", to_member_name(type, 0),
+ " >= max(", to_expression(op0), ", ", to_expression(op1), "));");
+ }
+ else
+ {
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " - ",
+ to_enclosed_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
+ "(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_expression(op0),
+ " >= ", to_enclosed_expression(op1), ");");
+ }
+ break;
+ }
+
+ case OpUMulExtended:
+ case OpSMulExtended:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ forced_temporaries.insert(result_id);
+ auto &type = get<SPIRType>(result_type);
+ statement(variable_decl(type, to_name(result_id)), ";");
+ set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
+
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(op0), " * ",
+ to_enclosed_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", to_expression(op0), ", ",
+ to_expression(op1), ");");
+ break;
+ }
+
+ default:
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ previous_instruction_opcode = opcode;
+}
+
+void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
+{
+ if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl)
+ return;
+
+ string bar_stmt = "threadgroup_barrier(mem_flags::";
+
+ uint32_t mem_sem = id_mem_sem ? get<SPIRConstant>(id_mem_sem).scalar() : uint32_t(MemorySemanticsMaskNone);
+
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ // For tesc shaders, this also affects objects in the Output storage class.
+ // Since in Metal, these are placed in a device buffer, we have to sync device memory here.
+ bar_stmt += "mem_device";
+ else if (mem_sem & MemorySemanticsCrossWorkgroupMemoryMask)
+ bar_stmt += "mem_device";
+ else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask |
+ MemorySemanticsAtomicCounterMemoryMask))
+ bar_stmt += "mem_threadgroup";
+ else if (mem_sem & MemorySemanticsImageMemoryMask)
+ bar_stmt += "mem_texture";
+ else
+ bar_stmt += "mem_none";
+
+ if (msl_options.is_ios() && (msl_options.supports_msl_version(2) && !msl_options.supports_msl_version(2, 1)))
+ {
+ bar_stmt += ", ";
+
+ // Use the wider of the two scopes (smaller value)
+ uint32_t exe_scope = id_exe_scope ? get<SPIRConstant>(id_exe_scope).scalar() : uint32_t(ScopeInvocation);
+ uint32_t mem_scope = id_mem_scope ? get<SPIRConstant>(id_mem_scope).scalar() : uint32_t(ScopeInvocation);
+ uint32_t scope = min(exe_scope, mem_scope);
+ switch (scope)
+ {
+ case ScopeCrossDevice:
+ case ScopeDevice:
+ bar_stmt += "memory_scope_device";
+ break;
+
+ case ScopeSubgroup:
+ case ScopeInvocation:
+ bar_stmt += "memory_scope_simdgroup";
+ break;
+
+ case ScopeWorkgroup:
+ default:
+ bar_stmt += "memory_scope_threadgroup";
+ break;
+ }
+ }
+
+ bar_stmt += ");";
+
+ statement(bar_stmt);
+
+ assert(current_emitting_block);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ flush_all_active_variables();
+}
+
+void CompilerMSL::emit_array_copy(const string &lhs, uint32_t rhs_id)
+{
+ // Assignment from an array initializer is fine.
+ auto &type = expression_type(rhs_id);
+ auto *var = maybe_get_backing_variable(rhs_id);
+
+ // Unfortunately, we cannot template on address space in MSL,
+ // so explicit address space redirection it is ...
+ bool is_constant = false;
+ if (ir.ids[rhs_id].get_type() == TypeConstant)
+ {
+ is_constant = true;
+ }
+ else if (var && var->remapped_variable && var->statically_assigned &&
+ ir.ids[var->static_expression].get_type() == TypeConstant)
+ {
+ is_constant = true;
+ }
+
+ const char *tag = is_constant ? "FromConstant" : "FromStack";
+ statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ");");
+}
+
+// Since MSL does not allow arrays to be copied via simple variable assignment,
+// if the LHS and RHS represent an assignment of an entire array, it must be
+// implemented by calling an array copy function.
+// Returns whether the struct assignment was emitted.
+bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
+{
+ // We only care about assignments of an entire array
+ auto &type = expression_type(id_rhs);
+ if (type.array.size() == 0)
+ return false;
+
+ auto *var = maybe_get<SPIRVariable>(id_lhs);
+
+ // Is this a remapped, static constant? Don't do anything.
+ if (var && var->remapped_variable && var->statically_assigned)
+ return true;
+
+ if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
+ {
+ // Special case, if we end up declaring a variable when assigning the constant array,
+ // we can avoid the copy by directly assigning the constant expression.
+ // This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
+ // the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
+ // After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
+ statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
+ return true;
+ }
+
+ // Ensure the LHS variable has been declared
+ auto *p_v_lhs = maybe_get_backing_variable(id_lhs);
+ if (p_v_lhs)
+ flush_variable_declaration(p_v_lhs->self);
+
+ emit_array_copy(to_expression(id_lhs), id_rhs);
+ register_write(id_lhs);
+
+ return true;
+}
+
+// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
+void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, uint32_t mem_order_1,
+ uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
+ bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
+{
+ forced_temporaries.insert(result_id);
+
+ string exp = string(op) + "(";
+
+ auto &type = get_pointee_type(expression_type(obj));
+ exp += "(volatile ";
+ auto *var = maybe_get_backing_variable(obj);
+ if (!var)
+ SPIRV_CROSS_THROW("No backing variable for atomic operation.");
+ exp += get_argument_address_space(*var);
+ exp += " atomic_";
+ exp += type_to_glsl(type);
+ exp += "*)";
+
+ exp += "&";
+ exp += to_enclosed_expression(obj);
+
+ bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
+
+ if (is_atomic_compare_exchange_strong)
+ {
+ assert(strcmp(op, "atomic_compare_exchange_weak_explicit") == 0);
+ assert(op2);
+ assert(has_mem_order_2);
+ exp += ", &";
+ exp += to_name(result_id);
+ exp += ", ";
+ exp += to_expression(op2);
+ exp += ", ";
+ exp += get_memory_order(mem_order_1);
+ exp += ", ";
+ exp += get_memory_order(mem_order_2);
+ exp += ")";
+
+ // MSL only supports the weak atomic compare exchange,
+ // so emit a CAS loop here.
+ statement(variable_decl(type, to_name(result_id)), ";");
+ statement("do");
+ begin_scope();
+ statement(to_name(result_id), " = ", to_expression(op1), ";");
+ end_scope_decl(join("while (!", exp, ")"));
+ set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
+ }
+ else
+ {
+ assert(strcmp(op, "atomic_compare_exchange_weak_explicit") != 0);
+ if (op1)
+ {
+ if (op1_is_literal)
+ exp += join(", ", op1);
+ else
+ exp += ", " + to_expression(op1);
+ }
+ if (op2)
+ exp += ", " + to_expression(op2);
+
+ exp += string(", ") + get_memory_order(mem_order_1);
+ if (has_mem_order_2)
+ exp += string(", ") + get_memory_order(mem_order_2);
+
+ exp += ")";
+ emit_op(result_type, result_id, exp, false);
+ }
+
+ flush_all_atomic_capable_variables();
+}
+
+// Metal only supports relaxed memory order for now
+const char *CompilerMSL::get_memory_order(uint32_t)
+{
+ return "memory_order_relaxed";
+}
+
+// Override for MSL-specific extension syntax instructions
+void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
+{
+ auto op = static_cast<GLSLstd450>(eop);
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ switch (op)
+ {
+ case GLSLstd450Atan2:
+ emit_binary_func_op(result_type, id, args[0], args[1], "atan2");
+ break;
+ case GLSLstd450InverseSqrt:
+ emit_unary_func_op(result_type, id, args[0], "rsqrt");
+ break;
+ case GLSLstd450RoundEven:
+ emit_unary_func_op(result_type, id, args[0], "rint");
+ break;
+
+ case GLSLstd450FindSMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "findSMSB", int_type, int_type);
+ break;
+
+ case GLSLstd450FindUMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "findUMSB", uint_type, uint_type);
+ break;
+
+ case GLSLstd450PackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
+ break;
+ case GLSLstd450PackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
+ break;
+ case GLSLstd450PackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
+ break;
+ case GLSLstd450PackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
+ break;
+
+ case GLSLstd450PackHalf2x16:
+ {
+ auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ break;
+ }
+
+ case GLSLstd450UnpackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
+ break;
+ case GLSLstd450UnpackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
+ break;
+ case GLSLstd450UnpackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
+ break;
+ case GLSLstd450UnpackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
+ break;
+
+ case GLSLstd450UnpackHalf2x16:
+ {
+ auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ break;
+ }
+
+ case GLSLstd450PackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
+ break;
+ case GLSLstd450UnpackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
+ break;
+
+ case GLSLstd450MatrixInverse:
+ {
+ auto &mat_type = get<SPIRType>(result_type);
+ switch (mat_type.columns)
+ {
+ case 2:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
+ break;
+ case 3:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
+ break;
+ case 4:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ case GLSLstd450FMin:
+ // If the result type isn't float, don't bother calling the specific
+ // precise::/fast:: version. Metal doesn't have those for half and
+ // double types.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
+ break;
+
+ case GLSLstd450FMax:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
+ break;
+
+ case GLSLstd450FClamp:
+ // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
+ break;
+
+ case GLSLstd450NMin:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
+ break;
+
+ case GLSLstd450NMax:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
+ break;
+
+ case GLSLstd450NClamp:
+ // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
+ break;
+
+ // TODO:
+ // GLSLstd450InterpolateAtCentroid (centroid_no_perspective qualifier)
+ // GLSLstd450InterpolateAtSample (sample_no_perspective qualifier)
+ // GLSLstd450InterpolateAtOffset
+
+ default:
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+ }
+}
+
+// Emit a structure declaration for the specified interface variable.
+void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
+{
+ if (ib_var_id)
+ {
+ auto &ib_var = get<SPIRVariable>(ib_var_id);
+ auto &ib_type = get_variable_data_type(ib_var);
+ assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
+ emit_struct(ib_type);
+ }
+}
+
+// Emits the declaration signature of the specified function.
+// If this is the entry point function, Metal-specific return value and function arguments are added.
+void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
+{
+ if (func.self != ir.default_entry_point)
+ add_function_overload(func);
+
+ local_variable_names = resource_names;
+ string decl;
+
+ processing_entry_point = (func.self == ir.default_entry_point);
+
+ auto &type = get<SPIRType>(func.return_type);
+
+ if (type.array.empty())
+ {
+ decl += func_type_decl(type);
+ }
+ else
+ {
+ // We cannot return arrays in MSL, so "return" through an out variable.
+ decl = "void";
+ }
+
+ decl += " ";
+ decl += to_name(func.self);
+ decl += "(";
+
+ if (!type.array.empty())
+ {
+ // Fake arrays returns by writing to an out array instead.
+ decl += "thread ";
+ decl += type_to_glsl(type);
+ decl += " (&SPIRV_Cross_return_value)";
+ decl += type_to_array_glsl(type);
+ if (!func.arguments.empty())
+ decl += ", ";
+ }
+
+ if (processing_entry_point)
+ {
+ if (msl_options.argument_buffers)
+ decl += entry_point_args_argument_buffer(!func.arguments.empty());
+ else
+ decl += entry_point_args_classic(!func.arguments.empty());
+
+ // If entry point function has variables that require early declaration,
+ // ensure they each have an empty initializer, creating one if needed.
+ // This is done at this late stage because the initialization expression
+ // is cleared after each compilation pass.
+ for (auto var_id : vars_needing_early_declaration)
+ {
+ auto &ed_var = get<SPIRVariable>(var_id);
+ uint32_t &initializer = ed_var.initializer;
+ if (!initializer)
+ initializer = ir.increase_bound_by(1);
+
+ // Do not override proper initializers.
+ if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
+ set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
+ }
+ }
+
+ for (auto &arg : func.arguments)
+ {
+ uint32_t name_id = arg.id;
+
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ {
+ // If we need to modify the name of the variable, make sure we modify the original variable.
+ // Our alias is just a shadow variable.
+ if (arg.alias_global_variable && var->basevariable)
+ name_id = var->basevariable;
+
+ var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ }
+
+ add_local_variable_name(name_id);
+
+ decl += argument_decl(arg);
+
+ // Manufacture automatic sampler arg for SampledImage texture
+ auto &arg_type = get<SPIRType>(arg.type);
+ if (arg_type.basetype == SPIRType::SampledImage && arg_type.image.dim != DimBuffer)
+ decl += join(", thread const ", sampler_type(arg_type), " ", to_sampler_expression(arg.id));
+
+ // Manufacture automatic swizzle arg.
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type))
+ decl += join(", constant uint32_t& ", to_swizzle_expression(arg.id));
+
+ if (&arg != &func.arguments.back())
+ decl += ", ";
+ }
+
+ decl += ")";
+ statement(decl);
+}
+
+// Returns the texture sampling function string for the specified image and sampling characteristics.
