summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/glslang/hlsl/hlslParseHelper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/glslang/hlsl/hlslParseHelper.cpp')
-rw-r--r--src/3rdparty/glslang/hlsl/hlslParseHelper.cpp9984
1 files changed, 9984 insertions, 0 deletions
diff --git a/src/3rdparty/glslang/hlsl/hlslParseHelper.cpp b/src/3rdparty/glslang/hlsl/hlslParseHelper.cpp
new file mode 100644
index 0000000..213f236
--- /dev/null
+++ b/src/3rdparty/glslang/hlsl/hlslParseHelper.cpp
@@ -0,0 +1,9984 @@
+//
+// Copyright (C) 2017-2018 Google, Inc.
+// Copyright (C) 2017 LunarG, Inc.
+//
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+//
+// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+
+#include "hlslParseHelper.h"
+#include "hlslScanContext.h"
+#include "hlslGrammar.h"
+#include "hlslAttributes.h"
+
+#include "../glslang/Include/Common.h"
+#include "../glslang/MachineIndependent/Scan.h"
+#include "../glslang/MachineIndependent/preprocessor/PpContext.h"
+
+#include "../glslang/OSDependent/osinclude.h"
+
+#include <algorithm>
+#include <functional>
+#include <cctype>
+#include <array>
+#include <set>
+
+namespace glslang {
+
+HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
+ int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
+ TInfoSink& infoSink,
+ const TString sourceEntryPointName,
+ bool forwardCompatible, EShMessages messages) :
+ TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
+ forwardCompatible, messages, &sourceEntryPointName),
+ annotationNestingLevel(0),
+ inputPatch(nullptr),
+ nextInLocation(0), nextOutLocation(0),
+ entryPointFunction(nullptr),
+ entryPointFunctionBody(nullptr),
+ gsStreamOutput(nullptr),
+ clipDistanceOutput(nullptr),
+ cullDistanceOutput(nullptr),
+ clipDistanceInput(nullptr),
+ cullDistanceInput(nullptr)
+{
+ globalUniformDefaults.clear();
+ globalUniformDefaults.layoutMatrix = ElmRowMajor;
+ globalUniformDefaults.layoutPacking = ElpStd140;
+
+ globalBufferDefaults.clear();
+ globalBufferDefaults.layoutMatrix = ElmRowMajor;
+ globalBufferDefaults.layoutPacking = ElpStd430;
+
+ globalInputDefaults.clear();
+ globalOutputDefaults.clear();
+
+ clipSemanticNSizeIn.fill(0);
+ cullSemanticNSizeIn.fill(0);
+ clipSemanticNSizeOut.fill(0);
+ cullSemanticNSizeOut.fill(0);
+
+ // "Shaders in the transform
+ // feedback capturing mode have an initial global default of
+ // layout(xfb_buffer = 0) out;"
+ if (language == EShLangVertex ||
+ language == EShLangTessControl ||
+ language == EShLangTessEvaluation ||
+ language == EShLangGeometry)
+ globalOutputDefaults.layoutXfbBuffer = 0;
+
+ if (language == EShLangGeometry)
+ globalOutputDefaults.layoutStream = 0;
+}
+
+HlslParseContext::~HlslParseContext()
+{
+}
+
+void HlslParseContext::initializeExtensionBehavior()
+{
+ TParseContextBase::initializeExtensionBehavior();
+
+ // HLSL allows #line by default.
+ extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
+}
+
+void HlslParseContext::setLimits(const TBuiltInResource& r)
+{
+ resources = r;
+ intermediate.setLimits(resources);
+}
+
+//
+// Parse an array of strings using the parser in HlslRules.
+//
+// Returns true for successful acceptance of the shader, false if any errors.
+//
+bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
+{
+ currentScanner = &input;
+ ppContext.setInput(input, versionWillBeError);
+
+ HlslScanContext scanContext(*this, ppContext);
+ HlslGrammar grammar(scanContext, *this);
+ if (!grammar.parse()) {
+ // Print a message formated such that if you click on the message it will take you right to
+ // the line through most UIs.
+ const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
+ infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
+ << ", HLSL parsing failed.\n";
+ ++numErrors;
+ return false;
+ }
+
+ finish();
+
+ return numErrors == 0;
+}
+
+//
+// Return true if this l-value node should be converted in some manner.
+// For instance: turning a load aggregate into a store in an l-value.
+//
+bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
+{
+ if (node == nullptr || node->getAsTyped() == nullptr)
+ return false;
+
+ const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
+ const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
+
+ // If it's a swizzled/indexed aggregate, look at the left node instead.
+ if (lhsAsBinary != nullptr &&
+ (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
+ lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
+ if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
+ return true;
+
+ return false;
+}
+
+void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
+ TTypeList* newTypeList)
+{
+ newTypeList = nullptr;
+ correctUniform(memberType.getQualifier());
+ if (memberType.isStruct()) {
+ auto it = ioTypeMap.find(memberType.getStruct());
+ if (it != ioTypeMap.end() && it->second.uniform)
+ newTypeList = it->second.uniform;
+ }
+ TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
+}
+
+//
+// Return a TLayoutFormat corresponding to the given texture type.
+//
+TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
+{
+ if (txType.isStruct()) {
+ // TODO: implement.
+ error(loc, "unimplemented: structure type in image or buffer", "", "");
+ return ElfNone;
+ }
+
+ const int components = txType.getVectorSize();
+ const TBasicType txBasicType = txType.getBasicType();
+
+ const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
+ if (intermediate.getNoStorageFormat())
+ return ElfNone;
+
+ return components == 1 ? v1 :
+ components == 2 ? v2 : v4;
+ };
+
+ switch (txBasicType) {
+ case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f);
+ case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i);
+ case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
+ default:
+ error(loc, "unknown basic type in image format", "", "");
+ return ElfNone;
+ }
+}
+
+//
+// Both test and if necessary, spit out an error, to see if the node is really
+// an l-value that can be operated on this way.
+//
+// Returns true if there was an error.
+//
+bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
+{
+ if (shouldConvertLValue(node)) {
+ // if we're writing to a texture, it must be an RW form.
+
+ TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
+ TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
+
+ if (!object->getType().getSampler().isImage()) {
+ error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
+ return true;
+ }
+ }
+
+ // We tolerate samplers as l-values, even though they are nominally
+ // illegal, because we expect a later optimization to eliminate them.
+ if (node->getType().getBasicType() == EbtSampler) {
+ intermediate.setNeedsLegalization();
+ return false;
+ }
+
+ // Let the base class check errors
+ return TParseContextBase::lValueErrorCheck(loc, op, node);
+}
+
+//
+// This function handles l-value conversions and verifications. It uses, but is not synonymous
+// with lValueErrorCheck. That function accepts an l-value directly, while this one must be
+// given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
+// series of other image operations.
+//
+// Most things are passed through unmodified, except for error checking.
+//
+TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
+{
+ if (node == nullptr)
+ return nullptr;
+
+ TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
+ TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
+ TIntermAggregate* sequence = nullptr;
+
+ TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() :
+ nodeAsBinary ? nodeAsBinary->getLeft() :
+ nullptr;
+
+ // Early bail out if there is no conversion to apply
+ if (!shouldConvertLValue(lhs)) {
+ if (lhs != nullptr)
+ if (lValueErrorCheck(loc, op, lhs))
+ return nullptr;
+ return node;
+ }
+
+ // *** If we get here, we're going to apply some conversion to an l-value.
+
+ // Helper to create a load.
+ const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
+ TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
+ loadOp->setLoc(loc);
+ loadOp->getSequence().push_back(object);
+ loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
+ loadOp->setType(derefType);
+
+ sequence = intermediate.growAggregate(sequence,
+ intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
+ loc);
+ };
+
+ // Helper to create a store.
+ const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
+ TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
+ storeOp->getSequence().push_back(object);
+ storeOp->getSequence().push_back(coord);
+ storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
+ storeOp->setLoc(loc);
+ storeOp->setType(TType(EbtVoid));
+
+ sequence = intermediate.growAggregate(sequence, storeOp);
+ };
+
+ // Helper to create an assign.
+ const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
+ sequence = intermediate.growAggregate(sequence,
+ intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
+ loc);
+ };
+
+ // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
+ const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
+ // Add a trailing use of the temp, so the sequence returns the proper value.
+ sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
+ sequence->setOperator(EOpSequence);
+ sequence->setLoc(loc);
+ sequence->setType(derefType);
+
+ return sequence;
+ };
+
+ // Helper to add unary op
+ const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
+ sequence = intermediate.growAggregate(sequence,
+ intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
+ rhsTmp->getType()),
+ loc);
+ };
+
+ // Return true if swizzle or index writes all components of the given variable.
+ const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
+ if (swizzle == nullptr) // not a swizzle or index
+ return true;
+
+ // Track which components are being set.
+ std::array<bool, 4> compIsSet;
+ compIsSet.fill(false);
+
+ const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion();
+ const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate();
+
+ // This could be either a direct index, or a swizzle.
+ if (asConst) {
+ compIsSet[asConst->getConstArray()[0].getIConst()] = true;
+ } else if (asAggregate) {
+ const TIntermSequence& seq = asAggregate->getSequence();
+ for (int comp=0; comp<int(seq.size()); ++comp)
+ compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
+ } else {
+ assert(0);
+ }
+
+ // Return true if all components are being set by the index or swizzle
+ return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
+ [](bool isSet) { return isSet; } );
+ };
+
+ // Create swizzle matching input swizzle
+ const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
+ if (swizzle)
+ return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
+ else
+ return var;
+ };
+
+ TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode();
+ TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
+ bool lhsIsSwizzle = false;
+
+ // If it's a swizzled L-value, remember the swizzle, and use the LHS.
+ if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
+ lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
+ lhsIsSwizzle = true;
+ }
+
+ TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped();
+
+ const TSampler& texSampler = object->getType().getSampler();
+
+ TType objDerefType;
+ getTextureReturnType(texSampler, objDerefType);
+
+ if (nodeAsBinary) {
+ TIntermTyped* rhs = nodeAsBinary->getRight();
+ const TOperator assignOp = nodeAsBinary->getOp();
+
+ bool isModifyOp = false;
+
+ switch (assignOp) {
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ case EOpDivAssign:
+ case EOpModAssign:
+ case EOpAndAssign:
+ case EOpInclusiveOrAssign:
+ case EOpExclusiveOrAssign:
+ case EOpLeftShiftAssign:
+ case EOpRightShiftAssign:
+ isModifyOp = true;
+ // fall through...
+ case EOpAssign:
+ {
+ // Since this is an lvalue, we'll convert an image load to a sequence like this
+ // (to still provide the value):
+ // OpSequence
+ // OpImageStore(object, lhs, rhs)
+ // rhs
+ // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
+ // so we'll convert instead to this:
+ // OpSequence
+ // rhsTmp = rhs
+ // OpImageStore(object, coord, rhsTmp)
+ // rhsTmp
+ // If this is a read-modify-write op, like +=, we issue:
+ // OpSequence
+ // coordtmp = load's param1
+ // rhsTmp = OpImageLoad(object, coordTmp)
+ // rhsTmp op= rhs
+ // OpImageStore(object, coordTmp, rhsTmp)
+ // rhsTmp
+ //
+ // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
+ // ...
+ // rhsTmp.some_swizzle = ...
+ // For partial writes, an error is generated.
+
+ TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
+ TIntermTyped* coordTmp = coord;
+
+ if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
+ rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
+
+ // Partial updates not yet supported
+ if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
+ error(loc, "unimplemented: partial image updates", "", "");
+ }
+
+ // Assign storeTemp = rhs
+ if (isModifyOp) {
+ // We have to make a temp var for the coordinate, to avoid evaluating it twice.
+ coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
+ makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
+ makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
+ }
+
+ // rhsTmp op= rhs.
+ makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
+ }
+
+ makeStore(object, coordTmp, rhsTmp); // add a store
+ return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
+ }
+
+ default:
+ break;
+ }
+ }
+
+ if (nodeAsUnary) {
+ const TOperator assignOp = nodeAsUnary->getOp();
+
+ switch (assignOp) {
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ {
+ // We turn this into:
+ // OpSequence
+ // coordtmp = load's param1
+ // rhsTmp = OpImageLoad(object, coordTmp)
+ // rhsTmp op
+ // OpImageStore(object, coordTmp, rhsTmp)
+ // rhsTmp
+
+ TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
+ TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
+
+ makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
+ makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
+ makeUnary(assignOp, rhsTmp); // op rhsTmp
+ makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp)
+ return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
+ }
+
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ {
+ // We turn this into:
+ // OpSequence
+ // coordtmp = load's param1
+ // rhsTmp1 = OpImageLoad(object, coordTmp)
+ // rhsTmp2 = rhsTmp1
+ // rhsTmp2 op
+ // OpImageStore(object, coordTmp, rhsTmp2)
+ // rhsTmp1 (pre-op value)
+ TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType);
+ TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
+ TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
+
+ makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
+ makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
+ makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1
+ makeUnary(assignOp, rhsTmp2); // rhsTmp op
+ makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2)
+ return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence
+ }
+
+ default:
+ break;
+ }
+ }
+
+ if (lhs)
+ if (lValueErrorCheck(loc, op, lhs))
+ return nullptr;
+
+ return node;
+}
+
+void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
+{
+ if (pragmaCallback)
+ pragmaCallback(loc.line, tokens);
+
+ if (tokens.size() == 0)
+ return;
+
+ // These pragmas are case insensitive in HLSL, so we'll compare in lower case.