+string CompilerMSL::to_function_name(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool is_gather, bool, bool,
+ bool has_offset, bool, bool has_dref, uint32_t)
+{
+ // Special-case gather. We have to alter the component being looked up
+ // in the swizzle case.
+ if (msl_options.swizzle_texture_samples && is_gather)
+ {
+ string fname = imgtype.image.depth ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
+ fname += "<" + type_to_glsl(get<SPIRType>(imgtype.image.type)) + ", metal::" + type_to_glsl(imgtype);
+ // Add the arg types ourselves. Yes, this sucks, but Clang can't
+ // deduce template pack parameters in the middle of an argument list.
+ switch (imgtype.image.dim)
+ {
+ case Dim2D:
+ fname += ", float2";
+ if (imgtype.image.arrayed)
+ fname += ", uint";
+ if (imgtype.image.depth)
+ fname += ", float";
+ if (!imgtype.image.depth || has_offset)
+ fname += ", int2";
+ break;
+ case DimCube:
+ fname += ", float3";
+ if (imgtype.image.arrayed)
+ fname += ", uint";
+ if (imgtype.image.depth)
+ fname += ", float";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid texture dimension for gather op.");
+ }
+ fname += ">";
+ return fname;
+ }
+
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+
+ // Texture reference
+ string fname = to_expression(combined ? combined->image : img) + ".";
+ if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype))
+ fname = "spvTextureSwizzle(" + fname;
+
+ // Texture function and sampler
+ if (is_fetch)
+ fname += "read";
+ else if (is_gather)
+ fname += "gather";
+ else
+ fname += "sample";
+
+ if (has_dref)
+ fname += "_compare";
+
+ return fname;
+}
+
+// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
+string CompilerMSL::to_function_args(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool is_gather, bool is_proj,
+ uint32_t coord, uint32_t, uint32_t dref, uint32_t grad_x, uint32_t grad_y,
+ uint32_t lod, uint32_t coffset, uint32_t offset, uint32_t bias, uint32_t comp,
+ uint32_t sample, bool *p_forward)
+{
+ string farg_str;
+ if (!is_fetch)
+ farg_str += to_sampler_expression(img);
+
+ if (msl_options.swizzle_texture_samples && is_gather)
+ {
+ if (!farg_str.empty())
+ farg_str += ", ";
+
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+ farg_str += to_expression(combined ? combined->image : img);
+ }
+
+ // Texture coordinates
+ bool forward = should_forward(coord);
+ auto coord_expr = to_enclosed_expression(coord);
+ auto &coord_type = expression_type(coord);
+ bool coord_is_fp = type_is_floating_point(coord_type);
+ bool is_cube_fetch = false;
+
+ string tex_coords = coord_expr;
+ uint32_t alt_coord_component = 0;
+
+ switch (imgtype.image.dim)
+ {
+
+ case Dim1D:
+ if (coord_type.vecsize > 1)
+ tex_coords = enclose_expression(tex_coords) + ".x";
+
+ if (is_fetch)
+ tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+
+ alt_coord_component = 1;
+ break;
+
+ case DimBuffer:
+ if (coord_type.vecsize > 1)
+ tex_coords = enclose_expression(tex_coords) + ".x";
+
+ // Metal texel buffer textures are 2D, so convert 1D coord to 2D.
+ if (is_fetch)
+ tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+
+ alt_coord_component = 1;
+ break;
+
+ case DimSubpassData:
+ if (imgtype.image.ms)
+ tex_coords = "uint2(gl_FragCoord.xy)";
+ else
+ tex_coords = join("uint2(gl_FragCoord.xy), 0");
+ break;
+
+ case Dim2D:
+ if (coord_type.vecsize > 2)
+ tex_coords = enclose_expression(tex_coords) + ".xy";
+
+ if (is_fetch)
+ tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+
+ alt_coord_component = 2;
+ break;
+
+ case Dim3D:
+ if (coord_type.vecsize > 3)
+ tex_coords = enclose_expression(tex_coords) + ".xyz";
+
+ if (is_fetch)
+ tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+
+ alt_coord_component = 3;
+ break;
+
+ case DimCube:
+ if (is_fetch)
+ {
+ is_cube_fetch = true;
+ tex_coords += ".xy";
+ tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ if (coord_type.vecsize > 3)
+ tex_coords = enclose_expression(tex_coords) + ".xyz";
+ }
+
+ alt_coord_component = 3;
+ break;
+
+ default:
+ break;
+ }
+
+ if (is_fetch && offset)
+ {
+ // Fetch offsets must be applied directly to the coordinate.
+ forward = forward && should_forward(offset);
+ auto &type = expression_type(offset);
+ if (type.basetype != SPIRType::UInt)
+ tex_coords += " + " + bitcast_expression(SPIRType::UInt, offset);
+ else
+ tex_coords += " + " + to_enclosed_expression(offset);
+ }
+ else if (is_fetch && coffset)
+ {
+ // Fetch offsets must be applied directly to the coordinate.
+ forward = forward && should_forward(coffset);
+ auto &type = expression_type(coffset);
+ if (type.basetype != SPIRType::UInt)
+ tex_coords += " + " + bitcast_expression(SPIRType::UInt, coffset);
+ else
+ tex_coords += " + " + to_enclosed_expression(coffset);
+ }
+
+ // If projection, use alt coord as divisor
+ if (is_proj)
+ tex_coords += " / " + to_extract_component_expression(coord, alt_coord_component);
+
+ if (!farg_str.empty())
+ farg_str += ", ";
+ farg_str += tex_coords;
+
+ // If fetch from cube, add face explicitly
+ if (is_cube_fetch)
+ {
+ // Special case for cube arrays, face and layer are packed in one dimension.
+ if (imgtype.image.arrayed)
+ farg_str += ", uint(" + to_extract_component_expression(coord, 2) + ") % 6u";
+ else
+ farg_str += ", uint(" + round_fp_tex_coords(to_extract_component_expression(coord, 2), coord_is_fp) + ")";
+ }
+
+ // If array, use alt coord
+ if (imgtype.image.arrayed)
+ {
+ // Special case for cube arrays, face and layer are packed in one dimension.
+ if (imgtype.image.dim == DimCube && is_fetch)
+ farg_str += ", uint(" + to_extract_component_expression(coord, 2) + ") / 6u";
+ else
+ farg_str += ", uint(" +
+ round_fp_tex_coords(to_extract_component_expression(coord, alt_coord_component), coord_is_fp) +
+ ")";
+ }
+
+ // Depth compare reference value
+ if (dref)
+ {
+ forward = forward && should_forward(dref);
+ farg_str += ", ";
+
+ if (is_proj)
+ farg_str +=
+ to_enclosed_expression(dref) + " / " + to_extract_component_expression(coord, alt_coord_component);
+ else
+ farg_str += to_expression(dref);
+
+ if (msl_options.is_macos() && (grad_x || grad_y))
+ {
+ // For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
+ // However, the most common case here is to have a constant gradient of 0, as that is the only way to express
+ // LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
+ // We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
+ bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
+ bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
+ if (constant_zero_x && constant_zero_y)
+ {
+ lod = 0;
+ grad_x = 0;
+ grad_y = 0;
+ farg_str += ", level(0)";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
+ "supported in MSL macOS.");
+ }
+ }
+
+ if (msl_options.is_macos() && bias)
+ {
+ // Bias is not supported either on macOS with sample_compare.
+ // Verify it is compile-time zero, and drop the argument.
+ if (expression_is_constant_null(bias))
+ {
+ bias = 0;
+ }
+ else
+ {
+ SPIRV_CROSS_THROW(
+ "Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported in MSL macOS.");
+ }
+ }
+ }
+
+ // LOD Options
+ // Metal does not support LOD for 1D textures.
+ if (bias && imgtype.image.dim != Dim1D)
+ {
+ forward = forward && should_forward(bias);
+ farg_str += ", bias(" + to_expression(bias) + ")";
+ }
+
+ // Metal does not support LOD for 1D textures.
+ if (lod && imgtype.image.dim != Dim1D)
+ {
+ forward = forward && should_forward(lod);
+ if (is_fetch)
+ {
+ farg_str += ", " + to_expression(lod);
+ }
+ else
+ {
+ farg_str += ", level(" + to_expression(lod) + ")";
+ }
+ }
+ else if (is_fetch && !lod && imgtype.image.dim != Dim1D && imgtype.image.dim != DimBuffer && !imgtype.image.ms &&
+ imgtype.image.sampled != 2)
+ {
+ // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
+ // Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
+ farg_str += ", 0";
+ }
+
+ // Metal does not support LOD for 1D textures.
+ if ((grad_x || grad_y) && imgtype.image.dim != Dim1D)
+ {
+ forward = forward && should_forward(grad_x);
+ forward = forward && should_forward(grad_y);
+ string grad_opt;
+ switch (imgtype.image.dim)
+ {
+ case Dim2D:
+ grad_opt = "2d";
+ break;
+ case Dim3D:
+ grad_opt = "3d";
+ break;
+ case DimCube:
+ grad_opt = "cube";
+ break;
+ default:
+ grad_opt = "unsupported_gradient_dimension";
+ break;
+ }
+ farg_str += ", gradient" + grad_opt + "(" + to_expression(grad_x) + ", " + to_expression(grad_y) + ")";
+ }
+
+ // Add offsets
+ string offset_expr;
+ if (coffset && !is_fetch)
+ {
+ forward = forward && should_forward(coffset);
+ offset_expr = to_expression(coffset);
+ }
+ else if (offset && !is_fetch)
+ {
+ forward = forward && should_forward(offset);
+ offset_expr = to_expression(offset);
+ }
+
+ if (!offset_expr.empty())
+ {
+ switch (imgtype.image.dim)
+ {
+ case Dim2D:
+ if (coord_type.vecsize > 2)
+ offset_expr = enclose_expression(offset_expr) + ".xy";
+
+ farg_str += ", " + offset_expr;
+ break;
+
+ case Dim3D:
+ if (coord_type.vecsize > 3)
+ offset_expr = enclose_expression(offset_expr) + ".xyz";
+
+ farg_str += ", " + offset_expr;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (comp)
+ {
+ // If 2D has gather component, ensure it also has an offset arg
+ if (imgtype.image.dim == Dim2D && offset_expr.empty())
+ farg_str += ", int2(0)";
+
+ forward = forward && should_forward(comp);
+ farg_str += ", " + to_component_argument(comp);
+ }
+
+ if (sample)
+ {
+ farg_str += ", ";
+ farg_str += to_expression(sample);
+ }
+
+ if (msl_options.swizzle_texture_samples && is_sampled_image_type(imgtype))
+ {
+ // Add the swizzle constant from the swizzle buffer.
+ if (!is_gather)
+ farg_str += ")";
+ farg_str += ", " + to_swizzle_expression(img);
+ used_aux_buffer = true;
+ }
+
+ *p_forward = forward;
+
+ return farg_str;
+}
+
+// If the texture coordinates are floating point, invokes MSL round() function to round them.
+string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
+{
+ return coord_is_fp ? ("round(" + tex_coords + ")") : tex_coords;
+}
+
+// Returns a string to use in an image sampling function argument.
+// The ID must be a scalar constant.
+string CompilerMSL::to_component_argument(uint32_t id)
+{
+ if (ir.ids[id].get_type() != TypeConstant)
+ {
+ SPIRV_CROSS_THROW("ID " + to_string(id) + " is not an OpConstant.");
+ return "component::x";
+ }
+
+ uint32_t component_index = get<SPIRConstant>(id).scalar();
+ switch (component_index)
+ {
+ case 0:
+ return "component::x";
+ case 1:
+ return "component::y";
+ case 2:
+ return "component::z";
+ case 3:
+ return "component::w";
+
+ default:
+ SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
+ " is not a valid Component index, which must be one of 0, 1, 2, or 3.");
+ return "component::x";
+ }
+}
+
+// Establish sampled image as expression object and assign the sampler to it.
+void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
+{
+ set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
+}
+
+// Returns a string representation of the ID, usable as a function arg.
+// Manufacture automatic sampler arg for SampledImage texture.
+string CompilerMSL::to_func_call_arg(uint32_t id)
+{
+ string arg_str;
+
+ auto *c = maybe_get<SPIRConstant>(id);
+ if (c && !get<SPIRType>(c->constant_type).array.empty())
+ {
+ // If we are passing a constant array directly to a function for some reason,
+ // the callee will expect an argument in thread const address space
+ // (since we can only bind to arrays with references in MSL).
+ // To resolve this, we must emit a copy in this address space.
+ // This kind of code gen should be rare enough that performance is not a real concern.
+ // Inline the SPIR-V to avoid this kind of suboptimal codegen.
+ //
+ // We risk calling this inside a continue block (invalid code),
+ // so just create a thread local copy in the current function.
+ arg_str = join("_", id, "_array_copy");
+ auto &constants = current_function->constant_arrays_needed_on_stack;
+ auto itr = find(begin(constants), end(constants), id);
+ if (itr == end(constants))
+ {
+ force_recompile = true;
+ constants.push_back(id);
+ }
+ }
+ else
+ arg_str = CompilerGLSL::to_func_call_arg(id);
+
+ // Manufacture automatic sampler arg if the arg is a SampledImage texture.