+ TVector<TString> lowerTokens = tokens;
+
+ for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
+ std::transform(it->begin(), it->end(), it->begin(), ::tolower);
+
+ // Handle pack_matrix
+ if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
+ // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
+ // Row major becomes column major and vice versa.
+
+ if (lowerTokens[2] == "row_major") {
+ globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
+ } else if (lowerTokens[2] == "column_major") {
+ globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
+ } else {
+ // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
+ warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
+ globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
+ }
+ return;
+ }
+
+ // Handle once
+ if (lowerTokens[0] == "once") {
+ warn(loc, "not implemented", "#pragma once", "");
+ return;
+ }
+}
+
+//
+// Look at a '.' matrix selector string and change it into components
+// for a matrix. There are two types:
+//
+// _21 second row, first column (one based)
+// _m21 third row, second column (zero based)
+//
+// Returns true if there is no error.
+//
+bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
+ TSwizzleSelectors<TMatrixSelector>& components)
+{
+ int startPos[MaxSwizzleSelectors];
+ int numComps = 0;
+ TString compString = fields;
+
+ // Find where each component starts,
+ // recording the first character position after the '_'.
+ for (size_t c = 0; c < compString.size(); ++c) {
+ if (compString[c] == '_') {
+ if (numComps >= MaxSwizzleSelectors) {
+ error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
+ return false;
+ }
+ if (c > compString.size() - 3 ||
+ ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
+ error(loc, "matrix component swizzle missing", compString.c_str(), "");
+ return false;
+ }
+ startPos[numComps++] = (int)c + 1;
+ }
+ }
+
+ // Process each component
+ for (int i = 0; i < numComps; ++i) {
+ int pos = startPos[i];
+ int bias = -1;
+ if (compString[pos] == 'm' || compString[pos] == 'M') {
+ bias = 0;
+ ++pos;
+ }
+ TMatrixSelector comp;
+ comp.coord1 = compString[pos+0] - '0' + bias;
+ comp.coord2 = compString[pos+1] - '0' + bias;
+ if (comp.coord1 < 0 || comp.coord1 >= cols) {
+ error(loc, "matrix row component out of range", compString.c_str(), "");
+ return false;
+ }
+ if (comp.coord2 < 0 || comp.coord2 >= rows) {
+ error(loc, "matrix column component out of range", compString.c_str(), "");
+ return false;
+ }
+ components.push_back(comp);
+ }
+
+ return true;
+}
+
+// If the 'comps' express a column of a matrix,
+// return the column. Column means the first coords all match.
+//
+// Otherwise, return -1.
+//
+int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
+{
+ int col = -1;
+
+ // right number of comps?
+ if (selector.size() != rows)
+ return -1;
+
+ // all comps in the same column?
+ // rows in order?
+ col = selector[0].coord1;
+ for (int i = 0; i < rows; ++i) {
+ if (col != selector[i].coord1)
+ return -1;
+ if (i != selector[i].coord2)
+ return -1;
+ }
+
+ return col;
+}
+
+//
+// Handle seeing a variable identifier in the grammar.
+//
+TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
+{
+ int thisDepth;
+ TSymbol* symbol = symbolTable.find(*string, thisDepth);
+ if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
+ error(loc, "expected symbol, not user-defined type", string->c_str(), "");
+ return nullptr;
+ }
+
+ const TVariable* variable = nullptr;
+ const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
+ TIntermTyped* node = nullptr;
+ if (anon) {
+ // It was a member of an anonymous container, which could be a 'this' structure.
+
+ // Create a subtree for its dereference.
+ if (thisDepth > 0) {
+ variable = getImplicitThis(thisDepth);
+ if (variable == nullptr)
+ error(loc, "cannot access member variables (static member function?)", "this", "");
+ }
+ if (variable == nullptr)
+ variable = anon->getAnonContainer().getAsVariable();
+
+ TIntermTyped* container = intermediate.addSymbol(*variable, loc);
+ TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
+ node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
+
+ node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
+ if (node->getType().hiddenMember())
+ error(loc, "member of nameless block was not redeclared", string->c_str(), "");
+ } else {
+ // Not a member of an anonymous container.
+
+ // The symbol table search was done in the lexical phase.
+ // See if it was a variable.
+ variable = symbol ? symbol->getAsVariable() : nullptr;
+ if (variable) {
+ if ((variable->getType().getBasicType() == EbtBlock ||
+ variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
+ error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
+ variable = nullptr;
+ }
+ } else {
+ if (symbol)
+ error(loc, "variable name expected", string->c_str(), "");
+ }
+
+ // Recovery, if it wasn't found or was not a variable.
+ if (variable == nullptr) {
+ error(loc, "unknown variable", string->c_str(), "");
+ variable = new TVariable(string, TType(EbtVoid));
+ }
+
+ if (variable->getType().getQualifier().isFrontEndConstant())
+ node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
+ else
+ node = intermediate.addSymbol(*variable, loc);
+ }
+
+ if (variable->getType().getQualifier().isIo())
+ intermediate.addIoAccessed(*string);
+
+ return node;
+}
+
+//
+// Handle operator[] on any objects it applies to. Currently:
+// Textures
+// Buffers
+//
+TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
+{
+ // handle r-value operator[] on textures and images. l-values will be processed later.
+ if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
+ const TSampler& sampler = base->getType().getSampler();
+ if (sampler.isImage() || sampler.isTexture()) {
+ if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
+ // The first operator[] to a .mips[] sequence is the mip level. We'll remember it.
+ mipsOperatorMipArg.back().mipLevel = index;
+ return base; // next [] index is to the same base.
+ } else {
+ TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
+
+ TType sampReturnType;
+ getTextureReturnType(sampler, sampReturnType);
+
+ load->setType(sampReturnType);
+ load->setLoc(loc);
+ load->getSequence().push_back(base);
+ load->getSequence().push_back(index);
+
+ // Textures need a MIP. If we saw one go by, use it. Otherwise, use zero.
+ if (sampler.isTexture()) {
+ if (! mipsOperatorMipArg.empty()) {
+ load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
+ mipsOperatorMipArg.pop_back();
+ } else {
+ load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
+ }
+ }
+
+ return load;
+ }
+ }
+ }
+
+ // Handle operator[] on structured buffers: this indexes into the array element of the buffer.
+ // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
+ TIntermTyped* sbArray = indexStructBufferContent(loc, base);
+ if (sbArray != nullptr) {
+ if (sbArray == nullptr)
+ return nullptr;
+
+ // Now we'll apply the [] index to that array
+ const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
+
+ TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
+ const TType derefType(sbArray->getType(), 0);
+ element->setType(derefType);
+ return element;
+ }
+
+ return nullptr;
+}
+
+//
+// Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
+TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
+{
+ const TBasicType indexBasicType = index->getType().getBasicType();
+ const int vecSize = index->getType().getVectorSize();
+
+ // We can use int types directly as the index
+ if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
+ indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
+ return index;
+
+ // Cast index to unsigned integer if it isn't one.
+ return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
+}
+
+//
+// Handle seeing a base[index] dereference in the grammar.
+//
+TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
+{
+ index = makeIntegerIndex(index);
+
+ if (index == nullptr) {
+ error(loc, " unknown index type ", "", "");
+ return nullptr;
+ }
+
+ TIntermTyped* result = handleBracketOperator(loc, base, index);
+
+ if (result != nullptr)
+ return result; // it was handled as an operator[]
+
+ bool flattened = false;
+ int indexValue = 0;
+ if (index->getQualifier().isFrontEndConstant())
+ indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
+
+ variableCheck(base);
+ if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
+ if (base->getAsSymbolNode())
+ error(loc, " left of '[' is not of type array, matrix, or vector ",
+ base->getAsSymbolNode()->getName().c_str(), "");
+ else
+ error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
+ } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) {
+ // both base and index are front-end constants
+ checkIndex(loc, base->getType(), indexValue);
+ return intermediate.foldDereference(base, indexValue, loc);
+ } else {
+ // at least one of base and index is variable...
+
+ if (index->getQualifier().isFrontEndConstant())
+ checkIndex(loc, base->getType(), indexValue);
+
+ if (base->getType().isScalarOrVec1())
+ result = base;
+ else if (base->getAsSymbolNode() && wasFlattened(base)) {
+ if (index->getQualifier().storage != EvqConst)
+ error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
+
+ result = flattenAccess(base, indexValue);
+ flattened = (result != base);
+ } else {
+ if (index->getQualifier().isFrontEndConstant()) {
+ if (base->getType().isUnsizedArray())
+ base->getWritableType().updateImplicitArraySize(indexValue + 1);
+ else
+ checkIndex(loc, base->getType(), indexValue);
+ result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
+ } else
+ result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
+ }
+ }
+
+ if (result == nullptr) {
+ // Insert dummy error-recovery result
+ result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
+ } else {
+ // If the array reference was flattened, it has the correct type. E.g, if it was
+ // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
+ // In that case, we preserve the qualifiers.
+ if (!flattened) {
+ // Insert valid dereferenced result
+ TType newType(base->getType(), 0); // dereferenced type
+ if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
+ newType.getQualifier().storage = EvqConst;
+ else
+ newType.getQualifier().storage = EvqTemporary;
+ result->setType(newType);
+ }
+ }
+
+ return result;
+}
+
+// Handle seeing a binary node with a math operation.
+TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
+ TIntermTyped* left, TIntermTyped* right)
+{
+ TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
+ if (result == nullptr)
+ binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
+
+ return result;
+}
+
+// Handle seeing a unary node with a math operation.
+TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
+ TIntermTyped* childNode)
+{
+ TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
+
+ if (result)
+ return result;
+ else
+ unaryOpError(loc, str, childNode->getCompleteString());
+
+ return childNode;
+}
+//
+// Return true if the name is a struct buffer method
+//
+bool HlslParseContext::isStructBufferMethod(const TString& name) const
+{
+ return
+ name == "GetDimensions" ||
+ name == "Load" ||
+ name == "Load2" ||
+ name == "Load3" ||
+ name == "Load4" ||
+ name == "Store" ||
+ name == "Store2" ||
+ name == "Store3" ||
+ name == "Store4" ||
+ name == "InterlockedAdd" ||
+ name == "InterlockedAnd" ||
+ name == "InterlockedCompareExchange" ||
+ name == "InterlockedCompareStore" ||
+ name == "InterlockedExchange" ||
+ name == "InterlockedMax" ||
+ name == "InterlockedMin" ||
+ name == "InterlockedOr" ||
+ name == "InterlockedXor" ||
+ name == "IncrementCounter" ||
+ name == "DecrementCounter" ||
+ name == "Append" ||
+ name == "Consume";
+}
+
+//
+// Handle seeing a base.field dereference in the grammar, where 'field' is a
+// swizzle or member variable.
+//
+TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
+{
+ variableCheck(base);
+
+ if (base->isArray()) {
+ error(loc, "cannot apply to an array:", ".", field.c_str());
+ return base;
+ }
+
+ TIntermTyped* result = base;
+
+ if (base->getType().getBasicType() == EbtSampler) {
+ // Handle .mips[mipid][pos] operation on textures
+ const TSampler& sampler = base->getType().getSampler();
+ if (sampler.isTexture() && field == "mips") {
+ // Push a null to signify that we expect a mip level under operator[] next.
+ mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
+ // Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
+ } else {
+ if (field == "mips")
+ error(loc, "unexpected texture type for .mips[][] operator:",
+ base->getType().getCompleteString().c_str(), "");
+ else
+ error(loc, "unexpected operator on texture type:", field.c_str(),
+ base->getType().getCompleteString().c_str());
+ }
+ } else if (base->isVector() || base->isScalar()) {
+ TSwizzleSelectors<TVectorSelector> selectors;
+ parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
+
+ if (base->isScalar()) {
+ if (selectors.size() == 1)
+ return result;
+ else {
+ TType type(base->getBasicType(), EvqTemporary, selectors.size());
+ return addConstructor(loc, base, type);
+ }
+ }
+ if (base->getVectorSize() == 1) {
+ TType scalarType(base->getBasicType(), EvqTemporary, 1);
+ if (selectors.size() == 1)
+ return addConstructor(loc, base, scalarType);
+ else {
+ TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
+ return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
+ }
+ }
+
+ if (base->getType().getQualifier().isFrontEndConstant())
+ result = intermediate.foldSwizzle(base, selectors, loc);
+ else {
+ if (selectors.size() == 1) {
+ TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
+ result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
+ result->setType(TType(base->getBasicType(), EvqTemporary));
+ } else {
+ TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
+ result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
+ result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
+ selectors.size()));
+ }
+ }
+ } else if (base->isMatrix()) {
+ TSwizzleSelectors<TMatrixSelector> selectors;
+ if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
+ return result;
+
+ if (selectors.size() == 1) {
+ // Representable by m[c][r]
+ if (base->getType().getQualifier().isFrontEndConstant()) {
+ result = intermediate.foldDereference(base, selectors[0].coord1, loc);
+ result = intermediate.foldDereference(result, selectors[0].coord2, loc);
+ } else {
+ result = intermediate.addIndex(EOpIndexDirect, base,
+ intermediate.addConstantUnion(selectors[0].coord1, loc),
+ loc);
+ TType dereferencedCol(base->getType(), 0);
+ result->setType(dereferencedCol);
+ result = intermediate.addIndex(EOpIndexDirect, result,
+ intermediate.addConstantUnion(selectors[0].coord2, loc),
+ loc);
+ TType dereferenced(dereferencedCol, 0);
+ result->setType(dereferenced);
+ }
+ } else {
+ int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
+ if (column >= 0) {
+ // Representable by m[c]
+ if (base->getType().getQualifier().isFrontEndConstant())
+ result = intermediate.foldDereference(base, column, loc);
+ else {
+ result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
+ loc);
+ TType dereferenced(base->getType(), 0);
+ result->setType(dereferenced);
+ }
+ } else {
+ // general case, not a column, not a single component
+ TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
+ result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
+ result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
+ selectors.size()));
+ }
+ }
+ } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
+ const TTypeList* fields = base->getType().getStruct();
+ bool fieldFound = false;
+ int member;
+ for (member = 0; member < (int)fields->size(); ++member) {
+ if ((*fields)[member].type->getFieldName() == field) {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound) {
+ if (base->getAsSymbolNode() && wasFlattened(base)) {
+ result = flattenAccess(base, member);
+ } else {
+ if (base->getType().getQualifier().storage == EvqConst)
+ result = intermediate.foldDereference(base, member, loc);
+ else {
+ TIntermTyped* index = intermediate.addConstantUnion(member, loc);
+ result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
+ result->setType(*(*fields)[member].type);
+ }
+ }
+ } else
+ error(loc, "no such field in structure", field.c_str(), "");
+ } else
+ error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
+
+ return result;
+}
+
+//
+// Return true if the field should be treated as a built-in method.