+ auto &type = expression_type(id);
+ if (type.basetype == SPIRType::SampledImage && type.image.dim != DimBuffer)
+ {
+ // Need to check the base variable in case we need to apply a qualified alias.
+ uint32_t var_id = 0;
+ auto *sampler_var = maybe_get<SPIRVariable>(id);
+ if (sampler_var)
+ var_id = sampler_var->basevariable;
+
+ arg_str += ", " + to_sampler_expression(var_id ? var_id : id);
+ }
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
+ arg_str += ", " + to_swizzle_expression(id);
+
+ return arg_str;
+}
+
+// If the ID represents a sampled image that has been assigned a sampler already,
+// generate an expression for the sampler, otherwise generate a fake sampler name
+// by appending a suffix to the expression constructed from the ID.
+string CompilerMSL::to_sampler_expression(uint32_t id)
+{
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
+ auto expr = to_expression(combined ? combined->image : id);
+ auto index = expr.find_first_of('[');
+
+ uint32_t samp_id = 0;
+ if (combined)
+ samp_id = combined->sampler;
+
+ if (index == string::npos)
+ return samp_id ? to_expression(samp_id) : expr + sampler_name_suffix;
+ else
+ {
+ auto image_expr = expr.substr(0, index);
+ auto array_expr = expr.substr(index);
+ return samp_id ? to_expression(samp_id) : (image_expr + sampler_name_suffix + array_expr);
+ }
+}
+
+string CompilerMSL::to_swizzle_expression(uint32_t id)
+{
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
+ auto expr = to_expression(combined ? combined->image : id);
+ auto index = expr.find_first_of('[');
+
+ if (index == string::npos)
+ return expr + swizzle_name_suffix;
+ else
+ {
+ auto image_expr = expr.substr(0, index);
+ auto array_expr = expr.substr(index);
+ return image_expr + swizzle_name_suffix + array_expr;
+ }
+}
+
+// Checks whether the type is a Block all of whose members have DecorationPatch.
+bool CompilerMSL::is_patch_block(const SPIRType &type)
+{
+ if (!has_decoration(type.self, DecorationBlock))
+ return false;
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ if (!has_member_decoration(type.self, i, DecorationPatch))
+ return false;
+ }
+
+ return true;
+}
+
+// Checks whether the ID is a row_major matrix that requires conversion before use
+bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
+{
+ // Natively supported row-major matrices do not need to be converted.
+ if (backend.native_row_major_matrix)
+ return false;
+
+ // Non-matrix or column-major matrix types do not need to be converted.
+ if (!has_decoration(id, DecorationRowMajor))
+ return false;
+
+ // Generate a function that will swap matrix elements from row-major to column-major.
+ // Packed row-matrix should just use transpose() function.
+ if (!has_extended_decoration(id, SPIRVCrossDecorationPacked))
+ {
+ const auto type = expression_type(id);
+ add_convert_row_major_matrix_function(type.columns, type.vecsize);
+ }
+
+ return true;
+}
+
+// Checks whether the member is a row_major matrix that requires conversion before use
+bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
+{
+ // Natively supported row-major matrices do not need to be converted.
+ if (backend.native_row_major_matrix)
+ return false;
+
+ // Non-matrix or column-major matrix types do not need to be converted.
+ if (!has_member_decoration(type.self, index, DecorationRowMajor))
+ return false;
+
+ // Generate a function that will swap matrix elements from row-major to column-major.
+ // Packed row-matrix should just use transpose() function.
+ if (!has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPacked))
+ {
+ const auto mbr_type = get<SPIRType>(type.member_types[index]);
+ add_convert_row_major_matrix_function(mbr_type.columns, mbr_type.vecsize);
+ }
+
+ return true;
+}
+
+// Adds a function suitable for converting a non-square row-major matrix to a column-major matrix.
+void CompilerMSL::add_convert_row_major_matrix_function(uint32_t cols, uint32_t rows)
+{
+ SPVFuncImpl spv_func;
+ if (cols == rows) // Square matrix...just use transpose() function
+ return;
+ else if (cols == 2 && rows == 3)
+ spv_func = SPVFuncImplRowMajor2x3;
+ else if (cols == 2 && rows == 4)
+ spv_func = SPVFuncImplRowMajor2x4;
+ else if (cols == 3 && rows == 2)
+ spv_func = SPVFuncImplRowMajor3x2;
+ else if (cols == 3 && rows == 4)
+ spv_func = SPVFuncImplRowMajor3x4;
+ else if (cols == 4 && rows == 2)
+ spv_func = SPVFuncImplRowMajor4x2;
+ else if (cols == 4 && rows == 3)
+ spv_func = SPVFuncImplRowMajor4x3;
+ else
+ SPIRV_CROSS_THROW("Could not convert row-major matrix.");
+
+ auto rslt = spv_function_implementations.insert(spv_func);
+ if (rslt.second)
+ {
+ add_pragma_line("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
+ force_recompile = true;
+ }
+}
+
+// Wraps the expression string in a function call that converts the
+// row_major matrix result of the expression to a column_major matrix.
+string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, bool is_packed)
+{
+ strip_enclosed_expression(exp_str);
+
+ string func_name;
+
+ // Square and packed matrices can just use transpose
+ if (exp_type.columns == exp_type.vecsize || is_packed)
+ func_name = "transpose";
+ else
+ func_name = string("spvConvertFromRowMajor") + to_string(exp_type.columns) + "x" + to_string(exp_type.vecsize);
+
+ return join(func_name, "(", exp_str, ")");
+}
+
+// Called automatically at the end of the entry point function
+void CompilerMSL::emit_fixup()
+{
+ if ((get_execution_model() == ExecutionModelVertex ||
+ get_execution_model() == ExecutionModelTessellationEvaluation) &&
+ stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
+ {
+ if (options.vertex.fixup_clipspace)
+ statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
+ ".w) * 0.5; // Adjust clip-space for Metal");
+
+ if (options.vertex.flip_vert_y)
+ statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
+ }
+}
+
+// Return a string defining a structure member, with padding and packing.
+string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier)
+{
+ auto &membertype = get<SPIRType>(member_type_id);
+
+ // If this member requires padding to maintain alignment, emit a dummy padding member.
+ MSLStructMemberKey key = get_struct_member_key(type.self, index);
+ uint32_t pad_len = struct_member_padding[key];
+ if (pad_len > 0)
+ statement("char _m", index, "_pad", "[", to_string(pad_len), "];");
+
+ // If this member is packed, mark it as so.
+ string pack_pfx = "";
+
+ const SPIRType *effective_membertype = &membertype;
+ SPIRType override_type;
+
+ uint32_t orig_id = 0;
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
+ orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);
+
+ if (member_is_packed_type(type, index))
+ {
+ // If we're packing a matrix, output an appropriate typedef
+ if (membertype.basetype == SPIRType::Struct)
+ {
+ pack_pfx = "/* FIXME: A padded struct is needed here. If you see this message, file a bug! */ ";
+ }
+ else if (membertype.vecsize > 1 && membertype.columns > 1)
+ {
+ pack_pfx = "packed_";
+ string base_type = membertype.width == 16 ? "half" : "float";
+ string td_line = "typedef ";
+ td_line += base_type + to_string(membertype.vecsize) + "x" + to_string(membertype.columns);
+ td_line += " " + pack_pfx;
+ td_line += base_type + to_string(membertype.columns) + "x" + to_string(membertype.vecsize);
+ td_line += ";";
+ add_typedef_line(td_line);
+ }
+ else if (is_array(membertype) && membertype.vecsize <= 2 && membertype.basetype != SPIRType::Struct)
+ {
+ // A "packed" float array, but we pad here instead to 4-vector.
+ override_type = membertype;
+ override_type.vecsize = 4;
+ effective_membertype = &override_type;
+ }
+ else
+ pack_pfx = "packed_";
+ }
+
+ // Very specifically, image load-store in argument buffers are disallowed on MSL on iOS.
+ if (msl_options.is_ios() && membertype.basetype == SPIRType::Image && membertype.image.sampled == 2)
+ {
+ if (!has_decoration(orig_id, DecorationNonWritable))
+ SPIRV_CROSS_THROW("Writable images are not allowed in argument buffers on iOS.");
+ }
+
+ // Array information is baked into these types.
+ string array_type;
+ if (membertype.basetype != SPIRType::Image && membertype.basetype != SPIRType::Sampler &&
+ membertype.basetype != SPIRType::SampledImage)
+ {
+ array_type = type_to_array_glsl(membertype);
+ }
+
+ return join(pack_pfx, type_to_glsl(*effective_membertype, orig_id), " ", qualifier, to_member_name(type, index),
+ member_attribute_qualifier(type, index), array_type, ";");
+}
+
+// Emit a structure member, padding and packing to maintain the correct memeber alignments.
+void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier, uint32_t)
+{
+ statement(to_struct_member(type, member_type_id, index, qualifier));
+}
+
+// Return a MSL qualifier for the specified function attribute member
+string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
+{
+ auto &execution = get_entry_point();
+
+ uint32_t mbr_type_id = type.member_types[index];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(type, index, &builtin);
+
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationArgumentBufferID))
+ return join(" [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationArgumentBufferID),
+ ")]]");
+
+ // Vertex function inputs
+ if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInBaseVertex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ default:
+ return "";
+ }
+ }
+ uint32_t locn = get_ordered_member_location(type.self, index);
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Vertex and tessellation evaluation function outputs
+ if ((execution.model == ExecutionModelVertex || execution.model == ExecutionModelTessellationEvaluation) &&
+ type.storage == StorageClassOutput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInPointSize:
+ // Only mark the PointSize builtin if really rendering points.
+ // Some shaders may include a PointSize builtin even when used to render
+ // non-point topologies, and Metal will reject this builtin when compiling
+ // the shader into a render pipeline that uses a non-point topology.
+ return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
+
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ /* fallthrough */
+ case BuiltInPosition:
+ case BuiltInLayer:
+ case BuiltInClipDistance:
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ default:
+ return "";
+ }
+ }
+ uint32_t comp;
+ uint32_t locn = get_ordered_member_location(type.self, index, &comp);
+ if (locn != k_unknown_location)
+ {
+ if (comp != k_unknown_component)
+ return string(" [[user(locn") + convert_to_string(locn) + "_" + convert_to_string(comp) + ")]]";
+ else
+ return string(" [[user(locn") + convert_to_string(locn) + ")]]";
+ }
+ }
+
+ // Tessellation control function inputs
+ if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInInvocationId:
+ case BuiltInPrimitiveId:
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+ case BuiltInPatchVertices:
+ return "";
+ // Others come from stage input.
+ default:
+ break;
+ }
+ }
+ uint32_t locn = get_ordered_member_location(type.self, index);
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Tessellation control function outputs
+ if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassOutput)
+ {
+ // For this type of shader, we always arrange for it to capture its
+ // output to a buffer. For this reason, qualifiers are irrelevant here.
+ return "";
+ }
+
+ // Tessellation evaluation function inputs
+ if (execution.model == ExecutionModelTessellationEvaluation && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInPrimitiveId:
+ case BuiltInTessCoord:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+ case BuiltInPatchVertices:
+ return "";
+ // Others come from stage input.
+ default:
+ break;
+ }
+ }
+ // The special control point array must not be marked with an attribute.
+ if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
+ return "";
+ uint32_t locn = get_ordered_member_location(type.self, index);
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Tessellation evaluation function outputs were handled above.
+
+ // Fragment function inputs
+ if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
+ {
+ string quals = "";
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInFrontFacing:
+ case BuiltInPointCoord:
+ case BuiltInFragCoord:
+ case BuiltInSampleId:
+ case BuiltInSampleMask:
+ case BuiltInLayer:
+ quals = builtin_qualifier(builtin);
+
+ default:
+ break;
+ }
+ }
+ else
+ {
+ uint32_t comp;
+ uint32_t locn = get_ordered_member_location(type.self, index, &comp);
+ if (locn != k_unknown_location)
+ {
+ if (comp != k_unknown_component)
+ quals = string("user(locn") + convert_to_string(locn) + "_" + convert_to_string(comp) + ")";
+ else
+ quals = string("user(locn") + convert_to_string(locn) + ")";
+ }
+ }
+ // Don't bother decorating integers with the 'flat' attribute; it's
+ // the default (in fact, the only option). Also don't bother with the
+ // FragCoord builtin; it's always noperspective on Metal.
+ if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
+ {
+ if (has_member_decoration(type.self, index, DecorationFlat))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ quals += "flat";
+ }
+ else if (has_member_decoration(type.self, index, DecorationCentroid))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ quals += "centroid_no_perspective";
+ else
+ quals += "centroid_perspective";
+ }
+ else if (has_member_decoration(type.self, index, DecorationSample))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ quals += "sample_no_perspective";
+ else
+ quals += "sample_perspective";
+ }
+ else if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ quals += "center_no_perspective";
+ }
+ }
+ if (!quals.empty())
+ return " [[" + quals + "]]";
+ }
+
+ // Fragment function outputs
+ if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInSampleMask:
+ case BuiltInFragDepth:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ default:
+ return "";
+ }
+ }
+ uint32_t locn = get_ordered_member_location(type.self, index);
+ if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
+ ")]]");
+ else if (locn != k_unknown_location)
+ return join(" [[color(", locn, ")]]");
+ else if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return "";
+ }
+
+ // Compute function inputs
+ if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInGlobalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInNumWorkgroups:
+ case BuiltInLocalInvocationId:
+ case BuiltInLocalInvocationIndex:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ default:
+ return "";
+ }
+ }
+ }
+
+ return "";
+}
+
+// Returns the location decoration of the member with the specified index in the specified type.
+// If the location of the member has been explicitly set, that location is used. If not, this
+// function assumes the members are ordered in their location order, and simply returns the
+// index as the location.
+uint32_t CompilerMSL::get_ordered_member_location(uint32_t type_id, uint32_t index, uint32_t *comp)
+{
+ auto &m = ir.meta[type_id];
+ if (index < m.members.size())
+ {
+ auto &dec = m.members[index];
+ if (comp)
+ {
+ if (dec.decoration_flags.get(DecorationComponent))
+ *comp = dec.component;
+ else
+ *comp = k_unknown_component;
+ }
+ if (dec.decoration_flags.get(DecorationLocation))
+ return dec.location;
+ }
+
+ return index;
+}
+
+// Returns the type declaration for a function, including the
+// entry type if the current function is the entry point function
+string CompilerMSL::func_type_decl(SPIRType &type)
+{
+ // The regular function return type. If not processing the entry point function, that's all we need
+ string return_type = type_to_glsl(type) + type_to_array_glsl(type);
+ if (!processing_entry_point)
+ return return_type;
+
+ // If an outgoing interface block has been defined, and it should be returned, override the entry point return type
+ bool ep_should_return_output = !get_is_rasterization_disabled();
+ if (stage_out_var_id && ep_should_return_output)
+ return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type);
+
+ // Prepend a entry type, based on the execution model
+ string entry_type;
+ auto &execution = get_entry_point();
+ switch (execution.model)
+ {
+ case ExecutionModelVertex:
+ entry_type = "vertex";
+ break;
+ case ExecutionModelTessellationEvaluation:
+ if (!msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ if (execution.flags.get(ExecutionModeIsolines))
+ SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
+ if (msl_options.is_ios())
+ entry_type =
+ join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ") ]] vertex");
+ else
+ entry_type = join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ", ",
+ execution.output_vertices, ") ]] vertex");
+ break;
+ case ExecutionModelFragment:
+ entry_type =
+ execution.flags.get(ExecutionModeEarlyFragmentTests) ? "[[ early_fragment_tests ]] fragment" : "fragment";
+ break;
+ case ExecutionModelTessellationControl:
+ if (!msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ if (execution.flags.get(ExecutionModeIsolines))
+ SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
+ /* fallthrough */
+ case ExecutionModelGLCompute:
+ case ExecutionModelKernel:
+ entry_type = "kernel";
+ break;
+ default:
+ entry_type = "unknown";
+ break;
+ }
+
+ return entry_type + " " + return_type;
+}
+
+// In MSL, address space qualifiers are required for all pointer or reference variables
+string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
+{
+ const auto &type = get<SPIRType>(argument.basetype);
+
+ switch (type.storage)
+ {
+ case StorageClassWorkgroup:
+ return "threadgroup";
+
+ case StorageClassStorageBuffer:
+ {
+ // For arguments from variable pointers, we use the write count deduction, so
+ // we should not assume any constness here. Only for global SSBOs.
+ bool readonly = false;
+ if (has_decoration(type.self, DecorationBlock))
+ readonly = ir.get_buffer_block_flags(argument).get(DecorationNonWritable);
+
+ return readonly ? "const device" : "device";
+ }
+
+ case StorageClassUniform:
+ case StorageClassUniformConstant:
+ case StorageClassPushConstant:
+ if (type.basetype == SPIRType::Struct)
+ {
+ bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+ if (ssbo)
+ {
+ bool readonly = ir.get_buffer_block_flags(argument).get(DecorationNonWritable);
+ return readonly ? "const device" : "device";
+ }
+ else
+ return "constant";
+ }
+ break;
+
+ case StorageClassFunction:
+ case StorageClassGeneric:
+ // No address space for plain values.
+ return type.pointer ? "thread" : "";
+
+ case StorageClassInput:
+ if (get_execution_model() == ExecutionModelTessellationControl && argument.basevariable == stage_in_ptr_var_id)
+ return "threadgroup";
+ break;
+
+ case StorageClassOutput:
+ if (capture_output_to_buffer)
+ return "device";
+ break;
+
+ default:
+ break;
+ }
+
+ return "thread";
+}
+
+string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id)
+{
+ switch (type.storage)
+ {
+ case StorageClassWorkgroup:
+ return "threadgroup";
+
+ case StorageClassStorageBuffer:
+ {
+ // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
+ Bitset flags;
+ if (ir.ids[id].get_type() == TypeVariable && has_decoration(type.self, DecorationBlock))
+ flags = get_buffer_block_flags(id);
+ else
+ flags = get_decoration_bitset(id);
+
+ return flags.get(DecorationNonWritable) ? "const device" : "device";
+ }
+
+ case StorageClassUniform:
+ case StorageClassUniformConstant:
+ case StorageClassPushConstant:
+ if (type.basetype == SPIRType::Struct)
+ {
+ bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+ if (ssbo)
+ {
+ // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
+ Bitset flags;
+ if (ir.ids[id].get_type() == TypeVariable && has_decoration(type.self, DecorationBlock))
+ flags = get_buffer_block_flags(id);
+ else
+ flags = get_decoration_bitset(id);
+
+ return flags.get(DecorationNonWritable) ? "const device" : "device";
+ }
+ else
+ return "constant";
+ }
+ break;
+
+ case StorageClassFunction:
+ case StorageClassGeneric:
+ // No address space for plain values.
+ return type.pointer ? "thread" : "";
+
+ case StorageClassOutput:
+ if (capture_output_to_buffer)
+ return "device";
+ break;
+
+ default:
+ break;
+ }
+
+ return "thread";
+}
+
+string CompilerMSL::entry_point_arg_stage_in()
+{
+ string decl;
+
+ // Stage-in structure
+ uint32_t stage_in_id;
+ if (get_execution_model() == ExecutionModelTessellationEvaluation)
+ stage_in_id = patch_stage_in_var_id;
+ else
+ stage_in_id = stage_in_var_id;
+
+ if (stage_in_id)
+ {
+ auto &var = get<SPIRVariable>(stage_in_id);
+ auto &type = get_variable_data_type(var);
+
+ add_resource_name(var.self);
+ decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
+ }
+
+ return decl;
+}
+
+void CompilerMSL::entry_point_args_builtin(string &ep_args)
+{
+ // Builtin variables
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
+
+ // Don't emit SamplePosition as a separate parameter. In the entry
+ // point, we get that by calling get_sample_position() on the sample ID.
+ if (var.storage == StorageClassInput && is_builtin_variable(var) &&
+ get_variable_data_type(var).basetype != SPIRType::Struct &&
+ get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
+ {
+ if (bi_type != BuiltInSamplePosition && bi_type != BuiltInHelperInvocation &&
+ bi_type != BuiltInPatchVertices && bi_type != BuiltInTessLevelInner &&
+ bi_type != BuiltInTessLevelOuter && bi_type != BuiltInPosition && bi_type != BuiltInPointSize &&
+ bi_type != BuiltInClipDistance && bi_type != BuiltInCullDistance)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ ep_args += builtin_type_decl(bi_type) + " " + to_expression(var_id);
+ ep_args += " [[" + builtin_qualifier(bi_type) + "]]";
+ }
+ }
+ });
+
+ // Vertex and instance index built-ins
+ if (needs_vertex_idx_arg)
+ ep_args += built_in_func_arg(BuiltInVertexIndex, !ep_args.empty());
+
+ if (needs_instance_idx_arg)
+ ep_args += built_in_func_arg(BuiltInInstanceIndex, !ep_args.empty());
+
+ if (capture_output_to_buffer)
+ {
+ // Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
+ // specially because it needs to be a pointer, not a reference.
+ if (stage_out_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
+ " [[buffer(", msl_options.shader_output_buffer_index, ")]]");
+ }
+
+ if (stage_out_var_id || get_execution_model() == ExecutionModelTessellationControl)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
+ }
+
+ // Tessellation control shaders get three additional parameters:
+ // a buffer to hold the per-patch data, a buffer to hold the per-patch
+ // tessellation levels, and a block of workgroup memory to hold the
+ // input control point data.
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ {
+ if (patch_stage_out_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
+ }
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
+ convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
+ if (stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
+ " [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
+ }
+ }
+ }
+}
+
+string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
+{
+ string ep_args = entry_point_arg_stage_in();
+
+ for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
+ {
+ uint32_t id = argument_buffer_ids[i];
+ if (id == 0)
+ continue;
+
+ add_resource_name(id);
+ auto &var = get<SPIRVariable>(id);
+ auto &type = get_variable_data_type(var);
+
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_name(id);
+ ep_args += " [[buffer(" + convert_to_string(i) + ")]]";
+
+ // Makes it more practical for testing, since the push constant block can occupy the first available
+ // buffer slot if it's not bound explicitly.
+ next_metal_resource_index_buffer = i + 1;
+ }
+
+ entry_point_args_discrete_descriptors(ep_args);
+ entry_point_args_builtin(ep_args);
+
+ if (!ep_args.empty() && append_comma)
+ ep_args += ", ";
+
+ return ep_args;
+}
+
+void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
+{
+ // Output resources, sorted by resource index & type
+ // We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
+ // with different order of buffers can result in issues with buffer assignments inside the driver.
+ struct Resource
+ {
+ SPIRVariable *var;
+ string name;
+ SPIRType::BaseType basetype;
+ uint32_t index;
+ };
+
+ vector<Resource> resources;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ auto &type = get_variable_data_type(var);
+ uint32_t var_id = var.self;
+
+ if (var.storage != StorageClassPushConstant)
+ {
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ return;
+ }
+
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ add_resource_name(var_id);
+ resources.push_back(
+ { &var, to_name(var_id), SPIRType::Image, get_metal_resource_index(var, SPIRType::Image) });
+
+ if (type.image.dim != DimBuffer && constexpr_samplers.count(var_id) == 0)
+ {
+ resources.push_back({ &var, to_sampler_expression(var_id), SPIRType::Sampler,
+ get_metal_resource_index(var, SPIRType::Sampler) });
+ }
+ }
+ else if (constexpr_samplers.count(var_id) == 0)
+ {
+ // constexpr samplers are not declared as resources.
+ add_resource_name(var_id);
+ resources.push_back(
+ { &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype) });
+ }
+ }
+ });
+
+ sort(resources.begin(), resources.end(), [](const Resource &lhs, const Resource &rhs) {
+ return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index);
+ });
+
+ for (auto &r : resources)
+ {
+ auto &var = *r.var;
+ auto &type = get_variable_data_type(var);
+
+ uint32_t var_id = var.self;
+
+ switch (r.basetype)
+ {
+ case SPIRType::Struct:
+ {
+ auto &m = ir.meta[type.self];
+ if (m.members.size() == 0)
+ break;
+ if (!type.array.empty())
+ {
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
+
+ // Metal doesn't directly support this, so we must expand the
+ // array. We'll declare a local array to hold these elements
+ // later.
+ uint32_t array_size = to_array_size_literal(type);
+
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Unsized arrays of buffers are not supported in MSL.");
+
+ buffer_arrays.push_back(var_id);
+ for (uint32_t i = 0; i < array_size; ++i)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + r.name + "_" +
+ convert_to_string(i);
+ ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")]]";
+ }
+ }
+ else
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + r.name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
+ }
+ break;
+ }
+ case SPIRType::Sampler:
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += sampler_type(type) + " " + r.name;
+ ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
+ break;
+ case SPIRType::Image:
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += image_type_glsl(type, var_id) + " " + r.name;
+ ep_args += " [[texture(" + convert_to_string(r.index) + ")]]";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Unexpected resource type");
+ break;
+ }
+ }
+}
+
+// Returns a string containing a comma-delimited list of args for the entry point function
+// This is the "classic" method of MSL 1 when we don't have argument buffer support.