+// Return false otherwise.
+//
+bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
+{
+ if (base == nullptr)
+ return false;
+
+ variableCheck(base);
+
+ if (base->getType().getBasicType() == EbtSampler) {
+ return true;
+ } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
+ return true;
+ } else if (field == "Append" ||
+ field == "RestartStrip") {
+ // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
+ // the code is around in the shader source.
+ return true;
+ } else
+ return false;
+}
+
+// Independently establish a built-in that is a member of a structure.
+// 'arraySizes' are what's desired for the independent built-in, whatever
+// the higher-level source/expression of them was.
+void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
+ const TQualifier& outerQualifier)
+{
+ // Because of arrays of structs, we might be asked more than once,
+ // but the arraySizes passed in should have captured the whole thing
+ // the first time.
+ // However, clip/cull rely on multiple updates.
+ if (!isClipOrCullDistance(memberType))
+ if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
+ splitBuiltIns.end())
+ return;
+
+ TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
+
+ if (arraySizes != nullptr && !memberType.isArray())
+ ioVar->getWritableType().copyArraySizes(*arraySizes);
+
+ splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
+ if (!isClipOrCullDistance(ioVar->getType()))
+ trackLinkage(*ioVar);
+
+ // Merge qualifier from the user structure
+ mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
+
+ // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
+ // shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks
+ // at the qualifier to determine e.g, in or out qualifications.
+ fixBuiltInIoType(ioVar->getWritableType());
+
+ // But, not location, we're losing that
+ ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
+}
+
+// Split a type into
+// 1. a struct of non-I/O members
+// 2. a collection of independent I/O variables
+void HlslParseContext::split(const TVariable& variable)
+{
+ // Create a new variable:
+ const TType& clonedType = *variable.getType().clone();
+ const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
+ splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
+}
+
+// Recursive implementation of split().
+// Returns reference to the modified type.
+const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
+{
+ if (type.isStruct()) {
+ TTypeList* userStructure = type.getWritableStruct();
+ for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
+ if (ioType->type->isBuiltIn()) {
+ // move out the built-in
+ splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
+ ioType = userStructure->erase(ioType);
+ } else {
+ split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
+ ++ioType;
+ }
+ }
+ }
+
+ return type;
+}
+
+// Is this an aggregate that should be flattened?
+// Can be applied to intermediate levels of type in a hierarchy.
+// Some things like flattening uniform arrays are only about the top level
+// of the aggregate, triggered on 'topLevel'.
+bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
+{
+ switch (qualifier) {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ return type.isStruct() || type.isArray();
+ case EvqUniform:
+ return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
+ (type.isStruct() && type.containsOpaque());
+ default:
+ return false;
+ };
+}
+
+// Top level variable flattening: construct data
+void HlslParseContext::flatten(const TVariable& variable, bool linkage)
+{
+ const TType& type = variable.getType();
+
+ // If it's a standalone built-in, there is nothing to flatten
+ if (type.isBuiltIn() && !type.isStruct())
+ return;
+
+ auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
+ TFlattenData(type.getQualifier().layoutBinding,
+ type.getQualifier().layoutLocation)));
+
+ // the item is a map pair, so first->second is the TFlattenData itself.
+ flatten(variable, type, entry.first->second, variable.getName(), linkage, type.getQualifier(), nullptr);
+}
+
+// Recursively flatten the given variable at the provided type, building the flattenData as we go.
+//
+// This is mutually recursive with flattenStruct and flattenArray.
+// We are going to flatten an arbitrarily nested composite structure into a linear sequence of
+// members, and later on, we want to turn a path through the tree structure into a final
+// location in this linear sequence.
+//
+// If the tree was N-ary, that can be directly calculated. However, we are dealing with
+// arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must
+// build a data structure to allow the sequence of bracket and dot operators on arrays and
+// structs to arrive at the proper member.
+//
+// To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
+// The leaves are the indexes into the flattened member array.
+// Each level will have the next location for the Nth item stored sequentially, so for instance:
+//
+// struct { float2 a[2]; int b; float4 c[3] };
+//
+// This will produce the following flattened tree:
+// Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
+// (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
+//
+// Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
+// (0+2) = 8 --> (8+1) = 12 --> 12 = 4
+//
+// so the 4th flattened member in traversal order is ours.
+//
+int HlslParseContext::flatten(const TVariable& variable, const TType& type,
+ TFlattenData& flattenData, TString name, bool linkage,
+ const TQualifier& outerQualifier,
+ const TArraySizes* builtInArraySizes)
+{
+ // If something is an arrayed struct, the array flattener will recursively call flatten()
+ // to then flatten the struct, so this is an "if else": we don't do both.
+ if (type.isArray())
+ return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
+ else if (type.isStruct())
+ return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
+ else {
+ assert(0); // should never happen
+ return -1;
+ }
+}
+
+// Add a single flattened member to the flattened data being tracked for the composite
+// Returns true for the final flattening level.
+int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
+ const TString& memberName, bool linkage,
+ const TQualifier& outerQualifier,
+ const TArraySizes* builtInArraySizes)
+{
+ if (!shouldFlatten(type, outerQualifier.storage, false)) {
+ // This is as far as we flatten. Insert the variable.
+ TVariable* memberVariable = makeInternalVariable(memberName, type);
+ mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
+
+ if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
+ memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
+
+ if (memberVariable->getType().isBuiltIn()) {
+ // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
+ memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
+ } else {
+ // inherited locations must be auto bumped, not replicated
+ if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
+ memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
+ flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
+ nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
+ }
+ }
+
+ flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
+ flattenData.members.push_back(memberVariable);
+
+ if (linkage)
+ trackLinkage(*memberVariable);
+
+ return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
+ } else {
+ // Further recursion required
+ return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
+ }
+}
+
+// Figure out the mapping between an aggregate's top members and an
+// equivalent set of individual variables.
+//
+// Assumes shouldFlatten() or equivalent was called first.
+int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
+ TFlattenData& flattenData, TString name, bool linkage,
+ const TQualifier& outerQualifier,
+ const TArraySizes* builtInArraySizes)
+{
+ assert(type.isStruct());
+
+ auto members = *type.getStruct();
+
+ // Reserve space for this tree level.
+ int start = static_cast<int>(flattenData.offsets.size());
+ int pos = start;
+ flattenData.offsets.resize(int(pos + members.size()), -1);
+
+ for (int member = 0; member < (int)members.size(); ++member) {
+ TType& dereferencedType = *members[member].type;
+ if (dereferencedType.isBuiltIn())
+ splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
+ else {
+ const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
+ name + "." + dereferencedType.getFieldName(),
+ linkage, outerQualifier,
+ builtInArraySizes == nullptr && dereferencedType.isArray()
+ ? dereferencedType.getArraySizes()
+ : builtInArraySizes);
+ flattenData.offsets[pos++] = mpos;
+ }
+ }
+
+ return start;
+}
+
+// Figure out mapping between an array's members and an
+// equivalent set of individual variables.
+//
+// Assumes shouldFlatten() or equivalent was called first.
+int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
+ TFlattenData& flattenData, TString name, bool linkage,
+ const TQualifier& outerQualifier)
+{
+ assert(type.isSizedArray());
+
+ const int size = type.getOuterArraySize();
+ const TType dereferencedType(type, 0);
+
+ if (name.empty())
+ name = variable.getName();
+
+ // Reserve space for this tree level.
+ int start = static_cast<int>(flattenData.offsets.size());
+ int pos = start;
+ flattenData.offsets.resize(int(pos + size), -1);
+
+ for (int element=0; element < size; ++element) {
+ char elementNumBuf[20]; // sufficient for MAXINT
+ snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
+ const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
+ name + elementNumBuf, linkage, outerQualifier,
+ type.getArraySizes());
+
+ flattenData.offsets[pos++] = mpos;
+ }
+
+ return start;
+}
+
+// Return true if we have flattened this node.
+bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
+{
+ return node != nullptr && node->getAsSymbolNode() != nullptr &&
+ wasFlattened(node->getAsSymbolNode()->getId());
+}
+
+// Return true if we have split this structure
+bool HlslParseContext::wasSplit(const TIntermTyped* node) const
+{
+ return node != nullptr && node->getAsSymbolNode() != nullptr &&
+ wasSplit(node->getAsSymbolNode()->getId());
+}
+
+// Turn an access into an aggregate that was flattened to instead be
+// an access to the individual variable the member was flattened to.
+// Assumes wasFlattened() or equivalent was called first.
+TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
+{
+ const TType dereferencedType(base->getType(), member); // dereferenced type
+ const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
+ TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
+ dereferencedType, symbolNode.getFlattenSubset());
+
+ return flattened ? flattened : base;
+}
+TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage,
+ const TType& dereferencedType, int subset)
+{
+ const auto flattenData = flattenMap.find(uniqueId);
+
+ if (flattenData == flattenMap.end())
+ return nullptr;
+
+ // Calculate new cumulative offset from the packed tree
+ int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
+
+ TIntermSymbol* subsetSymbol;
+ if (!shouldFlatten(dereferencedType, outerStorage, false)) {
+ // Finished flattening: create symbol for variable
+ member = flattenData->second.offsets[newSubset];
+ const TVariable* memberVariable = flattenData->second.members[member];
+ subsetSymbol = intermediate.addSymbol(*memberVariable);
+ subsetSymbol->setFlattenSubset(-1);
+ } else {
+
+ // If this is not the final flattening, accumulate the position and return
+ // an object of the partially dereferenced type.
+ subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
+ subsetSymbol->setFlattenSubset(newSubset);
+ }
+
+ return subsetSymbol;
+}
+
+// For finding where the first leaf is in a subtree of a multi-level aggregate
+// that is just getting a subset assigned. Follows the same logic as flattenAccess,
+// but logically going down the "left-most" tree branch each step of the way.
+//
+// Returns the offset into the first leaf of the subset.
+int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
+{
+ const TIntermSymbol* sym = node.getAsSymbolNode();
+ if (sym == nullptr)
+ return 0;
+ if (!sym->isArray() && !sym->isStruct())
+ return 0;
+ int subset = sym->getFlattenSubset();
+ if (subset == -1)
+ return 0;
+
+ // Getting this far means a partial aggregate is identified by the flatten subset.
+ // Find the first leaf of the subset.
+
+ const auto flattenData = flattenMap.find(sym->getId());
+ if (flattenData == flattenMap.end())
+ return 0;
+
+ return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
+
+ do {
+ subset = flattenData->second.offsets[subset];
+ } while (true);
+}
+// Recursively do the desent
+int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
+{
+ if (!type.isArray() && !type.isStruct())
+ return offsets[subset];
+ TType derefType(type, 0);
+ return findSubtreeOffset(derefType, offsets[subset], offsets);
+};
+
+// Find and return the split IO TVariable for id, or nullptr if none.
+TVariable* HlslParseContext::getSplitNonIoVar(int id) const
+{
+ const auto splitNonIoVar = splitNonIoVars.find(id);
+ if (splitNonIoVar == splitNonIoVars.end())
+ return nullptr;
+
+ return splitNonIoVar->second;
+}
+
+// Pass through to base class after remembering built-in mappings.
+void HlslParseContext::trackLinkage(TSymbol& symbol)
+{
+ TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
+
+ if (biType != EbvNone)
+ builtInTessLinkageSymbols[biType] = symbol.clone();
+
+ TParseContextBase::trackLinkage(symbol);
+}
+
+
+// Returns true if the built-in is a clip or cull distance variable.
+bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
+{
+ return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
+}
+
+// Some types require fixed array sizes in SPIR-V, but can be scalars or
+// arrays of sizes SPIR-V doesn't allow. For example, tessellation factors.
+// This creates the right size. A conversion is performed when the internal
+// type is copied to or from the external type. This corrects the externally
+// facing input or output type to abide downstream semantics.
+void HlslParseContext::fixBuiltInIoType(TType& type)
+{
+ int requiredArraySize = 0;
+ int requiredVectorSize = 0;
+
+ switch (type.getQualifier().builtIn) {
+ case EbvTessLevelOuter: requiredArraySize = 4; break;
+ case EbvTessLevelInner: requiredArraySize = 2; break;
+
+ case EbvSampleMask:
+ {
+ // Promote scalar to array of size 1. Leave existing arrays alone.
+ if (!type.isArray())
+ requiredArraySize = 1;
+ break;
+ }
+
+ case EbvWorkGroupId: requiredVectorSize = 3; break;
+ case EbvGlobalInvocationId: requiredVectorSize = 3; break;
+ case EbvLocalInvocationId: requiredVectorSize = 3; break;
+ case EbvTessCoord: requiredVectorSize = 3; break;
+
+ default:
+ if (isClipOrCullDistance(type)) {
+ const int loc = type.getQualifier().layoutLocation;
+
+ if (type.getQualifier().builtIn == EbvClipDistance) {
+ if (type.getQualifier().storage == EvqVaryingIn)
+ clipSemanticNSizeIn[loc] = type.getVectorSize();
+ else
+ clipSemanticNSizeOut[loc] = type.getVectorSize();
+ } else {
+ if (type.getQualifier().storage == EvqVaryingIn)
+ cullSemanticNSizeIn[loc] = type.getVectorSize();
+ else
+ cullSemanticNSizeOut[loc] = type.getVectorSize();
+ }
+ }
+
+ return;
+ }
+
+ // Alter or set vector size as needed.
+ if (requiredVectorSize > 0) {
+ TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
+ newType.getQualifier() = type.getQualifier();
+
+ type.shallowCopy(newType);
+ }
+
+ // Alter or set array size as needed.
+ if (requiredArraySize > 0) {
+ if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
+ TArraySizes* arraySizes = new TArraySizes;
+ arraySizes->addInnerSize(requiredArraySize);
+ type.transferArraySizes(arraySizes);
+ }
+ }
+}
+
+// Variables that correspond to the user-interface in and out of a stage
+// (not the built-in interface) are
+// - assigned locations
+// - registered as a linkage node (part of the stage's external interface).
+// Assumes it is called in the order in which locations should be assigned.
+void HlslParseContext::assignToInterface(TVariable& variable)
+{
+ const auto assignLocation = [&](TVariable& variable) {
+ TType& type = variable.getWritableType();
+ if (!type.isStruct() || type.getStruct()->size() > 0) {
+ TQualifier& qualifier = type.getQualifier();
+ if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
+ if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
+ // Strip off the outer array dimension for those having an extra one.
+ int size;
+ if (type.isArray() && qualifier.isArrayedIo(language)) {
+ TType elementType(type, 0);
+ size = intermediate.computeTypeLocationSize(elementType, language);
+ } else
+ size = intermediate.computeTypeLocationSize(type, language);
+
+ if (qualifier.storage == EvqVaryingIn) {
+ variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
+ nextInLocation += size;
+ } else {
+ variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
+ nextOutLocation += size;
+ }
+ }
+ trackLinkage(variable);
+ }
+ }
+ };
+
+ if (wasFlattened(variable.getUniqueId())) {
+ auto& memberList = flattenMap[variable.getUniqueId()].members;
+ for (auto member = memberList.begin(); member != memberList.end(); ++member)
+ assignLocation(**member);
+ } else if (wasSplit(variable.getUniqueId())) {
+ TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
+ assignLocation(*splitIoVar);
+ } else {
+ assignLocation(variable);
+ }
+}
+
+//
+// Handle seeing a function declarator in the grammar. This is the precursor
+// to recognizing a function prototype or function definition.
+//
+void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
+{
+ //
+ // Multiple declarations of the same function name are allowed.
+ //
+ // If this is a definition, the definition production code will check for redefinitions
+ // (we don't know at this point if it's a definition or not).
+ //
+ bool builtIn;
+ TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
+ const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
+
+ if (prototype) {
+ // All built-in functions are defined, even though they don't have a body.
+ // Count their prototype as a definition instead.
+ if (symbolTable.atBuiltInLevel())
+ function.setDefined();
+ else {
+ if (prevDec && ! builtIn)
+ symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
+ function.setPrototyped();
+ }
+ }
+
+ // This insert won't actually insert it if it's a duplicate signature, but it will still check for
+ // other forms of name collisions.
+ if (! symbolTable.insert(function))
+ error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
+}
+
+// For struct buffers with counters, we must pass the counter buffer as hidden parameter.
+// This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
+// Otherwise, it's a no-op
+void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
+ TIntermAggregate*& paramNodes)
+{
+ if (! hasStructBuffCounter(*param.type))
+ return;
+
+ const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
+
+ TType counterType;
+ counterBufferType(loc, counterType);
+ TVariable *variable = makeInternalVariable(counterBlockName, counterType);
+
+ if (! symbolTable.insert(*variable))
+ error(loc, "redefinition", variable->getName().c_str(), "");
+
+ paramNodes = intermediate.growAggregate(paramNodes,
+ intermediate.addSymbol(*variable, loc),
+ loc);
+}
+
+//
+// Handle seeing the function prototype in front of a function definition in the grammar.
+// The body is handled after this function returns.
+//
+// Returns an aggregate of parameter-symbol nodes.
+//
+TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
+ const TAttributes& attributes,
+ TIntermNode*& entryPointTree)
+{
+ currentCaller = function.getMangledName();
+ TSymbol* symbol = symbolTable.find(function.getMangledName());
+ TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
+
+ if (prevDec == nullptr)
+ error(loc, "can't find function", function.getName().c_str(), "");
+ // Note: 'prevDec' could be 'function' if this is the first time we've seen function
+ // as it would have just been put in the symbol table. Otherwise, we're looking up
+ // an earlier occurrence.
+
+ if (prevDec && prevDec->isDefined()) {
+ // Then this function already has a body.
+ error(loc, "function already has a body", function.getName().c_str(), "");
+ }
+ if (prevDec && ! prevDec->isDefined()) {
+ prevDec->setDefined();
+
+ // Remember the return type for later checking for RETURN statements.
+ currentFunctionType = &(prevDec->getType());
+ } else
+ currentFunctionType = new TType(EbtVoid);
+ functionReturnsValue = false;
+
+ // Entry points need different I/O and other handling, transform it so the
+ // rest of this function doesn't care.
+ entryPointTree = transformEntryPoint(loc, function, attributes);
+
+ //
+ // New symbol table scope for body of function plus its arguments
+ //
+ pushScope();
+
+ //
+ // Insert parameters into the symbol table.
+ // If the parameter has no name, it's not an error, just don't insert it
+ // (could be used for unused args).
+ //
+ // Also, accumulate the list of parameters into the AST, so lower level code
+ // knows where to find parameters.
+ //
+ TIntermAggregate* paramNodes = new TIntermAggregate;
+ for (int i = 0; i < function.getParamCount(); i++) {
+ TParameter& param = function[i];
+ if (param.name != nullptr) {
+ TVariable *variable = new TVariable(param.name, *param.type);
+
+ if (i == 0 && function.hasImplicitThis()) {
+ // Anonymous 'this' members are already in a symbol-table level,
+ // and we need to know what function parameter to map them to.
+ symbolTable.makeInternalVariable(*variable);
+ pushImplicitThis(variable);
+ }
+
+ // Insert the parameters with name in the symbol table.
+ if (! symbolTable.insert(*variable))
+ error(loc, "redefinition", variable->getName().c_str(), "");
+
+ // Add parameters to the AST list.
+ if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
+ // Expand the AST parameter nodes (but not the name mangling or symbol table view)
+ // for structures that need to be flattened.
+ flatten(*variable, false);
+ const TTypeList* structure = variable->getType().getStruct();
+ for (int mem = 0; mem < (int)structure->size(); ++mem) {
+ paramNodes = intermediate.growAggregate(paramNodes,
+ flattenAccess(variable->getUniqueId(), mem,
+ variable->getType().getQualifier().storage,
+ *(*structure)[mem].type),
+ loc);
+ }
+ } else {
+ // Add the parameter to the AST
+ paramNodes = intermediate.growAggregate(paramNodes,
+ intermediate.addSymbol(*variable, loc),
+ loc);
+ }
+
+ // Add hidden AST parameter for struct buffer counters, if needed.
+ addStructBufferHiddenCounterParam(loc, param, paramNodes);
+ } else
+ paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
+ }
+ if (function.hasIllegalImplicitThis())
+ pushImplicitThis(nullptr);
+
+ intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
+ loopNestingLevel = 0;
+ controlFlowNestingLevel = 0;
+ postEntryPointReturn = false;
+
+ return paramNodes;
+}
+
+// Handle all [attrib] attribute for the shader entry point
+void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
+{
+ for (auto it = attributes.begin(); it != attributes.end(); ++it) {
+ switch (it->name) {
+ case EatNumThreads:
+ {
+ const TIntermSequence& sequence = it->args->getSequence();
+ for (int lid = 0; lid < int(sequence.size()); ++lid)
+ intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
+ break;
+ }
+ case EatMaxVertexCount:
+ {
+ int maxVertexCount;
+
+ if (! it->getInt(maxVertexCount)) {
+ error(loc, "invalid maxvertexcount", "", "");
+ } else {
+ if (! intermediate.setVertices(maxVertexCount))
+ error(loc, "cannot change previously set maxvertexcount attribute", "", "");
+ }
+ break;
+ }
+ case EatPatchConstantFunc:
+ {
+ TString pcfName;
+ if (! it->getString(pcfName, 0, false)) {
+ error(loc, "invalid patch constant function", "", "");
+ } else {
+ patchConstantFunctionName = pcfName;
+ }
+ break;
+ }
+ case EatDomain:
+ {
+ // Handle [domain("...")]
+ TString domainStr;
+ if (! it->getString(domainStr)) {
+ error(loc, "invalid domain", "", "");
+ } else {
+ TLayoutGeometry domain = ElgNone;
+
+ if (domainStr == "tri") {
+ domain = ElgTriangles;
+ } else if (domainStr == "quad") {
+ domain = ElgQuads;
+ } else if (domainStr == "isoline") {
+ domain = ElgIsolines;
+ } else {
+ error(loc, "unsupported domain type", domainStr.c_str(), "");
+ }
+
+ if (language == EShLangTessEvaluation) {
+ if (! intermediate.setInputPrimitive(domain))
+ error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
+ } else {
+ if (! intermediate.setOutputPrimitive(domain))
+ error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
+ }
+ }
+ break;
+ }
+ case EatOutputTopology:
+ {
+ // Handle [outputtopology("...")]
+ TString topologyStr;
+ if (! it->getString(topologyStr)) {
+ error(loc, "invalid outputtopology", "", "");
+ } else {
+ TVertexOrder vertexOrder = EvoNone;
+ TLayoutGeometry primitive = ElgNone;
+
+ if (topologyStr == "point") {
+ intermediate.setPointMode();
+ } else if (topologyStr == "line") {
+ primitive = ElgIsolines;
+ } else if (topologyStr == "triangle_cw") {
+ vertexOrder = EvoCw;
+ primitive = ElgTriangles;
+ } else if (topologyStr == "triangle_ccw") {
+ vertexOrder = EvoCcw;
+ primitive = ElgTriangles;
+ } else {
+ error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
+ }
+
+ if (vertexOrder != EvoNone) {
+ if (! intermediate.setVertexOrder(vertexOrder)) {
+ error(loc, "cannot change previously set outputtopology",
+ TQualifier::getVertexOrderString(vertexOrder), "");
+ }
+ }
+ if (primitive != ElgNone)
+ intermediate.setOutputPrimitive(primitive);
+ }
+ break;
+ }
+ case EatPartitioning:
+ {
+ // Handle [partitioning("...")]
+ TString partitionStr;
+ if (! it->getString(partitionStr)) {
+ error(loc, "invalid partitioning", "", "");
+ } else {
+ TVertexSpacing partitioning = EvsNone;
+
+ if (partitionStr == "integer") {
+ partitioning = EvsEqual;
+ } else if (partitionStr == "fractional_even") {
+ partitioning = EvsFractionalEven;
+ } else if (partitionStr == "fractional_odd") {
+ partitioning = EvsFractionalOdd;
+ //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
+ } else {
+ error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
+ }
+
+ if (! intermediate.setVertexSpacing(partitioning))
+ error(loc, "cannot change previously set partitioning",
+ TQualifier::getVertexSpacingString(partitioning), "");
+ }
+ break;
+ }
+ case EatOutputControlPoints:
+ {
+ // Handle [outputcontrolpoints("...")]
+ int ctrlPoints;
+ if (! it->getInt(ctrlPoints)) {
+ error(loc, "invalid outputcontrolpoints", "", "");
+ } else {
+ if (! intermediate.setVertices(ctrlPoints)) {
+ error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
+ }
+ }
+ break;
+ }
+ case EatEarlyDepthStencil:
+ intermediate.setEarlyFragmentTests();
+ break;
+ case EatBuiltIn:
+ case EatLocation:
+ // tolerate these because of dual use of entrypoint and type attributes
+ break;
+ default:
+ warn(loc, "attribute does not apply to entry point", "", "");
+ break;
+ }
+ }
+}
+
+// Update the given type with any type-like attribute information in the
+// attributes.