+string CompilerMSL::entry_point_args_classic(bool append_comma)
+{
+ string ep_args = entry_point_arg_stage_in();
+ entry_point_args_discrete_descriptors(ep_args);
+ entry_point_args_builtin(ep_args);
+
+ if (!ep_args.empty() && append_comma)
+ ep_args += ", ";
+
+ return ep_args;
+}
+
+void CompilerMSL::fix_up_shader_inputs_outputs()
+{
+ // Look for sampled images. Add hooks to set up the swizzle constants.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = get_variable_data_type(var);
+
+ uint32_t var_id = var.self;
+
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
+ {
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ entry_func.fixup_hooks_in.push_back([this, &var, var_id]() {
+ auto &aux_type = expression_type(aux_buffer_id);
+ statement("constant uint32_t& ", to_swizzle_expression(var_id), " = ", to_name(aux_buffer_id), ".",
+ to_member_name(aux_type, k_aux_mbr_idx_swizzle_const), "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
+ });
+ }
+ }
+ });
+
+ // Builtin variables
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ uint32_t var_id = var.self;
+ BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
+
+ if (var.storage == StorageClassInput && is_builtin_variable(var))
+ {
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ switch (bi_type)
+ {
+ case BuiltInSamplePosition:
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
+ to_expression(builtin_sample_id_id), ");");
+ });
+ break;
+ case BuiltInHelperInvocation:
+ if (msl_options.is_ios())
+ SPIRV_CROSS_THROW("simd_is_helper_thread() is only supported on macOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = simd_is_helper_thread();");
+ });
+ break;
+ case BuiltInPatchVertices:
+ if (get_execution_model() == ExecutionModelTessellationEvaluation)
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(patch_stage_in_var_id), ".gl_in.size();");
+ });
+ else
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
+ });
+ break;
+ case BuiltInTessCoord:
+ // Emit a fixup to account for the shifted domain. Don't do this for triangles;
+ // MoltenVK will just reverse the winding order instead.
+ if (msl_options.tess_domain_origin_lower_left && !get_entry_point().flags.get(ExecutionModeTriangles))
+ {
+ string tc = to_expression(var_id);
+ entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ });
+}
+
+// Returns the Metal index of the resource of the specified type as used by the specified variable.
+uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype)
+{
+ auto &execution = get_entry_point();
+ auto &var_dec = ir.meta[var.self].decoration;
+ uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
+ uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
+
+ // If a matching binding has been specified, find and use it
+ auto itr = find_if(begin(resource_bindings), end(resource_bindings),
+ [&](const pair<MSLResourceBinding, bool> &resource) -> bool {
+ return var_desc_set == resource.first.desc_set && var_binding == resource.first.binding &&
+ execution.model == resource.first.stage;
+ });
+
+ if (itr != end(resource_bindings))
+ {
+ itr->second = true;
+ switch (basetype)
+ {
+ case SPIRType::Struct:
+ return itr->first.msl_buffer;
+ case SPIRType::Image:
+ return itr->first.msl_texture;
+ case SPIRType::Sampler:
+ return itr->first.msl_sampler;
+ default:
+ return 0;
+ }
+ }
+
+ // If there is no explicit mapping of bindings to MSL, use the declared binding.
+ if (has_decoration(var.self, DecorationBinding))
+ return get_decoration(var.self, DecorationBinding);
+
+ uint32_t binding_stride = 1;
+ auto &type = get<SPIRType>(var.basetype);
+ for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
+ binding_stride *= type.array_size_literal[i] ? type.array[i] : get<SPIRConstant>(type.array[i]).scalar();
+
+ // If a binding has not been specified, revert to incrementing resource indices
+ uint32_t resource_index;
+ switch (basetype)
+ {
+ case SPIRType::Struct:
+ resource_index = next_metal_resource_index_buffer;
+ next_metal_resource_index_buffer += binding_stride;
+ break;
+ case SPIRType::Image:
+ resource_index = next_metal_resource_index_texture;
+ next_metal_resource_index_texture += binding_stride;
+ break;
+ case SPIRType::Sampler:
+ resource_index = next_metal_resource_index_sampler;
+ next_metal_resource_index_sampler += binding_stride;
+ break;
+ default:
+ resource_index = 0;
+ break;
+ }
+ return resource_index;
+}
+
+string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
+{
+ auto &var = get<SPIRVariable>(arg.id);
+ auto &type = get_variable_data_type(var);
+ auto &var_type = get<SPIRType>(arg.type);
+ StorageClass storage = var_type.storage;
+ bool is_pointer = var_type.pointer;
+
+ // If we need to modify the name of the variable, make sure we use the original variable.
+ // Our alias is just a shadow variable.
+ uint32_t name_id = var.self;
+ if (arg.alias_global_variable && var.basevariable)
+ name_id = var.basevariable;
+
+ bool constref = !arg.alias_global_variable && is_pointer && arg.write_count == 0;
+
+ bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
+ type.basetype == SPIRType::Sampler;
+
+ // Arrays of images/samplers in MSL are always const.
+ if (!type.array.empty() && type_is_image)
+ constref = true;
+
+ string decl;
+ if (constref)
+ decl += "const ";
+
+ bool builtin = is_builtin_variable(var);
+ if (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id)
+ decl += type_to_glsl(type, arg.id);
+ else if (builtin)
+ decl += builtin_type_decl(static_cast<BuiltIn>(get_decoration(arg.id, DecorationBuiltIn)));
+ else if ((storage == StorageClassUniform || storage == StorageClassStorageBuffer) && is_array(type))
+ decl += join(type_to_glsl(type, arg.id), "*");
+ else
+ decl += type_to_glsl(type, arg.id);
+
+ bool opaque_handle = storage == StorageClassUniformConstant;
+
+ string address_space = get_argument_address_space(var);
+
+ if (!builtin && !opaque_handle && !is_pointer &&
+ (storage == StorageClassFunction || storage == StorageClassGeneric))
+ {
+ // If the argument is a pure value and not an opaque type, we will pass by value.
+ if (is_array(type))
+ {
+ // We are receiving an array by value. This is problematic.
+ // We cannot be sure of the target address space since we are supposed to receive a copy,
+ // but this is not possible with MSL without some extra work.
+ // We will have to assume we're getting a reference in thread address space.
+ // If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
+ // Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
+ // non-constant arrays, but we can create thread const from constant.
+ decl = string("thread const ") + decl;
+ decl += " (&";
+ decl += to_expression(name_id);
+ decl += ")";
+ decl += type_to_array_glsl(type);
+ }
+ else
+ {
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+ }
+ else if (is_array(type) && !type_is_image)
+ {
+ // Arrays of images and samplers are special cased.
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+
+ if (msl_options.argument_buffers)
+ {
+ // An awkward case where we need to emit *more* address space declarations (yay!).
+ // An example is where we pass down an array of buffer pointers to leaf functions.
+ // It's a constant array containing pointers to constants.
+ // The pointer array is always constant however. E.g.
+ // device SSBO * constant (&array)[N].
+ // const device SSBO * constant (&array)[N].
+ // constant SSBO * constant (&array)[N].
+ // However, this only matters for argument buffers, since for MSL 1.0 style codegen,
+ // we emit the buffer array on stack instead, and that seems to work just fine apparently.
+ if (storage == StorageClassUniform || storage == StorageClassStorageBuffer)
+ decl += " constant";
+ }
+
+ decl += " (&";
+ decl += to_expression(name_id);
+ decl += ")";
+ decl += type_to_array_glsl(type);
+ }
+ else if (!opaque_handle)
+ {
+ // If this is going to be a reference to a variable pointer, the address space
+ // for the reference has to go before the '&', but after the '*'.
+ if (!address_space.empty())
+ {
+ if (decl.back() == '*')
+ decl += join(" ", address_space, " ");
+ else
+ decl = join(address_space, " ", decl);
+ }
+ decl += "&";
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+ else
+ {
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+
+ return decl;
+}
+
+// If we're currently in the entry point function, and the object
+// has a qualified name, use it, otherwise use the standard name.
+string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
+{
+ if (current_function && (current_function->self == ir.default_entry_point))
+ {
+ auto *m = ir.find_meta(id);
+ if (m && !m->decoration.qualified_alias.empty())
+ return m->decoration.qualified_alias;
+ }
+ return Compiler::to_name(id, allow_alias);
+}
+
+// Returns a name that combines the name of the struct with the name of the member, except for Builtins
+string CompilerMSL::to_qualified_member_name(const SPIRType &type, uint32_t index)
+{
+ // Don't qualify Builtin names because they are unique and are treated as such when building expressions
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(type, index, &builtin))
+ return builtin_to_glsl(builtin, type.storage);
+
+ // Strip any underscore prefix from member name
+ string mbr_name = to_member_name(type, index);
+ size_t startPos = mbr_name.find_first_not_of("_");
+ mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
+ return join(to_name(type.self), "_", mbr_name);
+}
+
+// Ensures that the specified name is permanently usable by prepending a prefix
+// if the first chars are _ and a digit, which indicate a transient name.
+string CompilerMSL::ensure_valid_name(string name, string pfx)
+{
+ return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
+}
+
+// Replace all names that match MSL keywords or Metal Standard Library functions.
+void CompilerMSL::replace_illegal_names()
+{
+ // FIXME: MSL and GLSL are doing two different things here.
+ // Agree on convention and remove this override.
+ static const unordered_set<string> keywords = {
+ "kernel",
+ "vertex",
+ "fragment",
+ "compute",
+ "bias",
+ "assert",
+ "VARIABLE_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT_V",
+ "METAL_ALIGN",
+ "METAL_ASM",
+ "METAL_CONST",
+ "METAL_DEPRECATED",
+ "METAL_ENABLE_IF",
+ "METAL_FUNC",
+ "METAL_INTERNAL",
+ "METAL_NON_NULL_RETURN",
+ "METAL_NORETURN",
+ "METAL_NOTHROW",
+ "METAL_PURE",
+ "METAL_UNAVAILABLE",
+ "METAL_IMPLICIT",
+ "METAL_EXPLICIT",
+ "METAL_CONST_ARG",
+ "METAL_ARG_UNIFORM",
+ "METAL_ZERO_ARG",
+ "METAL_VALID_LOD_ARG",
+ "METAL_VALID_LEVEL_ARG",
+ "METAL_VALID_STORE_ORDER",
+ "METAL_VALID_LOAD_ORDER",
+ "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
+ "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
+ "METAL_VALID_RENDER_TARGET",
+ "is_function_constant_defined",
+ "CHAR_BIT",
+ "SCHAR_MAX",
+ "SCHAR_MIN",
+ "UCHAR_MAX",
+ "CHAR_MAX",
+ "CHAR_MIN",
+ "USHRT_MAX",
+ "SHRT_MAX",
+ "SHRT_MIN",
+ "UINT_MAX",
+ "INT_MAX",
+ "INT_MIN",
+ "FLT_DIG",
+ "FLT_MANT_DIG",
+ "FLT_MAX_10_EXP",
+ "FLT_MAX_EXP",
+ "FLT_MIN_10_EXP",
+ "FLT_MIN_EXP",
+ "FLT_RADIX",
+ "FLT_MAX",
+ "FLT_MIN",
+ "FLT_EPSILON",
+ "FP_ILOGB0",
+ "FP_ILOGBNAN",
+ "MAXFLOAT",
+ "HUGE_VALF",
+ "INFINITY",
+ "NAN",
+ "M_E_F",
+ "M_LOG2E_F",
+ "M_LOG10E_F",
+ "M_LN2_F",
+ "M_LN10_F",
+ "M_PI_F",
+ "M_PI_2_F",
+ "M_PI_4_F",
+ "M_1_PI_F",
+ "M_2_PI_F",
+ "M_2_SQRTPI_F",
+ "M_SQRT2_F",
+ "M_SQRT1_2_F",
+ "HALF_DIG",
+ "HALF_MANT_DIG",
+ "HALF_MAX_10_EXP",
+ "HALF_MAX_EXP",
+ "HALF_MIN_10_EXP",
+ "HALF_MIN_EXP",
+ "HALF_RADIX",
+ "HALF_MAX",
+ "HALF_MIN",
+ "HALF_EPSILON",
+ "MAXHALF",
+ "HUGE_VALH",
+ "M_E_H",
+ "M_LOG2E_H",
+ "M_LOG10E_H",
+ "M_LN2_H",
+ "M_LN10_H",
+ "M_PI_H",