+void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
+ bool allowEntry)
+{
+ if (attributes.size() == 0)
+ return;
+
+ int value;
+ TString builtInString;
+ for (auto it = attributes.begin(); it != attributes.end(); ++it) {
+ switch (it->name) {
+ case EatLocation:
+ // location
+ if (it->getInt(value))
+ type.getQualifier().layoutLocation = value;
+ break;
+ case EatBinding:
+ // binding
+ if (it->getInt(value)) {
+ type.getQualifier().layoutBinding = value;
+ type.getQualifier().layoutSet = 0;
+ }
+ // set
+ if (it->getInt(value, 1))
+ type.getQualifier().layoutSet = value;
+ break;
+ case EatGlobalBinding:
+ // global cbuffer binding
+ if (it->getInt(value))
+ globalUniformBinding = value;
+ // global cbuffer binding
+ if (it->getInt(value, 1))
+ globalUniformSet = value;
+ break;
+ case EatInputAttachment:
+ // input attachment
+ if (it->getInt(value))
+ type.getQualifier().layoutAttachment = value;
+ break;
+ case EatBuiltIn:
+ // PointSize built-in
+ if (it->getString(builtInString, 0, false)) {
+ if (builtInString == "PointSize")
+ type.getQualifier().builtIn = EbvPointSize;
+ }
+ break;
+ case EatPushConstant:
+ // push_constant
+ type.getQualifier().layoutPushConstant = true;
+ break;
+ case EatConstantId:
+ // specialization constant
+ if (it->getInt(value)) {
+ TSourceLoc loc;
+ loc.init();
+ setSpecConstantId(loc, type.getQualifier(), value);
+ }
+ break;
+ default:
+ if (! allowEntry)
+ warn(loc, "attribute does not apply to a type", "", "");
+ break;
+ }
+ }
+}
+
+//
+// Do all special handling for the entry point, including wrapping
+// the shader's entry point with the official entry point that will call it.
+//
+// The following:
+//
+// retType shaderEntryPoint(args...) // shader declared entry point
+// { body }
+//
+// Becomes
+//
+// out retType ret;
+// in iargs<that are input>...;
+// out oargs<that are output> ...;
+//
+// void shaderEntryPoint() // synthesized, but official, entry point
+// {
+// args<that are input> = iargs...;
+// ret = @shaderEntryPoint(args...);
+// oargs = args<that are output>...;
+// }
+// retType @shaderEntryPoint(args...)
+// { body }
+//
+// The symbol table will still map the original entry point name to the
+// the modified function and its new name:
+//
+// symbol table: shaderEntryPoint -> @shaderEntryPoint
+//
+// Returns nullptr if no entry-point tree was built, otherwise, returns
+// a subtree that creates the entry point.
+//
+TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
+ const TAttributes& attributes)
+{
+ // Return true if this is a tessellation patch constant function input to a domain shader.
+ const auto isDsPcfInput = [this](const TType& type) {
+ return language == EShLangTessEvaluation &&
+ type.contains([](const TType* t) {
+ return t->getQualifier().builtIn == EbvTessLevelOuter ||
+ t->getQualifier().builtIn == EbvTessLevelInner;
+ });
+ };
+
+ // if we aren't in the entry point, fix the IO as such and exit
+ if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) {
+ remapNonEntryPointIO(userFunction);
+ return nullptr;
+ }
+
+ entryPointFunction = &userFunction; // needed in finish()
+
+ // Handle entry point attributes
+ handleEntryPointAttributes(loc, attributes);
+
+ // entry point logic...
+
+ // Move parameters and return value to shader in/out
+ TVariable* entryPointOutput; // gets created in remapEntryPointIO
+ TVector<TVariable*> inputs;
+ TVector<TVariable*> outputs;
+ remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
+
+ // Further this return/in/out transform by flattening, splitting, and assigning locations
+ const auto makeVariableInOut = [&](TVariable& variable) {
+ if (variable.getType().isStruct()) {
+ if (variable.getType().getQualifier().isArrayedIo(language)) {
+ if (variable.getType().containsBuiltIn())
+ split(variable);
+ } else if (shouldFlatten(variable.getType(), EvqVaryingIn /* not assigned yet, but close enough */, true))
+ flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */);
+ }
+ // TODO: flatten arrays too
+ // TODO: flatten everything in I/O
+ // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
+
+ // For clip and cull distance, multiple output variables potentially get merged
+ // into one in assignClipCullDistance. That code in assignClipCullDistance
+ // handles the interface logic, so we avoid it here in that case.
+ if (!isClipOrCullDistance(variable.getType()))
+ assignToInterface(variable);
+ };
+ if (entryPointOutput != nullptr)
+ makeVariableInOut(*entryPointOutput);
+ for (auto it = inputs.begin(); it != inputs.end(); ++it)
+ if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below)
+ makeVariableInOut(*(*it));
+ for (auto it = outputs.begin(); it != outputs.end(); ++it)
+ makeVariableInOut(*(*it));
+
+ // In the domain shader, PCF input must be at the end of the linkage. That's because in the
+ // hull shader there is no ordering: the output comes from the separate PCF, which does not
+ // participate in the argument list. That is always put at the end of the HS linkage, so the
+ // input side of the DS must match. The argument may be in any position in the DS argument list
+ // however, so this ensures the linkage is built in the correct order regardless of argument order.
+ if (language == EShLangTessEvaluation) {
+ for (auto it = inputs.begin(); it != inputs.end(); ++it)
+ if (isDsPcfInput((*it)->getType()))
+ makeVariableInOut(*(*it));
+ }
+
+ // Synthesize the call
+
+ pushScope(); // matches the one in handleFunctionBody()
+
+ // new signature
+ TType voidType(EbtVoid);
+ TFunction synthEntryPoint(&userFunction.getName(), voidType);
+ TIntermAggregate* synthParams = new TIntermAggregate();
+ intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
+ intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
+ intermediate.incrementEntryPointCount();
+ TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
+
+ // change original name
+ userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table
+
+ // Copy inputs (shader-in -> calling arg), while building up the call node
+ TVector<TVariable*> argVars;
+ TIntermAggregate* synthBody = new TIntermAggregate();
+ auto inputIt = inputs.begin();
+ TIntermTyped* callingArgs = nullptr;
+
+ for (int i = 0; i < userFunction.getParamCount(); i++) {
+ TParameter& param = userFunction[i];
+ argVars.push_back(makeInternalVariable(*param.name, *param.type));
+ argVars.back()->getWritableType().getQualifier().makeTemporary();
+
+ // Track the input patch, which is the only non-builtin supported by hull shader PCF.
+ if (param.getDeclaredBuiltIn() == EbvInputPatch)
+ inputPatch = argVars.back();
+
+ TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
+ handleFunctionArgument(&callee, callingArgs, arg);
+ if (param.type->getQualifier().isParamInput()) {
+ intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
+ intermediate.addSymbol(**inputIt)));
+ inputIt++;
+ }
+ }
+
+ // Call
+ currentCaller = synthEntryPoint.getMangledName();
+ TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
+ currentCaller = userFunction.getMangledName();
+
+ // Return value
+ if (entryPointOutput) {
+ TIntermTyped* returnAssign;
+
+ // For hull shaders, the wrapped entry point return value is written to
+ // an array element as indexed by invocation ID, which we might have to make up.
+ // This is required to match SPIR-V semantics.
+ if (language == EShLangTessControl) {
+ TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
+
+ // If there is no user declared invocation ID, we must make one.
+ if (invocationIdSym == nullptr) {
+ TType invocationIdType(EbtUint, EvqIn, 1);
+ TString* invocationIdName = NewPoolTString("InvocationId");
+ invocationIdType.getQualifier().builtIn = EbvInvocationId;
+
+ TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
+
+ globalQualifierFix(loc, variable->getWritableType().getQualifier());
+ trackLinkage(*variable);
+
+ invocationIdSym = intermediate.addSymbol(*variable);
+ }
+
+ TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
+ invocationIdSym, loc);
+
+ // Set the type of the array element being dereferenced
+ const TType derefElementType(entryPointOutput->getType(), 0);
+ element->setType(derefElementType);
+
+ returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
+ } else {
+ returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
+ }
+ intermediate.growAggregate(synthBody, returnAssign);
+ } else
+ intermediate.growAggregate(synthBody, callReturn);
+
+ // Output copies
+ auto outputIt = outputs.begin();
+ for (int i = 0; i < userFunction.getParamCount(); i++) {
+ TParameter& param = userFunction[i];
+
+ // GS outputs are via emit, so we do not copy them here.
+ if (param.type->getQualifier().isParamOutput()) {
+ if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
+ // GS output stream does not assign outputs here: it's the Append() method
+ // which writes to the output, probably multiple times separated by Emit.
+ // We merely remember the output to use, here.
+ gsStreamOutput = *outputIt;
+ } else {
+ intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
+ intermediate.addSymbol(**outputIt),
+ intermediate.addSymbol(*argVars[i])));
+ }
+
+ outputIt++;
+ }
+ }
+
+ // Put the pieces together to form a full function subtree
+ // for the synthesized entry point.
+ synthBody->setOperator(EOpSequence);
+ TIntermNode* synthFunctionDef = synthParams;
+ handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
+
+ entryPointFunctionBody = synthBody;
+
+ return synthFunctionDef;
+}
+
+void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
+ TIntermNode*& node)
+{
+ node = intermediate.growAggregate(node, functionBody);
+ intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
+ node->getAsAggregate()->setName(function.getMangledName().c_str());
+
+ popScope();
+ if (function.hasImplicitThis())
+ popImplicitThis();
+
+ if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
+ error(loc, "function does not return a value:", "", function.getName().c_str());
+}
+
+// AST I/O is done through shader globals declared in the 'in' or 'out'
+// storage class. An HLSL entry point has a return value, input parameters
+// and output parameters. These need to get remapped to the AST I/O.
+void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
+ TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
+{
+ // We might have in input structure type with no decorations that caused it
+ // to look like an input type, yet it has (e.g.) interpolation types that
+ // must be modified that turn it into an input type.
+ // Hence, a missing ioTypeMap for 'input' might need to be synthesized.
+ const auto synthesizeEditedInput = [this](TType& type) {
+ // True if a type needs to be 'flat'
+ const auto needsFlat = [](const TType& type) {
+ return type.containsBasicType(EbtInt) ||
+ type.containsBasicType(EbtUint) ||
+ type.containsBasicType(EbtInt64) ||
+ type.containsBasicType(EbtUint64) ||
+ type.containsBasicType(EbtBool) ||
+ type.containsBasicType(EbtDouble);
+ };
+
+ if (language == EShLangFragment && needsFlat(type)) {
+ if (type.isStruct()) {
+ TTypeList* finalList = nullptr;
+ auto it = ioTypeMap.find(type.getStruct());
+ if (it == ioTypeMap.end() || it->second.input == nullptr) {
+ // Getting here means we have no input struct, but we need one.
+ auto list = new TTypeList;
+ for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
+ TType* newType = new TType;
+ newType->shallowCopy(*member->type);
+ TTypeLoc typeLoc = { newType, member->loc };
+ list->push_back(typeLoc);
+ }
+ // install the new input type
+ if (it == ioTypeMap.end()) {
+ tIoKinds newLists = { list, nullptr, nullptr };
+ ioTypeMap[type.getStruct()] = newLists;
+ } else
+ it->second.input = list;
+ finalList = list;
+ } else
+ finalList = it->second.input;
+ // edit for 'flat'
+ for (auto member = finalList->begin(); member != finalList->end(); ++member) {
+ if (needsFlat(*member->type)) {
+ member->type->getQualifier().clearInterpolation();
+ member->type->getQualifier().flat = true;
+ }
+ }
+ } else {
+ type.getQualifier().clearInterpolation();
+ type.getQualifier().flat = true;
+ }
+ }
+ };
+
+ // Do the actual work to make a type be a shader input or output variable,
+ // and clear the original to be non-IO (for use as a normal function parameter/return).
+ const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
+ TVariable* ioVariable = makeInternalVariable(name, type);
+ clearUniformInputOutput(type.getQualifier());
+ if (type.isStruct()) {
+ auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
+ if (newLists != ioTypeMap.end()) {
+ if (storage == EvqVaryingIn && newLists->second.input)
+ ioVariable->getWritableType().setStruct(newLists->second.input);
+ else if (storage == EvqVaryingOut && newLists->second.output)
+ ioVariable->getWritableType().setStruct(newLists->second.output);
+ }
+ }
+ if (storage == EvqVaryingIn) {
+ correctInput(ioVariable->getWritableType().getQualifier());
+ if (language == EShLangTessEvaluation)
+ if (!ioVariable->getType().isArray())
+ ioVariable->getWritableType().getQualifier().patch = true;
+ } else {
+ correctOutput(ioVariable->getWritableType().getQualifier());
+ }
+ ioVariable->getWritableType().getQualifier().storage = storage;
+
+ fixBuiltInIoType(ioVariable->getWritableType());
+
+ return ioVariable;
+ };
+
+ // return value is actually a shader-scoped output (out)
+ if (function.getType().getBasicType() == EbtVoid) {
+ returnValue = nullptr;
+ } else {
+ if (language == EShLangTessControl) {
+ // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
+ // array in SPIR-V semantics. We'll write to it indexed by invocation ID.