+ "M_PI_2_H",
+ "M_PI_4_H",
+ "M_1_PI_H",
+ "M_2_PI_H",
+ "M_2_SQRTPI_H",
+ "M_SQRT2_H",
+ "M_SQRT1_2_H",
+ "DBL_DIG",
+ "DBL_MANT_DIG",
+ "DBL_MAX_10_EXP",
+ "DBL_MAX_EXP",
+ "DBL_MIN_10_EXP",
+ "DBL_MIN_EXP",
+ "DBL_RADIX",
+ "DBL_MAX",
+ "DBL_MIN",
+ "DBL_EPSILON",
+ "HUGE_VAL",
+ "M_E",
+ "M_LOG2E",
+ "M_LOG10E",
+ "M_LN2",
+ "M_LN10",
+ "M_PI",
+ "M_PI_2",
+ "M_PI_4",
+ "M_1_PI",
+ "M_2_PI",
+ "M_2_SQRTPI",
+ "M_SQRT2",
+ "M_SQRT1_2",
+ };
+
+ static const unordered_set<string> illegal_func_names = {
+ "main",
+ "saturate",
+ "assert",
+ "VARIABLE_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT_V",
+ "METAL_ALIGN",
+ "METAL_ASM",
+ "METAL_CONST",
+ "METAL_DEPRECATED",
+ "METAL_ENABLE_IF",
+ "METAL_FUNC",
+ "METAL_INTERNAL",
+ "METAL_NON_NULL_RETURN",
+ "METAL_NORETURN",
+ "METAL_NOTHROW",
+ "METAL_PURE",
+ "METAL_UNAVAILABLE",
+ "METAL_IMPLICIT",
+ "METAL_EXPLICIT",
+ "METAL_CONST_ARG",
+ "METAL_ARG_UNIFORM",
+ "METAL_ZERO_ARG",
+ "METAL_VALID_LOD_ARG",
+ "METAL_VALID_LEVEL_ARG",
+ "METAL_VALID_STORE_ORDER",
+ "METAL_VALID_LOAD_ORDER",
+ "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
+ "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
+ "METAL_VALID_RENDER_TARGET",
+ "is_function_constant_defined",
+ "CHAR_BIT",
+ "SCHAR_MAX",
+ "SCHAR_MIN",
+ "UCHAR_MAX",
+ "CHAR_MAX",
+ "CHAR_MIN",
+ "USHRT_MAX",
+ "SHRT_MAX",
+ "SHRT_MIN",
+ "UINT_MAX",
+ "INT_MAX",
+ "INT_MIN",
+ "FLT_DIG",
+ "FLT_MANT_DIG",
+ "FLT_MAX_10_EXP",
+ "FLT_MAX_EXP",
+ "FLT_MIN_10_EXP",
+ "FLT_MIN_EXP",
+ "FLT_RADIX",
+ "FLT_MAX",
+ "FLT_MIN",
+ "FLT_EPSILON",
+ "FP_ILOGB0",
+ "FP_ILOGBNAN",
+ "MAXFLOAT",
+ "HUGE_VALF",
+ "INFINITY",
+ "NAN",
+ "M_E_F",
+ "M_LOG2E_F",
+ "M_LOG10E_F",
+ "M_LN2_F",
+ "M_LN10_F",
+ "M_PI_F",
+ "M_PI_2_F",
+ "M_PI_4_F",
+ "M_1_PI_F",
+ "M_2_PI_F",
+ "M_2_SQRTPI_F",
+ "M_SQRT2_F",
+ "M_SQRT1_2_F",
+ "HALF_DIG",
+ "HALF_MANT_DIG",
+ "HALF_MAX_10_EXP",
+ "HALF_MAX_EXP",
+ "HALF_MIN_10_EXP",
+ "HALF_MIN_EXP",
+ "HALF_RADIX",
+ "HALF_MAX",
+ "HALF_MIN",
+ "HALF_EPSILON",
+ "MAXHALF",
+ "HUGE_VALH",
+ "M_E_H",
+ "M_LOG2E_H",
+ "M_LOG10E_H",
+ "M_LN2_H",
+ "M_LN10_H",
+ "M_PI_H",
+ "M_PI_2_H",
+ "M_PI_4_H",
+ "M_1_PI_H",
+ "M_2_PI_H",
+ "M_2_SQRTPI_H",
+ "M_SQRT2_H",
+ "M_SQRT1_2_H",
+ "DBL_DIG",
+ "DBL_MANT_DIG",
+ "DBL_MAX_10_EXP",
+ "DBL_MAX_EXP",
+ "DBL_MIN_10_EXP",
+ "DBL_MIN_EXP",
+ "DBL_RADIX",
+ "DBL_MAX",
+ "DBL_MIN",
+ "DBL_EPSILON",
+ "HUGE_VAL",
+ "M_E",
+ "M_LOG2E",
+ "M_LOG10E",
+ "M_LN2",
+ "M_LN10",
+ "M_PI",
+ "M_PI_2",
+ "M_PI_4",
+ "M_1_PI",
+ "M_2_PI",
+ "M_2_SQRTPI",
+ "M_SQRT2",
+ "M_SQRT1_2",
+ };
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
+ auto &dec = ir.meta[self].decoration;
+ if (keywords.find(dec.alias) != end(keywords))
+ dec.alias += "0";
+ });
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
+ auto &dec = ir.meta[self].decoration;
+ if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
+ dec.alias += "0";
+ });
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
+ for (auto &mbr_dec : ir.meta[self].members)
+ if (keywords.find(mbr_dec.alias) != end(keywords))
+ mbr_dec.alias += "0";
+ });
+
+ for (auto &entry : ir.entry_points)
+ {
+ // Change both the entry point name and the alias, to keep them synced.
+ string &ep_name = entry.second.name;
+ if (illegal_func_names.find(ep_name) != end(illegal_func_names))
+ ep_name += "0";
+
+ // Always write this because entry point might have been renamed earlier.
+ ir.meta[entry.first].decoration.alias = ep_name;
+ }
+
+ CompilerGLSL::replace_illegal_names();
+}
+
+string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain)
+{
+ auto *var = maybe_get<SPIRVariable>(base);
+ // If this is a buffer array, we have to dereference the buffer pointers.
+ // Otherwise, if this is a pointer expression, dereference it.
+
+ bool declared_as_pointer = false;
+
+ if (var)
+ {
+ bool is_buffer_variable = var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer;
+ declared_as_pointer = is_buffer_variable && is_array(get<SPIRType>(var->basetype));
+ }
+
+ if (declared_as_pointer || (!ptr_chain && should_dereference(base)))
+ return join("->", to_member_name(type, index));
+ else
+ return join(".", to_member_name(type, index));
+}
+
+string CompilerMSL::to_qualifiers_glsl(uint32_t id)
+{
+ string quals;
+
+ auto &type = expression_type(id);
+ if (type.storage == StorageClassWorkgroup)
+ quals += "threadgroup ";
+
+ return quals;
+}
+
+// The optional id parameter indicates the object whose type we are trying
+// to find the description for. It is optional. Most type descriptions do not
+// depend on a specific object's use of that type.
+string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
+{
+ string type_name;
+
+ // Pointer?
+ if (type.pointer)
+ {
+ type_name = join(get_type_address_space(type, id), " ", type_to_glsl(get<SPIRType>(type.parent_type), id));
+ switch (type.basetype)
+ {
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ // These are handles.
+ break;
+ default:
+ // Anything else can be a raw pointer.
+ type_name += "*";
+ break;
+ }
+ return type_name;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Struct:
+ // Need OpName lookup here to get a "sensible" name for a struct.
+ return to_name(type.self);
+
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ return image_type_glsl(type, id);
+
+ case SPIRType::Sampler:
+ return sampler_type(type);
+
+ case SPIRType::Void:
+ return "void";
+
+ case SPIRType::AtomicCounter:
+ return "atomic_uint";
+
+ case SPIRType::ControlPointArray:
+ return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");
+
+ // Scalars
+ case SPIRType::Boolean:
+ type_name = "bool";
+ break;
+ case SPIRType::Char:
+ case SPIRType::SByte:
+ type_name = "char";
+ break;
+ case SPIRType::UByte:
+ type_name = "uchar";
+ break;
+ case SPIRType::Short:
+ type_name = "short";
+ break;
+ case SPIRType::UShort:
+ type_name = "ushort";
+ break;
+ case SPIRType::Int:
+ type_name = "int";
+ break;
+ case SPIRType::UInt:
+ type_name = "uint";
+ break;
+ case SPIRType::Int64:
+ type_name = "long"; // Currently unsupported
+ break;
+ case SPIRType::UInt64:
+ type_name = "size_t";
+ break;
+ case SPIRType::Half:
+ type_name = "half";
+ break;
+ case SPIRType::Float:
+ type_name = "float";
+ break;
+ case SPIRType::Double:
+ type_name = "double"; // Currently unsupported
+ break;
+
+ default:
+ return "unknown_type";
+ }
+
+ // Matrix?
+ if (type.columns > 1)
+ type_name += to_string(type.columns) + "x";
+
+ // Vector or Matrix?
+ if (type.vecsize > 1)
+ type_name += to_string(type.vecsize);
+
+ return type_name;
+}
+
+std::string CompilerMSL::sampler_type(const SPIRType &type)
+{
+ if (!type.array.empty())
+ {
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
+
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
+
+ // Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
+ uint32_t array_size = to_array_size_literal(type);
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Unsized array of samplers is not supported in MSL.");
+
+ auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
+ return join("array<", sampler_type(parent), ", ", array_size, ">");
+ }
+ else
+ return "sampler";
+}
+
+// Returns an MSL string describing the SPIR-V image type
+string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id)
+{
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ {
+ // For comparison images, check against the base variable,
+ // and not the fake ID which might have been generated for this variable.
+ id = var->basevariable;
+ }
+
+ if (!type.array.empty())
+ {
+ uint32_t major = 2, minor = 0;
+ if (msl_options.is_ios())
+ {
+ major = 1;
+ minor = 2;
+ }
+ if (!msl_options.supports_msl_version(major, minor))
+ {
+ if (msl_options.is_ios())
+ SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
+ else
+ SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
+ }
+
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
+
+ // Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
+ uint32_t array_size = to_array_size_literal(type);
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Unsized array of images is not supported in MSL.");
+
+ auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
+ return join("array<", image_type_glsl(parent, id), ", ", array_size, ">");
+ }
+
+ string img_type_name;
+
+ // Bypass pointers because we need the real image struct
+ auto &img_type = get<SPIRType>(type.self).image;
+ if (image_is_comparison(type, id))
+ {
+ switch (img_type.dim)
+ {
+ case Dim1D:
+ img_type_name += "depth1d_unsupported_by_metal";
+ break;
+ case Dim2D:
+ if (img_type.ms && img_type.arrayed)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
+ img_type_name += "depth2d_ms_array";
+ }
+ else if (img_type.ms)
+ img_type_name += "depth2d_ms";
+ else if (img_type.arrayed)
+ img_type_name += "depth2d_array";
+ else
+ img_type_name += "depth2d";
+ break;
+ case Dim3D:
+ img_type_name += "depth3d_unsupported_by_metal";
+ break;
+ case DimCube:
+ img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
+ break;
+ default:
+ img_type_name += "unknown_depth_texture_type";
+ break;
+ }
+ }
+ else
+ {
+ switch (img_type.dim)
+ {
+ case Dim1D:
+ img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
+ break;
+ case DimBuffer:
+ case Dim2D:
+ case DimSubpassData:
+ if (img_type.ms && img_type.arrayed)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
+ img_type_name += "texture2d_ms_array";
+ }
+ else if (img_type.ms)
+ img_type_name += "texture2d_ms";
+ else if (img_type.arrayed)
+ img_type_name += "texture2d_array";
+ else
+ img_type_name += "texture2d";
+ break;
+ case Dim3D:
+ img_type_name += "texture3d";
+ break;
+ case DimCube:
+ img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
+ break;
+ default:
+ img_type_name += "unknown_texture_type";
+ break;
+ }
+ }
+
+ // Append the pixel type
+ img_type_name += "<";
+ img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
+
+ // For unsampled images, append the sample/read/write access qualifier.
+ // For kernel images, the access qualifier my be supplied directly by SPIR-V.
+ // Otherwise it may be set based on whether the image is read from or written to within the shader.
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
+ {
+ switch (img_type.access)
+ {
+ case AccessQualifierReadOnly:
+ img_type_name += ", access::read";
+ break;
+
+ case AccessQualifierWriteOnly:
+ img_type_name += ", access::write";
+ break;
+
+ case AccessQualifierReadWrite:
+ img_type_name += ", access::read_write";
+ break;
+
+ default:
+ {
+ auto *p_var = maybe_get_backing_variable(id);
+ if (p_var && p_var->basevariable)
+ p_var = maybe_get<SPIRVariable>(p_var->basevariable);
+ if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
+ {
+ img_type_name += ", access::";
+
+ if (!has_decoration(p_var->self, DecorationNonReadable))
+ img_type_name += "read_";
+
+ img_type_name += "write";
+ }
+ break;
+ }
+ }
+ }
+
+ img_type_name += ">";
+
+ return img_type_name;
+}
+
+string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
+{
+ if (out_type.basetype == in_type.basetype)
+ return "";
+
+ assert(out_type.basetype != SPIRType::Boolean);
+ assert(in_type.basetype != SPIRType::Boolean);
+
+ bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type);
+ bool same_size_cast = out_type.width == in_type.width;
+
+ if (integral_cast && same_size_cast)
+ {
+ // Trivial bitcast case, casts between integers.
+ return type_to_glsl(out_type);
+ }
+ else
+ {
+ // Fall back to the catch-all bitcast in MSL.
+ return "as_type<" + type_to_glsl(out_type) + ">";
+ }
+}
+
+// Returns an MSL string identifying the name of a SPIR-V builtin.
+// Output builtins are qualified with the name of the stage out structure.