+
+ returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
+
+ TType outputType;
+ outputType.shallowCopy(function.getType());
+
+ // vertices has necessarily already been set when handling entry point attributes.
+ TArraySizes* arraySizes = new TArraySizes;
+ arraySizes->addInnerSize(intermediate.getVertices());
+ outputType.transferArraySizes(arraySizes);
+
+ clearUniformInputOutput(function.getWritableType().getQualifier());
+ returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
+ } else {
+ returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
+ }
+ }
+
+ // parameters are actually shader-scoped inputs and outputs (in or out)
+ for (int i = 0; i < function.getParamCount(); i++) {
+ TType& paramType = *function[i].type;
+ if (paramType.getQualifier().isParamInput()) {
+ synthesizeEditedInput(paramType);
+ TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
+ inputs.push_back(argAsGlobal);
+ }
+ if (paramType.getQualifier().isParamOutput()) {
+ TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
+ outputs.push_back(argAsGlobal);
+ }
+ }
+}
+
+// An HLSL function that looks like an entry point, but is not,
+// declares entry point IO built-ins, but these have to be undone.
+void HlslParseContext::remapNonEntryPointIO(TFunction& function)
+{
+ // return value
+ if (function.getType().getBasicType() != EbtVoid)
+ clearUniformInputOutput(function.getWritableType().getQualifier());
+
+ // parameters.
+ // References to structuredbuffer types are left unmodified
+ for (int i = 0; i < function.getParamCount(); i++)
+ if (!isReference(*function[i].type))
+ clearUniformInputOutput(function[i].type->getQualifier());
+}
+
+// Handle function returns, including type conversions to the function return type
+// if necessary.
+TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
+{
+ functionReturnsValue = true;
+
+ if (currentFunctionType->getBasicType() == EbtVoid) {
+ error(loc, "void function cannot return a value", "return", "");
+ return intermediate.addBranch(EOpReturn, loc);
+ } else if (*currentFunctionType != value->getType()) {
+ value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
+ if (value && *currentFunctionType != value->getType())
+ value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
+ if (value == nullptr || *currentFunctionType != value->getType()) {
+ error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
+ return value;
+ }
+ }
+
+ return intermediate.addBranch(EOpReturn, value, loc);
+}
+
+void HlslParseContext::handleFunctionArgument(TFunction* function,
+ TIntermTyped*& arguments, TIntermTyped* newArg)
+{
+ TParameter param = { 0, new TType, nullptr };
+ param.type->shallowCopy(newArg->getType());
+
+ function->addParameter(param);
+ if (arguments)
+ arguments = intermediate.growAggregate(arguments, newArg);
+ else
+ arguments = newArg;
+}
+
+// Position may require special handling: we can optionally invert Y.
+// See: https://github.com/KhronosGroup/glslang/issues/1173
+// https://github.com/KhronosGroup/glslang/issues/494
+TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
+ TIntermTyped* left, TIntermTyped* right)
+{
+ // If we are not asked for Y inversion, use a plain old assign.
+ if (!intermediate.getInvertY())
+ return intermediate.addAssign(op, left, right, loc);
+
+ // If we get here, we should invert Y.
+ TIntermAggregate* assignList = nullptr;
+
+ // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary.
+ TVariable* rhsTempVar = nullptr;
+ rhsTempVar = makeInternalVariable("@position", right->getType());
+ rhsTempVar->getWritableType().getQualifier().makeTemporary();
+
+ {
+ TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
+ assignList = intermediate.growAggregate(assignList,
+ intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
+ }
+
+ // pos.y = -pos.y
+ {
+ const int Y = 1;
+
+ TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
+ TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
+ TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
+
+ TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
+ TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
+
+ const TType derefType(right->getType(), 0);
+
+ lhsElement->setType(derefType);
+ rhsElement->setType(derefType);
+
+ TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
+
+ assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
+ }
+
+ // Assign the rhs temp (now with Y inversion) to the final output
+ {
+ TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
+ assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
+ }
+
+ assert(assignList != nullptr);
+ assignList->setOperator(EOpSequence);
+
+ return assignList;
+}
+
+// Clip and cull distance require special handling due to a semantic mismatch. In HLSL,
+// these can be float scalar, float vector, or arrays of float scalar or float vector.
+// In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components
+// (e.g, both x and y components of a float2) out into the destination float array.
+//
+// The values are assigned to sequential members of the output array. The inner dimension
+// is vector components. The outer dimension is array elements.
+TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
+ TIntermTyped* left, TIntermTyped* right)
+{
+ switch (language) {
+ case EShLangFragment:
+ case EShLangVertex:
+ case EShLangGeometry:
+ break;
+ default:
+ error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
+ return nullptr;
+ }
+
+ TVariable** clipCullVar = nullptr;
+
+ // Figure out if we are assigning to, or from, clip or cull distance.
+ const bool isOutput = isClipOrCullDistance(left->getType());
+
+ // This is the rvalue or lvalue holding the clip or cull distance.
+ TIntermTyped* clipCullNode = isOutput ? left : right;
+ // This is the value going into or out of the clip or cull distance.
+ TIntermTyped* internalNode = isOutput ? right : left;
+
+ const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
+
+ decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
+
+ // Refer to either the clip or the cull distance, depending on semantic.
+ switch (builtInType) {
+ case EbvClipDistance:
+ clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
+ semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
+ break;
+ case EbvCullDistance:
+ clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
+ semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
+ break;
+
+ // called invalidly: we expected a clip or a cull distance.
+ // static compile time problem: should not happen.
+ default: assert(0); return nullptr;
+ }
+
+ // This is the offset in the destination array of a given semantic's data
+ std::array<int, maxClipCullRegs> semanticOffset;
+
+ // Calculate offset of variable of semantic N in destination array
+ int arrayLoc = 0;
+ int vecItems = 0;
+
+ for (int x = 0; x < maxClipCullRegs; ++x) {
+ // See if we overflowed the vec4 packing
+ if ((vecItems + (*semanticNSize)[x]) > 4) {
+ arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
+ vecItems = 0;
+ }
+
+ semanticOffset[x] = arrayLoc;
+ vecItems += (*semanticNSize)[x];
+ arrayLoc += (*semanticNSize)[x];
+ }
+
+
+ // It can have up to 2 array dimensions (in the case of geometry shader inputs)
+ const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
+ const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
+ // vector sizes:
+ const int internalVectorSize = internalNode->getType().getVectorSize();
+ // array sizes, or 1 if it's not an array:
+ const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
+ const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
+
+ // The created type may be an array of arrays, e.g, for geometry shader inputs.
+ const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
+
+ // If we haven't created the output already, create it now.
+ if (*clipCullVar == nullptr) {
+ // ClipDistance and CullDistance are handled specially in the entry point input/output copy
+ // algorithm, because they may need to be unpacked from components of vectors (or a scalar)
+ // into a float array, or vice versa. Here, we make the array the right size and type,
+ // which depends on the incoming data, which has several potential dimensions:
+ // * Semantic ID
+ // * vector size
+ // * array size
+ // Of those, semantic ID and array size cannot appear simultaneously.
+ //
+ // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
+ // array dimensions. The shader's declaration may have one or two array dimensions. One is always
+ // the geometry's dimension.
+
+ const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
+
+ const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
+ const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
+
+ TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
+ clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
+
+ // Create required array dimension
+ TArraySizes* arraySizes = new TArraySizes;
+ if (isImplicitlyArrayed)
+ arraySizes->addInnerSize(requiredOuterArraySize);
+ arraySizes->addInnerSize(requiredInnerArraySize);
+ clipCullType.transferArraySizes(arraySizes);
+
+ // Obtain symbol name: we'll use that for the symbol we introduce.
+ TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
+ assert(sym != nullptr);
+
+ // We are moving the semantic ID from the layout location, so it is no longer needed or
+ // desired there.
+ clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
+
+ // Create variable and track its linkage
+ *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
+
+ trackLinkage(**clipCullVar);
+ }
+
+ // Create symbol for the clip or cull variable.
+ TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
+
+ // vector sizes:
+ const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
+
+ // array sizes, or 1 if it's not an array:
+ const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
+ const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
+ const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
+
+ // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
+ // fixBuiltInIoType() should have handled that upstream.
+ assert(clipCullSym->getType().isArray());
+ assert(clipCullSym->getType().getVectorSize() == 1);
+ assert(clipCullSym->getType().getBasicType() == EbtFloat);
+
+ // We may be creating multiple sub-assignments. This is an aggregate to hold them.
+ // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
+ TIntermAggregate* assignList = nullptr;
+
+ // Holds individual component assignments as we make them.
+ TIntermTyped* clipCullAssign = nullptr;
+
+ // If the types are homomorphic, use a simple assign. No need to mess about with
+ // individual components.
+ if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
+ clipCullInnerArraySize == internalInnerArraySize &&
+ clipCullOuterArraySize == internalOuterArraySize &&
+ clipCullVectorSize == internalVectorSize) {
+
+ if (isOutput)
+ clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
+ else
+ clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
+
+ assignList = intermediate.growAggregate(assignList, clipCullAssign);
+ assignList->setOperator(EOpSequence);
+
+ return assignList;
+ }
+
+ // We are going to copy each component of the internal (per array element if indicated) to sequential
+ // array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along.
+ // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
+ int clipCullInnerArrayPos = semanticOffset[semanticId];
+ int clipCullOuterArrayPos = 0;
+
+ // Lambda to add an index to a node, set the type of the result, and return the new node.
+ const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
+ const TType derefType(node->getType(), 0);
+ node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
+ node->setType(derefType);
+ return node;
+ };
+
+ // Loop through every component of every element of the internal, and copy to or from the matching external.
+ for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
+ for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
+ for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
+ // clip/cull array member to read from / write to:
+ TIntermTyped* clipCullMember = clipCullSym;
+
+ // If implicitly arrayed, there is an outer array dimension involved
+ if (isImplicitlyArrayed)
+ clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
+
+ // Index into proper array position for clip cull member
+ clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
+
+ // if needed, start over with next outer array slice.
+ if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
+ clipCullInnerArrayPos = semanticOffset[semanticId];
+ ++clipCullOuterArrayPos;
+ }
+
+ // internal member to read from / write to:
+ TIntermTyped* internalMember = internalNode;
+
+ // If internal node has outer array dimension, index appropriately.
+ if (internalArrayDims > 1)
+ internalMember = addIndex(internalMember, internalOuterArrayPos);
+
+ // If internal node has inner array dimension, index appropriately.
+ if (internalArrayDims > 0)
+ internalMember = addIndex(internalMember, internalInnerArrayPos);
+
+ // If internal node is a vector, extract the component of interest.
+ if (internalNode->getType().isVector())
+ internalMember = addIndex(internalMember, internalComponent);
+
+ // Create an assignment: output from internal to clip cull, or input from clip cull to internal.
+ if (isOutput)
+ clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
+ else
+ clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
+
+ // Track assignment in the sequence.
+ assignList = intermediate.growAggregate(assignList, clipCullAssign);
+ }
+ }
+ }
+
+ assert(assignList != nullptr);
+ assignList->setOperator(EOpSequence);
+
+ return assignList;
+}
+
+// Some simple source assignments need to be flattened to a sequence
+// of AST assignments. Catch these and flatten, otherwise, pass through
+// to intermediate.addAssign().
+//
+// Also, assignment to matrix swizzles requires multiple component assignments,
+// intercept those as well.
+TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
+ TIntermTyped* right)
+{
+ if (left == nullptr || right == nullptr)
+ return nullptr;
+
+ // writing to opaques will require fixing transforms
+ if (left->getType().containsOpaque())
+ intermediate.setNeedsLegalization();
+
+ if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
+ return handleAssignToMatrixSwizzle(loc, op, left, right);
+
+ // Return true if the given node is an index operation into a split variable.
+ const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
+ const TIntermBinary* binaryNode = node->getAsBinaryNode();
+
+ if (binaryNode == nullptr)
+ return false;
+
+ return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) &&
+ wasSplit(binaryNode->getLeft());
+ };
+
+ // Return true if this stage assigns clip position with potentially inverted Y
+ const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
+ return node->getType().getQualifier().builtIn == EbvPosition &&
+ (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
+ };
+
+ const bool isSplitLeft = wasSplit(left) || indexesSplit(left);
+ const bool isSplitRight = wasSplit(right) || indexesSplit(right);
+
+ const bool isFlattenLeft = wasFlattened(left);
+ const bool isFlattenRight = wasFlattened(right);
+
+ // OK to do a single assign if neither side is split or flattened. Otherwise,
+ // fall through to a member-wise copy.
+ if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
+ // Clip and cull distance requires more processing. See comment above assignClipCullDistance.
+ if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
+ const bool isOutput = isClipOrCullDistance(left->getType());
+
+ const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
+ return assignClipCullDistance(loc, op, semanticId, left, right);
+ } else if (assignsClipPos(left)) {
+ // Position can require special handling: see comment above assignPosition
+ return assignPosition(loc, op, left, right);
+ } else if (left->getQualifier().builtIn == EbvSampleMask) {
+ // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
+ // in the shader. Copy the scalar RHS into the LHS array element zero, if that happens.
+ if (left->isArray() && !right->isArray()) {
+ const TType derefType(left->getType(), 0);
+ left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
+ left->setType(derefType);
+ // Fall through to add assign.
+ }
+ }
+
+ return intermediate.addAssign(op, left, right, loc);
+ }
+
+ TIntermAggregate* assignList = nullptr;
+ const TVector<TVariable*>* leftVariables = nullptr;
+ const TVector<TVariable*>* rightVariables = nullptr;
+
+ // A temporary to store the right node's value, so we don't keep indirecting into it
+ // if it's not a simple symbol.
+ TVariable* rhsTempVar = nullptr;
+
+ // If the RHS is a simple symbol node, we'll copy it for each member.
+ TIntermSymbol* cloneSymNode = nullptr;
+
+ int memberCount = 0;
+
+ // Track how many items there are to copy.
+ if (left->getType().isStruct())
+ memberCount = (int)left->getType().getStruct()->size();
+ if (left->getType().isArray())
+ memberCount = left->getType().getCumulativeArraySize();
+
+ if (isFlattenLeft)
+ leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
+
+ if (isFlattenRight) {
+ rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
+ } else {
+ // The RHS is not flattened. There are several cases:
+ // 1. 1 item to copy: Use the RHS directly.
+ // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
+ // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
+
+ if (memberCount <= 1) {
+ // case 1: we'll use the symbol directly below. Nothing to do.
+ } else {
+ if (right->getAsSymbolNode() != nullptr) {
+ // case 2: we'll copy the symbol per iteration below.
+ cloneSymNode = right->getAsSymbolNode();
+ } else {
+ // case 3: assign to a temp, and indirect into that.
+ rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
+ rhsTempVar->getWritableType().getQualifier().makeTemporary();
+ TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
+
+ // Add this to the aggregate being built.
+ assignList = intermediate.growAggregate(assignList,
+ intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
+ }
+ }
+ }
+
+ // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
+ // variables, which is awkward when copying between split and unsplit structures. This variable tracks
+ // array indirections so they can be percolated from outer structs to inner variables.
+ std::vector <int> arrayElement;
+
+ TStorageQualifier leftStorage = left->getType().getQualifier().storage;
+ TStorageQualifier rightStorage = right->getType().getQualifier().storage;
+
+ int leftOffset = findSubtreeOffset(*left);
+ int rightOffset = findSubtreeOffset(*right);
+
+ const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
+ bool flattened)
+ -> TIntermTyped * {
+ const bool split = isLeft ? isSplitLeft : isSplitRight;
+
+ TIntermTyped* subTree;
+ const TType derefType(type, member);
+ const TVariable* builtInVar = nullptr;
+ if ((flattened || split) && derefType.isBuiltIn()) {
+ auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
+ derefType.getQualifier().builtIn,
+ isLeft ? leftStorage : rightStorage));
+ if (splitPair != splitBuiltIns.end())
+ builtInVar = splitPair->second;
+ }
+ if (builtInVar != nullptr) {
+ // copy from interstage IO built-in if needed
+ subTree = intermediate.addSymbol(*builtInVar);
+
+ if (subTree->getType().isArray()) {
+ // Arrayness of builtIn symbols isn't handled by the normal recursion:
+ // it's been extracted and moved to the built-in.
+ if (!arrayElement.empty()) {
+ const TType splitDerefType(subTree->getType(), arrayElement.back());
+ subTree = intermediate.addIndex(EOpIndexDirect, subTree,
+ intermediate.addConstantUnion(arrayElement.back(), loc), loc);
+ subTree->setType(splitDerefType);
+ } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
+ // This might also be a stage with arrayed outputs, in which case there's an index
+ // operation we should transfer to the output builtin.
+
+ const TType splitDerefType(subTree->getType(), 0);
+ subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
+ splitNode->getAsBinaryNode()->getRight(), loc);
+ subTree->setType(splitDerefType);
+ }
+ }
+ } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
+ if (isLeft)
+ subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
+ else
+ subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
+ } else {
+ // Index operator if it's an aggregate, else EOpNull
+ const TOperator accessOp = type.isArray() ? EOpIndexDirect
+ : type.isStruct() ? EOpIndexDirectStruct
+ : EOpNull;
+ if (accessOp == EOpNull) {
+ subTree = splitNode;
+ } else {
+ subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
+ loc);
+ const TType splitDerefType(splitNode->getType(), splitMember);
+ subTree->setType(splitDerefType);
+ }
+ }
+
+ return subTree;
+ };
+
+ // Use the proper RHS node: a new symbol from a TVariable, copy
+ // of an TIntermSymbol node, or sometimes the right node directly.
+ right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) :
+ cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
+ right;
+
+ // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
+ // whole thing. So, we'll resort to an explicit type via std::function.
+ const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
+ bool topLevel)>
+ traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
+ bool topLevel) -> void {
+ // If we get here, we are assigning to or from a whole array or struct that must be
+ // flattened, so have to do member-by-member assignment:
+
+ bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
+ bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
+
+ if ((left->getType().isArray() || right->getType().isArray()) &&
+ (shouldFlattenSubsetLeft || isSplitLeft ||
+ shouldFlattenSubsetRight || isSplitRight)) {
+ const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1;
+ const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
+
+ // The arrays might not be the same size,
+ // e.g., if the size has been forced for EbvTessLevelInner/Outer.
+ const int elementsToCopy = std::min(elementsL, elementsR);
+
+ // array case
+ for (int element = 0; element < elementsToCopy; ++element) {
+ arrayElement.push_back(element);
+
+ // Add a new AST symbol node if we have a temp variable holding a complex RHS.
+ TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element,
+ shouldFlattenSubsetLeft);
+ TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
+ shouldFlattenSubsetRight);
+
+ TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft,
+ element, shouldFlattenSubsetLeft)
+ : subLeft;
+ TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
+ element, shouldFlattenSubsetRight)
+ : subRight;
+
+ traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
+
+ arrayElement.pop_back();
+ }
+ } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft ||
+ shouldFlattenSubsetRight || isSplitRight)) {
+ // struct case
+ const auto& membersL = *left->getType().getStruct();
+ const auto& membersR = *right->getType().getStruct();
+
+ // These track the members in the split structures corresponding to the same in the unsplit structures,
+ // which we traverse in parallel.
+ int memberL = 0;
+ int memberR = 0;
+
+ // Handle empty structure assignment
+ if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
+ assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
+
+ for (int member = 0; member < int(membersL.size()); ++member) {
+ const TType& typeL = *membersL[member].type;
+ const TType& typeR = *membersR[member].type;
+
+ TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member,
+ shouldFlattenSubsetLeft);
+ TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
+ shouldFlattenSubsetRight);
+
+ // If there is no splitting, use the same values to avoid inefficiency.
+ TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft,
+ memberL, shouldFlattenSubsetLeft)
+ : subLeft;
+ TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
+ memberR, shouldFlattenSubsetRight)
+ : subRight;
+
+ if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
+ // Clip and cull distance built-in assignment is complex in its own right, and is handled in
+ // a separate function dedicated to that task. See comment above assignClipCullDistance;
+
+ const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
+
+ // Since all clip/cull semantics boil down to the same built-in type, we need to get the
+ // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
+ const TType derefType((isOutput ? left : right)->getType(), member);
+ const int semanticId = derefType.getQualifier().layoutLocation;
+
+ TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
+ subSplitLeft, subSplitRight);
+
+ assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
+ } else if (assignsClipPos(subSplitLeft)) {
+ // Position can require special handling: see comment above assignPosition
+ TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
+ assignList = intermediate.growAggregate(assignList, positionAssign, loc);
+ } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
+ !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
+ // If this is the final flattening (no nested types below to flatten)
+ // we'll copy the member, else recurse into the type hierarchy.
+ // However, if splitting the struct, that means we can copy a whole
+ // subtree here IFF it does not itself contain any interstage built-in
+ // IO variables, so we only have to recurse into it if there's something
+ // for splitting to do. That can save a lot of AST verbosity for
+ // a bunch of memberwise copies.
+
+ assignList = intermediate.growAggregate(assignList,
+ intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
+ loc);
+ } else {
+ traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
+ }
+
+ memberL += (typeL.isBuiltIn() ? 0 : 1);
+ memberR += (typeR.isBuiltIn() ? 0 : 1);
+ }
+ } else {
+ // Member copy
+ assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
+ }
+
+ };
+
+ TIntermTyped* splitLeft = left;
+ TIntermTyped* splitRight = right;
+
+ // If either left or right was a split structure, we must read or write it, but still have to
+ // parallel-recurse through the unsplit structure to identify the built-in IO vars.
+ // The left can be either a symbol, or an index into a symbol (e.g, array reference)
+ if (isSplitLeft) {
+ if (indexesSplit(left)) {
+ // Index case: Refer to the indexed symbol, if the left is an index operator.
+ const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
+
+ TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
+
+ splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
+ left->getAsBinaryNode()->getRight(), loc);
+
+ const TType derefType(splitLeftNonIo->getType(), 0);
+ splitLeft->setType(derefType);
+ } else {
+ // Symbol case: otherwise, if not indexed, we have the symbol directly.
+ const TIntermSymbol* symNode = left->getAsSymbolNode();
+ splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
+ }
+ }
+
+ if (isSplitRight)
+ splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
+
+ // This makes the whole assignment, recursing through subtypes as needed.
+ traverse(left, right, splitLeft, splitRight, true);
+
+ assert(assignList != nullptr);
+ assignList->setOperator(EOpSequence);
+
+ return assignList;
+}
+
+// An assignment to matrix swizzle must be decomposed into individual assignments.
+// These must be selected component-wise from the RHS and stored component-wise
+// into the LHS.
+TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
+ TIntermTyped* right)
+{
+ assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
+
+ if (op != EOpAssign)
+ error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
+
+ // isolate the matrix and swizzle nodes
+ TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
+ const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
+
+ // if the RHS isn't already a simple vector, let's store into one
+ TIntermSymbol* vector = right->getAsSymbolNode();
+ TIntermTyped* vectorAssign = nullptr;
+ if (vector == nullptr) {
+ // create a new intermediate vector variable to assign to
+ TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
+ vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
+
+ // assign the right to the new vector
+ vectorAssign = handleAssign(loc, op, vector, right);
+ }
+
+ // Assign the vector components to the matrix components.
+ // Store this as a sequence, so a single aggregate node represents this
+ // entire operation.
+ TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
+ TType columnType(matrix->getType(), 0);
+ TType componentType(columnType, 0);
+ TType indexType(EbtInt);
+ for (int i = 0; i < (int)swizzle.size(); i += 2) {
+ // the right component, single index into the RHS vector
+ TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
+ intermediate.addConstantUnion(i/2, loc), loc);
+
+ // the left component, double index into the LHS matrix
+ TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
+ intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
+ indexType, loc),
+ loc);
+ leftComp->setType(columnType);
+ leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
+ intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
+ indexType, loc),
+ loc);
+ leftComp->setType(componentType);
+
+ // Add the assignment to the aggregate
+ result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
+ }
+
+ result->setOp(EOpSequence);
+
+ return result;
+}
+
+//
+// HLSL atomic operations have slightly different arguments than
+// GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic.
+// This provides the post-decomposition equivalent opcode.
+//
+TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
+{
+ switch (op) {
+ case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd;
+ case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd;
+ case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
+ case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax;
+ case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin;
+ case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr;
+ case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor;
+ case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
+ case EOpInterlockedCompareStore: // TODO: ...
+ default:
+ error(loc, "unknown atomic operation", "unknown op", "");
+ return EOpNull;
+ }
+}
+
+//
+// Create a combined sampler/texture from separate sampler and texture.
+//
+TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
+ TIntermTyped* argSampler)
+{
+ TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
+
+ txcombine->getSequence().push_back(argTex);
+ txcombine->getSequence().push_back(argSampler);
+
+ TSampler samplerType = argTex->getType().getSampler();
+ samplerType.combined = true;
+
+ // TODO:
+ // This block exists until the spec no longer requires shadow modes on texture objects.
+ // It can be deleted after that, along with the shadowTextureVariant member.
+ {
+ const bool shadowMode = argSampler->getType().getSampler().shadow;
+
+ TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
+
+ if (texSymbol == nullptr)
+ texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
+
+ if (texSymbol == nullptr) {
+ error(loc, "unable to find texture symbol", "", "");
+ return nullptr;
+ }
+
+ // This forces the texture's shadow state to be the sampler's
+ // shadow state. This depends on downstream optimization to
+ // DCE one variant in [shadow, nonshadow] if both are present,
+ // or the SPIR-V module would be invalid.
+ int newId = texSymbol->getId();
+
+ // Check to see if this texture has been given a shadow mode already.
+ // If so, look up the one we already have.
+ const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
+
+ if (textureShadowEntry != textureShadowVariant.end())
+ newId = textureShadowEntry->second->get(shadowMode);
+ else
+ textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
+
+ // Sometimes we have to create another symbol (if this texture has been seen before,
+ // and we haven't created the form for this shadow mode).