+string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
+{
+ switch (builtin)
+ {
+
+ // Override GLSL compiler strictness
+ case BuiltInVertexId:
+ return "gl_VertexID";
+ case BuiltInInstanceId:
+ return "gl_InstanceID";
+ case BuiltInVertexIndex:
+ return "gl_VertexIndex";
+ case BuiltInInstanceIndex:
+ return "gl_InstanceIndex";
+ case BuiltInBaseVertex:
+ return "gl_BaseVertex";
+ case BuiltInBaseInstance:
+ return "gl_BaseInstance";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // When used in the entry function, output builtins are qualified with output struct name.
+ // Test storage class as NOT Input, as output builtins might be part of generic type.
+ // Also don't do this for tessellation control shaders.
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ /* fallthrough */
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ case BuiltInLayer:
+ case BuiltInFragDepth:
+ case BuiltInSampleMask:
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ break;
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
+ return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+
+ break;
+
+ case BuiltInTessLevelOuter:
+ if (get_execution_model() == ExecutionModelTessellationEvaluation)
+ {
+ if (storage != StorageClassOutput && !get_entry_point().flags.get(ExecutionModeTriangles) &&
+ current_function && (current_function->self == ir.default_entry_point))
+ return join(patch_stage_in_var_name, ".", CompilerGLSL::builtin_to_glsl(builtin, storage));
+ else
+ break;
+ }
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
+ return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "].edgeTessellationFactor");
+ break;
+
+ case BuiltInTessLevelInner:
+ if (get_execution_model() == ExecutionModelTessellationEvaluation)
+ {
+ if (storage != StorageClassOutput && !get_entry_point().flags.get(ExecutionModeTriangles) &&
+ current_function && (current_function->self == ir.default_entry_point))
+ return join(patch_stage_in_var_name, ".", CompilerGLSL::builtin_to_glsl(builtin, storage));
+ else
+ break;
+ }
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
+ return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "].insideTessellationFactor");
+ break;
+
+ default:
+ break;
+ }
+
+ return CompilerGLSL::builtin_to_glsl(builtin, storage);
+}
+
+// Returns an MSL string attribute qualifer for a SPIR-V builtin
+string CompilerMSL::builtin_qualifier(BuiltIn builtin)
+{
+ auto &execution = get_entry_point();
+
+ switch (builtin)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ return "vertex_id";
+ case BuiltInVertexIndex:
+ return "vertex_id";
+ case BuiltInBaseVertex:
+ return "base_vertex";
+ case BuiltInInstanceId:
+ return "instance_id";
+ case BuiltInInstanceIndex:
+ return "instance_id";
+ case BuiltInBaseInstance:
+ return "base_instance";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // Vertex function out
+ case BuiltInClipDistance:
+ return "clip_distance";
+ case BuiltInPointSize:
+ return "point_size";
+ case BuiltInPosition:
+ return "position";
+ case BuiltInLayer:
+ return "render_target_array_index";
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ return "viewport_array_index";
+
+ // Tess. control function in
+ case BuiltInInvocationId:
+ return "thread_index_in_threadgroup";
+ case BuiltInPatchVertices:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
+ case BuiltInPrimitiveId:
+ switch (execution.model)
+ {
+ case ExecutionModelTessellationControl:
+ return "threadgroup_position_in_grid";
+ case ExecutionModelTessellationEvaluation:
+ return "patch_id";
+ default:
+ SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
+ }
+
+ // Tess. control function out
+ case BuiltInTessLevelOuter:
+ case BuiltInTessLevelInner:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
+
+ // Tess. evaluation function in
+ case BuiltInTessCoord:
+ return "position_in_patch";
+
+ // Fragment function in
+ case BuiltInFrontFacing:
+ return "front_facing";
+ case BuiltInPointCoord:
+ return "point_coord";
+ case BuiltInFragCoord:
+ return "position";
+ case BuiltInSampleId:
+ return "sample_id";
+ case BuiltInSampleMask:
+ return "sample_mask";
+ case BuiltInSamplePosition:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
+
+ // Fragment function out
+ case BuiltInFragDepth:
+ if (execution.flags.get(ExecutionModeDepthGreater))
+ return "depth(greater)";
+ else if (execution.flags.get(ExecutionModeDepthLess))
+ return "depth(less)";
+ else
+ return "depth(any)";
+
+ // Compute function in
+ case BuiltInGlobalInvocationId:
+ return "thread_position_in_grid";
+
+ case BuiltInWorkgroupId:
+ return "threadgroup_position_in_grid";
+
+ case BuiltInNumWorkgroups:
+ return "threadgroups_per_grid";
+
+ case BuiltInLocalInvocationId:
+ return "thread_position_in_threadgroup";
+
+ case BuiltInLocalInvocationIndex:
+ return "thread_index_in_threadgroup";
+
+ default:
+ return "unsupported-built-in";
+ }
+}
+
+// Returns an MSL string type declaration for a SPIR-V builtin
+string CompilerMSL::builtin_type_decl(BuiltIn builtin)
+{
+ const SPIREntryPoint &execution = get_entry_point();
+ switch (builtin)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ return "uint";
+ case BuiltInVertexIndex:
+ return "uint";
+ case BuiltInBaseVertex:
+ return "uint";
+ case BuiltInInstanceId:
+ return "uint";
+ case BuiltInInstanceIndex:
+ return "uint";
+ case BuiltInBaseInstance:
+ return "uint";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // Vertex function out
+ case BuiltInClipDistance:
+ return "float";
+ case BuiltInPointSize:
+ return "float";
+ case BuiltInPosition:
+ return "float4";
+ case BuiltInLayer:
+ return "uint";
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ return "uint";
+
+ // Tess. control function in
+ case BuiltInInvocationId:
+ return "uint";
+ case BuiltInPatchVertices:
+ return "uint";
+ case BuiltInPrimitiveId:
+ return "uint";
+
+ // Tess. control function out
+ case BuiltInTessLevelInner:
+ if (execution.model == ExecutionModelTessellationEvaluation)
+ return !execution.flags.get(ExecutionModeTriangles) ? "float2" : "float";
+ return "half";
+ case BuiltInTessLevelOuter:
+ if (execution.model == ExecutionModelTessellationEvaluation)
+ return !execution.flags.get(ExecutionModeTriangles) ? "float4" : "float";
+ return "half";
+
+ // Tess. evaluation function in
+ case BuiltInTessCoord:
+ return execution.flags.get(ExecutionModeTriangles) ? "float3" : "float2";
+
+ // Fragment function in
+ case BuiltInFrontFacing:
+ return "bool";
+ case BuiltInPointCoord:
+ return "float2";
+ case BuiltInFragCoord:
+ return "float4";
+ case BuiltInSampleId:
+ return "uint";
+ case BuiltInSampleMask:
+ return "uint";
+ case BuiltInSamplePosition:
+ return "float2";
+
+ // Fragment function out
+ case BuiltInFragDepth:
+ return "float";
+
+ // Compute function in
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInNumWorkgroups:
+ case BuiltInWorkgroupId:
+ return "uint3";
+ case BuiltInLocalInvocationIndex:
+ return "uint";
+
+ case BuiltInHelperInvocation:
+ return "bool";
+
+ default:
+ return "unsupported-built-in-type";
+ }
+}
+
+// Returns the declaration of a built-in argument to a function
+string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
+{
+ string bi_arg;
+ if (prefix_comma)
+ bi_arg += ", ";
+
+ bi_arg += builtin_type_decl(builtin);
+ bi_arg += " " + builtin_to_glsl(builtin, StorageClassInput);
+ bi_arg += " [[" + builtin_qualifier(builtin) + "]]";
+
+ return bi_arg;
+}
+
+// Returns the byte size of a struct member.
+size_t CompilerMSL::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
+{
+ auto &type = get<SPIRType>(struct_type.member_types[index]);
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying size of opaque object.");
+
+ default:
+ {
+ // For arrays, we can use ArrayStride to get an easy check.
+ // Runtime arrays will have zero size so force to min of one.
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ return type_struct_member_array_stride(struct_type, index) * max(array_size, 1u);
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ // The size of a struct in Metal is aligned up to its natural alignment.
+ auto size = get_declared_struct_size(type);
+ auto alignment = get_declared_struct_member_alignment(struct_type, index);
+ return (size + alignment - 1) & ~(alignment - 1);
+ }
+
+ uint32_t component_size = type.width / 8;
+ uint32_t vecsize = type.vecsize;
+ uint32_t columns = type.columns;
+
+ // An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
+ if (vecsize == 3 && !has_extended_member_decoration(struct_type.self, index, SPIRVCrossDecorationPacked))
+ vecsize = 4;
+
+ return component_size * vecsize * columns;
+ }
+ }
+}
+
+// Returns the byte alignment of a struct member.
+size_t CompilerMSL::get_declared_struct_member_alignment(const SPIRType &struct_type, uint32_t index) const
+{
+ auto &type = get<SPIRType>(struct_type.member_types[index]);
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying alignment of opaque object.");
+
+ case SPIRType::Struct:
+ {
+ // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
+ uint32_t alignment = 1;
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ alignment = max(alignment, uint32_t(get_declared_struct_member_alignment(type, i)));
+ return alignment;
+ }
+
+ default:
+ {
+ // Alignment of packed type is the same as the underlying component or column size.
+ // Alignment of unpacked type is the same as the vector size.
+ // Alignment of 3-elements vector is the same as 4-elements (including packed using column).
+ if (member_is_packed_type(struct_type, index))
+ {
+ // This is getting pretty complicated.
+ // The special case of array of float/float2 needs to be handled here.
+ uint32_t packed_type_id =
+ get_extended_member_decoration(struct_type.self, index, SPIRVCrossDecorationPackedType);
+ const SPIRType *packed_type = packed_type_id != 0 ? &get<SPIRType>(packed_type_id) : nullptr;
+ if (packed_type && is_array(*packed_type) && !is_matrix(*packed_type) &&
+ packed_type->basetype != SPIRType::Struct)
+ return (packed_type->width / 8) * 4;
+ else
+ return (type.width / 8) * (type.columns == 3 ? 4 : type.columns);
+ }
+ else
+ return (type.width / 8) * (type.vecsize == 3 ? 4 : type.vecsize);
+ }
+ }
+}
+
+bool CompilerMSL::skip_argument(uint32_t) const
+{
+ return false;
+}
+
+void CompilerMSL::analyze_sampled_image_usage()
+{
+ if (msl_options.swizzle_texture_samples)
+ {
+ SampledImageScanner scanner(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
+ }
+}
+
+bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
+{
+ switch (opcode)
+ {
+ case OpLoad:
+ case OpImage:
+ case OpSampledImage:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+ auto &type = compiler.get<SPIRType>(result_type);
+ if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
+ return true;
+
+ uint32_t id = args[1];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ break;
+ }
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageFetch:
+ case OpImageGather:
+ case OpImageDrefGather:
+ compiler.has_sampled_images =
+ compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
+ compiler.needs_aux_buffer_def = compiler.needs_aux_buffer_def || compiler.has_sampled_images;
+ break;
+ default:
+ break;
+ }
+ return true;
+}
+
+bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ // Since MSL exists in a single execution scope, function prototype declarations are not
+ // needed, and clutter the output. If secondary functions are output (either as a SPIR-V
+ // function implementation or as indicated by the presence of OpFunctionCall), then set
+ // suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
+
+ // Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
+ SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
+ if (spv_func != SPVFuncImplNone)
+ {
+ compiler.spv_function_implementations.insert(spv_func);
+ suppress_missing_prototypes = true;
+ }
+
+ switch (opcode)
+ {
+
+ case OpFunctionCall:
+ suppress_missing_prototypes = true;
+ break;
+
+ case OpImageWrite:
+ uses_resource_write = true;
+ break;
+
+ case OpStore:
+ check_resource_write(args[0]);
+ break;
+
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ uses_atomics = true;
+ check_resource_write(args[2]);
+ break;
+
+ case OpAtomicLoad:
+ uses_atomics = true;
+ break;
+
+ default:
+ break;
+ }
+
+ // If it has one, keep track of the instruction's result type, mapped by ID
+ uint32_t result_type, result_id;
+ if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
+ result_types[result_id] = result_type;
+
+ return true;
+}
+
+// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
+void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
+{
+ auto *p_var = compiler.maybe_get_backing_variable(var_id);
+ StorageClass sc = p_var ? p_var->storage : StorageClassMax;
+ if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
+ uses_resource_write = true;
+}
+
+// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
+CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
+{
+ switch (opcode)
+ {
+ case OpFMod:
+ return SPVFuncImplMod;
+
+ case OpFunctionCall:
+ {
+ auto &return_type = compiler.get<SPIRType>(args[0]);
+ if (return_type.array.size() > 1)
+ {
+ if (return_type.array.size() > SPVFuncImplArrayCopyMultidimMax)
+ SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
+ return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + return_type.array.size());
+ }
+ else if (return_type.array.size() > 0)
+ return SPVFuncImplArrayCopy;
+
+ break;
+ }
+
+ case OpStore:
+ {
+ // Get the result type of the RHS. Since this is run as a pre-processing stage,
+ // we must extract the result type directly from the Instruction, rather than the ID.
+ uint32_t id_lhs = args[0];
+ uint32_t id_rhs = args[1];
+
+ const SPIRType *type = nullptr;
+ if (compiler.ir.ids[id_rhs].get_type() != TypeNone)
+ {
+ // Could be a constant, or similar.
+ type = &compiler.expression_type(id_rhs);
+ }
+ else
+ {
+ // Or ... an expression.
+ uint32_t tid = result_types[id_rhs];
+ if (tid)
+ type = &compiler.get<SPIRType>(tid);
+ }
+
+ auto *var = compiler.maybe_get<SPIRVariable>(id_lhs);
+
+ // Are we simply assigning to a statically assigned variable which takes a constant?
+ // Don't bother emitting this function.
+ bool static_expression_lhs =
+ var && var->storage == StorageClassFunction && var->statically_assigned && var->remapped_variable;
+ if (type && compiler.is_array(*type) && !static_expression_lhs)
+ {
+ if (type->array.size() > 1)
+ {
+ if (type->array.size() > SPVFuncImplArrayCopyMultidimMax)
+ SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
+ return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type->array.size());
+ }
+ else
+ return SPVFuncImplArrayCopy;
+ }
+
+ break;
+ }
+
+ case OpImageFetch:
+ case OpImageRead:
+ case OpImageWrite:
+ {
+ // Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
+ uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
+ if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer)
+ return SPVFuncImplTexelBufferCoords;
+
+ if (opcode == OpImageFetch && compiler.msl_options.swizzle_texture_samples)
+ return SPVFuncImplTextureSwizzle;
+
+ break;
+ }
+
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageGather:
+ case OpImageDrefGather:
+ if (compiler.msl_options.swizzle_texture_samples)
+ return SPVFuncImplTextureSwizzle;
+ break;
+
+ case OpCompositeConstruct:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.array.size() > 1) // We need to use copies to build the composite.
+ return static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size() - 1);
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = args[2];
+ if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ GLSLstd450 op_450 = static_cast<GLSLstd450>(args[3]);
+ switch (op_450)
+ {
+ case GLSLstd450Radians:
+ return SPVFuncImplRadians;
+ case GLSLstd450Degrees:
+ return SPVFuncImplDegrees;
+ case GLSLstd450FindILsb:
+ return SPVFuncImplFindILsb;
+ case GLSLstd450FindSMsb:
+ return SPVFuncImplFindSMsb;
+ case GLSLstd450FindUMsb:
+ return SPVFuncImplFindUMsb;
+ case GLSLstd450SSign:
+ return SPVFuncImplSSign;
+ case GLSLstd450MatrixInverse:
+ {
+ auto &mat_type = compiler.get<SPIRType>(args[0]);
+ switch (mat_type.columns)
+ {
+ case 2:
+ return SPVFuncImplInverse2x2;
+ case 3:
+ return SPVFuncImplInverse3x3;
+ case 4:
+ return SPVFuncImplInverse4x4;
+ default:
+ break;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ return SPVFuncImplNone;
+}
+
+// Sort both type and meta member content based on builtin status (put builtins at end),
+// then by the required sorting aspect.
+void CompilerMSL::MemberSorter::sort()
+{
+ // Create a temporary array of consecutive member indices and sort it based on how
+ // the members should be reordered, based on builtin and sorting aspect meta info.
+ size_t mbr_cnt = type.member_types.size();
+ vector<uint32_t> mbr_idxs(mbr_cnt);
+ iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
+ std::sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
+
+ // Move type and meta member info to the order defined by the sorted member indices.
+ // This is done by creating temporary copies of both member types and meta, and then
+ // copying back to the original content at the sorted indices.
+ auto mbr_types_cpy = type.member_types;
+ auto mbr_meta_cpy = meta.members;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
+ meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
+ }
+}
+
+// Sort first by builtin status (put builtins at end), then by the sorting aspect.
+bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
+{
+ auto &mbr_meta1 = meta.members[mbr_idx1];
+ auto &mbr_meta2 = meta.members[mbr_idx2];
+ if (mbr_meta1.builtin != mbr_meta2.builtin)
+ return mbr_meta2.builtin;
+ else
+ switch (sort_aspect)
+ {
+ case Location:
+ return mbr_meta1.location < mbr_meta2.location;
+ case LocationReverse:
+ return mbr_meta1.location > mbr_meta2.location;
+ case Offset:
+ return mbr_meta1.offset < mbr_meta2.offset;
+ case OffsetThenLocationReverse:
+ return (mbr_meta1.offset < mbr_meta2.offset) ||
+ ((mbr_meta1.offset == mbr_meta2.offset) && (mbr_meta1.location > mbr_meta2.location));
+ case Alphabetical:
+ return mbr_meta1.alias < mbr_meta2.alias;
+ default:
+ return false;
+ }
+}
+
+CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
+ : type(t)
+ , meta(m)
+ , sort_aspect(sa)
+{
+ // Ensure enough meta info is available
+ meta.members.resize(max(type.member_types.size(), meta.members.size()));
+}
+
+void CompilerMSL::remap_constexpr_sampler(uint32_t id, const MSLConstexprSampler &sampler)
+{
+ auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
+ if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
+ SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
+ if (!type.array.empty())
+ SPIRV_CROSS_THROW("Can not remap array of samplers.");
+ constexpr_samplers[id] = sampler;
+}
+
+void CompilerMSL::bitcast_from_builtin_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
+{
+ auto *var = maybe_get_backing_variable(source_id);
+ if (var)
+ source_id = var->self;
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(source_id, DecorationBuiltIn))
+ return;
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+ switch (builtin)
+ {
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInLocalInvocationIndex:
+ case BuiltInWorkgroupSize:
+ case BuiltInNumWorkgroups:
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ expected_type = SPIRType::UInt;
+ break;
+
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ if (get_execution_model() == ExecutionModelTessellationControl)
+ expected_type = SPIRType::Half;
+ break;
+
+ default:
+ break;
+ }
+
+ if (expected_type != expr_type.basetype)
+ expr = bitcast_expression(expr_type, expected_type, expr);
+
+ if (builtin == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads) && expr_type.vecsize == 3)
+ {
+ // In SPIR-V, this is always a vec3, even for quads. In Metal, though, it's a float2 for quads.
+ // The code is expecting a float3, so we need to widen this.
+ expr = join("float3(", expr, ", 0)");
+ }
+}
+
+void CompilerMSL::bitcast_to_builtin_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
+{
+ auto *var = maybe_get_backing_variable(target_id);
+ if (var)
+ target_id = var->self;
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(target_id, DecorationBuiltIn))
+ return;
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ expected_type = SPIRType::UInt;
+ break;
+
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ expected_type = SPIRType::Half;
+ break;
+
+ default:
+ break;
+ }
+
+ if (expected_type != expr_type.basetype)
+ {
+ if (expected_type == SPIRType::Half && expr_type.basetype == SPIRType::Float)
+ {
+ // These are of different widths, so we cannot do a straight bitcast.
+ expr = join("half(", expr, ")");
+ }
+ else
+ {
+ auto type = expr_type;
+ type.basetype = expected_type;
+ expr = bitcast_expression(type, expr_type.basetype, expr);
+ }
+ }
+}
+
+std::string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
+{
+ // We risk getting an array initializer here with MSL. If we have an array.
+ // FIXME: We cannot handle non-constant arrays being initialized.
+ // We will need to inject spvArrayCopy here somehow ...
+ auto &type = get<SPIRType>(var.basetype);
+ if (ir.ids[var.initializer].get_type() == TypeConstant &&
+ (!type.array.empty() || type.basetype == SPIRType::Struct))
+ return constant_expression(get<SPIRConstant>(var.initializer));
+ else
+ return CompilerGLSL::to_initializer_expression(var);
+}
+
+bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
+{
+ if (!msl_options.argument_buffers)
+ return false;
+ if (desc_set >= kMaxArgumentBuffers)
+ return false;
+
+ return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
+}
+
+void CompilerMSL::analyze_argument_buffers()
+{
+ // Gather all used resources and sort them out into argument buffers.
+ // Each argument buffer corresponds to a descriptor set in SPIR-V.
+ // The [[id(N)]] values used correspond to the resource mapping we have for MSL.
+ // Otherwise, the binding number is used, but this is generally not safe some types like
+ // combined image samplers and arrays of resources. Metal needs different indices here,
+ // while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
+ // you will need to use the remapping from the API.
+ for (auto &id : argument_buffer_ids)
+ id = 0;
+
+ // Output resources, sorted by resource index & type.
+ struct Resource
+ {
+ SPIRVariable *var;
+ string name;
+ SPIRType::BaseType basetype;
+ uint32_t index;
+ };
+ vector<Resource> resources_in_set[kMaxArgumentBuffers];
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
+ // Ignore if it's part of a push descriptor set.
+ if (!descriptor_set_is_argument_buffer(desc_set))
+ return;
+
+ uint32_t var_id = var.self;
+ auto &type = get_variable_data_type(var);
+
+ if (desc_set >= kMaxArgumentBuffers)
+ SPIRV_CROSS_THROW("Descriptor set index is out of range.");
+
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ add_resource_name(var_id);
+
+ uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image);
+ uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
+
+ // Avoid trivial conflicts where we didn't remap.
+ // This will let us at least compile test cases without having to instrument remaps.
+ if (sampler_resource_index == image_resource_index)
+ sampler_resource_index += type.array.empty() ? 1 : to_array_size_literal(type);
+
+ resources_in_set[desc_set].push_back({ &var, to_name(var_id), SPIRType::Image, image_resource_index });
+
+ if (type.image.dim != DimBuffer && constexpr_samplers.count(var_id) == 0)
+ {
+ resources_in_set[desc_set].push_back(
+ { &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index });
+ }
+ }
+ else if (constexpr_samplers.count(var_id) == 0)
+ {
+ // constexpr samplers are not declared as resources.
+ add_resource_name(var_id);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype) });
+ }
+ }
+ });
+
+ for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
+ {
+ auto &resources = resources_in_set[desc_set];
+ if (resources.empty())
+ continue;
+
+ assert(descriptor_set_is_argument_buffer(desc_set));
+
+ uint32_t next_id = ir.increase_bound_by(3);
+ uint32_t type_id = next_id + 1;
+ uint32_t ptr_type_id = next_id + 2;
+ argument_buffer_ids[desc_set] = next_id;
+
+ auto &buffer_type = set<SPIRType>(type_id);
+ buffer_type.storage = StorageClassUniform;
+ buffer_type.basetype = SPIRType::Struct;
+ set_name(type_id, join("spvDescriptorSetBuffer", desc_set));
+
+ auto &ptr_type = set<SPIRType>(ptr_type_id);
+ ptr_type = buffer_type;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth = 1;
+ ptr_type.parent_type = type_id;
+
+ uint32_t buffer_variable_id = next_id;
+ set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
+ set_name(buffer_variable_id, join("spvDescriptorSet", desc_set));
+
+ // Ids must be emitted in ID order.
+ sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
+ return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
+ });
+
+ uint32_t member_index = 0;
+ for (auto &resource : resources)
+ {
+ auto &var = *resource.var;
+ auto &type = get_variable_data_type(var);
+ string mbr_name = ensure_valid_name(resource.name, "m");
+ set_member_name(buffer_type.self, member_index, mbr_name);
+
+ if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
+ {
+ // Have to synthesize a sampler type here.
+
+ bool type_is_array = !type.array.empty();
+ uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
+ auto &new_sampler_type = set<SPIRType>(sampler_type_id);
+ new_sampler_type.basetype = SPIRType::Sampler;
+ new_sampler_type.storage = StorageClassUniformConstant;
+
+ if (type_is_array)
+ {
+ uint32_t sampler_type_array_id = sampler_type_id + 1;
+ auto &sampler_type_array = set<SPIRType>(sampler_type_array_id);
+ sampler_type_array = new_sampler_type;
+ sampler_type_array.array = type.array;
+ sampler_type_array.array_size_literal = type.array_size_literal;
+ sampler_type_array.parent_type = sampler_type_id;
+ buffer_type.member_types.push_back(sampler_type_array_id);
+ }
+ else
+ buffer_type.member_types.push_back(sampler_type_id);
+ }
+ else
+ {
+ if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
+ resource.basetype == SPIRType::SampledImage)
+ {
+ // Drop pointer information when we emit the resources into a struct.
+ buffer_type.member_types.push_back(get_variable_data_type_id(var));
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ else
+ {
+ // Resources will be declared as pointers not references, so automatically dereference as appropriate.
+ buffer_type.member_types.push_back(var.basetype);
+ if (type.array.empty())
+ set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
+ else
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ }
+
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationArgumentBufferID,
+ resource.index);
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
+ var.self);
+ member_index++;
+ }
+ }
+}