+ if (newId == -1) {
+ TType texType;
+ texType.shallowCopy(argTex->getType());
+ texType.getSampler().shadow = shadowMode; // set appropriate shadow mode.
+ globalQualifierFix(loc, texType.getQualifier());
+
+ TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
+
+ trackLinkage(*newTexture);
+
+ newId = newTexture->getUniqueId();
+ }
+
+ assert(newId != -1);
+
+ if (textureShadowVariant.find(newId) == textureShadowVariant.end())
+ textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
+
+ textureShadowVariant[newId]->set(shadowMode, newId);
+
+ // Remember this shadow mode in the texture and the merged type.
+ argTex->getWritableType().getSampler().shadow = shadowMode;
+ samplerType.shadow = shadowMode;
+
+ texSymbol->switchId(newId);
+ }
+
+ txcombine->setType(TType(samplerType, EvqTemporary));
+ txcombine->setLoc(loc);
+
+ return txcombine;
+}
+
+// Return true if this a buffer type that has an associated counter buffer.
+bool HlslParseContext::hasStructBuffCounter(const TType& type) const
+{
+ switch (type.getQualifier().declaredBuiltIn) {
+ case EbvAppendConsume: // fall through...
+ case EbvRWStructuredBuffer: // ...
+ return true;
+ default:
+ return false; // the other structuredbuffer types do not have a counter.
+ }
+}
+
+void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
+{
+ // Counter type
+ TType* counterType = new TType(EbtUint, EvqBuffer);
+ counterType->setFieldName(intermediate.implicitCounterName);
+
+ TTypeList* blockStruct = new TTypeList;
+ TTypeLoc member = { counterType, loc };
+ blockStruct->push_back(member);
+
+ TType blockType(blockStruct, "", counterType->getQualifier());
+ blockType.getQualifier().storage = EvqBuffer;
+
+ type.shallowCopy(blockType);
+ shareStructBufferType(type);
+}
+
+// declare counter for a structured buffer type
+void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
+{
+ // Bail out if not a struct buffer
+ if (! isStructBufferType(bufferType))
+ return;
+
+ if (! hasStructBuffCounter(bufferType))
+ return;
+
+ TType blockType;
+ counterBufferType(loc, blockType);
+
+ TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
+
+ // Counter buffer is not yet in use
+ structBufferCounter[*blockName] = false;
+
+ shareStructBufferType(blockType);
+ declareBlock(loc, blockType, blockName);
+}
+
+// return the counter that goes with a given structuredbuffer
+TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
+{
+ // Bail out if not a struct buffer
+ if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
+ return nullptr;
+
+ const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
+
+ // Mark the counter as being used
+ structBufferCounter[counterBlockName] = true;
+
+ TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure
+ TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
+
+ TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
+ counterMember->setType(TType(EbtUint));
+ return counterMember;
+}
+
+//
+// Decompose structure buffer methods into AST
+//
+void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
+{
+ if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
+ return;
+
+ const TOperator op = node->getAsOperator()->getOp();
+ TIntermAggregate* argAggregate = arguments->getAsAggregate();
+
+ // Buffer is the object upon which method is called, so always arg 0
+ TIntermTyped* bufferObj = nullptr;
+
+ // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
+ if (argAggregate) {
+ if (argAggregate->getSequence().empty())
+ return;
+ if (argAggregate->getSequence()[0])
+ bufferObj = argAggregate->getSequence()[0]->getAsTyped();
+ } else {
+ bufferObj = arguments->getAsSymbolNode();
+ }
+
+ if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
+ return;
+
+ // Some methods require a hidden internal counter, obtained via getStructBufferCounter().
+ // This lambda adds something to it and returns the old value.
+ const auto incDecCounter = [&](int incval) -> TIntermTyped* {
+ TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
+ TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
+
+ if (counter == nullptr)
+ return nullptr;
+
+ TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
+ counterIncrement->setType(TType(EbtUint, EvqTemporary));
+ counterIncrement->setLoc(loc);
+ counterIncrement->getSequence().push_back(counter);
+ counterIncrement->getSequence().push_back(incrementValue);
+
+ return counterIncrement;
+ };
+
+ // Index to obtain the runtime sized array out of the buffer.
+ TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
+ if (argArray == nullptr)
+ return; // It might not be a struct buffer method.
+
+ switch (op) {
+ case EOpMethodLoad:
+ {
+ TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
+
+ const TType& bufferType = bufferObj->getType();
+
+ const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
+
+ // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
+ // buffer then, but that's what it calls itself.
+ const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer ||
+ builtInType == EbvRWByteAddressBuffer);
+
+
+ if (isByteAddressBuffer)
+ argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
+ intermediate.addConstantUnion(2, loc, true),
+ loc, TType(EbtInt));
+
+ // Index into the array to find the item being loaded.
+ const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
+
+ node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
+
+ const TType derefType(argArray->getType(), 0);
+ node->setType(derefType);
+ }
+
+ break;
+
+ case EOpMethodLoad2:
+ case EOpMethodLoad3:
+ case EOpMethodLoad4:
+ {
+ TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
+
+ TOperator constructOp = EOpNull;
+ int size = 0;
+
+ switch (op) {
+ case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
+ case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
+ case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
+ default: assert(0);
+ }
+
+ TIntermTyped* body = nullptr;
+
+ // First, we'll store the address in a variable to avoid multiple shifts
+ // (we must convert the byte address to an item address)
+ TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
+ intermediate.addConstantUnion(2, loc, true),
+ loc, TType(EbtInt));
+
+ TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
+ TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
+
+ body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
+
+ TIntermTyped* vec = nullptr;
+
+ // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
+ // address conversion.
+ for (int idx=0; idx<size; ++idx) {
+ TIntermTyped* offsetIdx = byteAddrIdxVar;
+
+ // add index offset
+ if (idx != 0)
+ offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
+ intermediate.addConstantUnion(idx, loc, true),
+ loc, TType(EbtInt));
+
+ const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
+ : EOpIndexIndirect;
+
+ TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
+
+ TType derefType(argArray->getType(), 0);
+ derefType.getQualifier().makeTemporary();
+ indexVal->setType(derefType);
+
+ vec = intermediate.growAggregate(vec, indexVal);
+ }
+
+ vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
+ vec->getAsAggregate()->setOperator(constructOp);
+
+ body = intermediate.growAggregate(body, vec);
+ body->setType(vec->getType());
+ body->getAsAggregate()->setOperator(EOpSequence);
+
+ node = body;
+ }
+
+ break;
+
+ case EOpMethodStore:
+ case EOpMethodStore2:
+ case EOpMethodStore3:
+ case EOpMethodStore4:
+ {
+ TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
+ TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value
+
+ // Index into the array to find the item being loaded.
+ // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
+ // buffer then, but that's what it calls itself).
+
+ int size = 0;
+
+ switch (op) {
+ case EOpMethodStore: size = 1; break;
+ case EOpMethodStore2: size = 2; break;
+ case EOpMethodStore3: size = 3; break;
+ case EOpMethodStore4: size = 4; break;
+ default: assert(0);
+ }
+
+ TIntermAggregate* body = nullptr;
+
+ // First, we'll store the address in a variable to avoid multiple shifts
+ // (we must convert the byte address to an item address)
+ TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
+ intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
+
+ TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
+ TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
+
+ body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
+
+ for (int idx=0; idx<size; ++idx) {
+ TIntermTyped* offsetIdx = byteAddrIdxVar;
+ TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
+
+ // add index offset
+ if (idx != 0)
+ offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
+
+ const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
+ : EOpIndexIndirect;
+
+ TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
+ const TType derefType(argArray->getType(), 0);
+ lValue->setType(derefType);
+
+ TIntermTyped* rValue;
+ if (size == 1) {
+ rValue = argValue;
+ } else {
+ rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
+ const TType indexType(argValue->getType(), 0);
+ rValue->setType(indexType);
+ }
+
+ TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
+
+ body = intermediate.growAggregate(body, assign);
+ }
+
+ body->setOperator(EOpSequence);
+ node = body;
+ }
+
+ break;
+
+ case EOpMethodGetDimensions:
+ {
+ const int numArgs = (int)argAggregate->getSequence().size();
+ TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items
+ TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride
+
+ TIntermAggregate* body = nullptr;
+
+ // Length output:
+ if (argArray->getType().isSizedArray()) {
+ const int length = argArray->getType().getOuterArraySize();
+ TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
+ intermediate.addConstantUnion(length, loc, true), loc);
+ body = intermediate.growAggregate(body, assign, loc);
+ } else {
+ TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
+ argNumItems->getType());
+ TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
+ body = intermediate.growAggregate(body, assign, loc);
+ }
+
+ // Stride output:
+ if (argStride != nullptr) {
+ int size;
+ int stride;
+ intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
+ argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
+
+ TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
+ intermediate.addConstantUnion(stride, loc, true), loc);
+
+ body = intermediate.growAggregate(body, assign);
+ }
+
+ body->setOperator(EOpSequence);
+ node = body;
+ }
+
+ break;
+
+ case EOpInterlockedAdd:
+ case EOpInterlockedAnd:
+ case EOpInterlockedExchange:
+ case EOpInterlockedMax:
+ case EOpInterlockedMin:
+ case EOpInterlockedOr:
+ case EOpInterlockedXor:
+ case EOpInterlockedCompareExchange:
+ case EOpInterlockedCompareStore:
+ {
+ // We'll replace the first argument with the block dereference, and let
+ // downstream decomposition handle the rest.
+
+ TIntermSequence& sequence = argAggregate->getSequence();
+
+ TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index
+ argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
+ loc, TType(EbtInt));
+
+ const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
+ TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
+
+ const TType derefType(argArray->getType(), 0);
+ element->setType(derefType);
+
+ // Replace the numeric byte offset parameter with array reference.
+ sequence[1] = element;
+ sequence.erase(sequence.begin(), sequence.begin()+1);
+ }
+ break;
+
+ case EOpMethodIncrementCounter:
+ {
+ node = incDecCounter(1);
+ break;
+ }
+
+ case EOpMethodDecrementCounter:
+ {
+ TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
+ node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
+ preIncValue->getType());
+ break;
+ }
+
+ case EOpMethodAppend:
+ {
+ TIntermTyped* oldCounter = incDecCounter(1);
+
+ TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
+ TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
+
+ const TType derefType(argArray->getType(), 0);
+ lValue->setType(derefType);
+
+ node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
+
+ break;
+ }
+
+ case EOpMethodConsume:
+ {
+ TIntermTyped* oldCounter = incDecCounter(-1);
+
+ TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
+ intermediate.addConstantUnion(-1, loc, true), loc,
+ oldCounter->getType());
+
+ node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
+
+ const TType derefType(argArray->getType(), 0);
+ node->setType(derefType);
+
+ break;
+ }
+
+ default:
+ break; // most pass through unchanged
+ }
+}
+
+// Create array of standard sample positions for given sample count.
+// TODO: remove when a real method to query sample pos exists in SPIR-V.
+TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
+{
+ struct tSamplePos { float x, y; };
+
+ static const tSamplePos pos1[] = {
+ { 0.0/16.0, 0.0/16.0 },
+ };
+
+ // standard sample positions for 2, 4, 8, and 16 samples.
+ static const tSamplePos pos2[] = {
+ { 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
+ };
+
+ static const tSamplePos pos4[] = {
+ {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 },
+ };
+
+ static const tSamplePos pos8[] = {
+ { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
+ {-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
+ };
+
+ static const tSamplePos pos16[] = {
+ { 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
+ {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
+ {-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 },
+ {-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
+ };
+
+ const tSamplePos* sampleLoc = nullptr;
+ int numSamples = count;
+
+ switch (count) {
+ case 2: sampleLoc = pos2; break;
+ case 4: sampleLoc = pos4; break;
+ case 8: sampleLoc = pos8; break;
+ case 16: sampleLoc = pos16; break;
+ default:
+ sampleLoc = pos1;
+ numSamples = 1;
+ }
+
+ TConstUnionArray* values = new TConstUnionArray(numSamples*2);
+
+ for (int pos=0; pos<count; ++pos) {
+ TConstUnion x, y;
+ x.setDConst(sampleLoc[pos].x);
+ y.setDConst(sampleLoc[pos].y);
+
+ (*values)[pos*2+0] = x;
+ (*values)[pos*2+1] = y;
+ }
+
+ TType retType(EbtFloat, EvqConst, 2);
+
+ if (numSamples != 1) {
+ TArraySizes* arraySizes = new TArraySizes;
+ arraySizes->addInnerSize(numSamples);
+ retType.transferArraySizes(arraySizes);
+ }
+
+ return new TIntermConstantUnion(*values, retType);
+}
+
+//
+// Decompose DX9 and DX10 sample intrinsics & object methods into AST
+//
+void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
+{
+ if (node == nullptr || !node->getAsOperator())
+ return;
+
+ // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
+ const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
+ result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
+
+ TIntermTyped* convertedResult = nullptr;
+
+ TType retType;
+ getTextureReturnType(sampler, retType);
+
+ if (retType.isStruct()) {
+ // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
+ TIntermAggregate* conversionAggregate = new TIntermAggregate;
+ convertedResult = conversionAggregate;
+
+ // Convert vector output to return structure. We will need a temp symbol to copy the results to.
+ TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
+
+ // We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the
+ // sample each time we'll index into the result, so we'll copy to this, and index into the copy.
+ TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
+
+ // Initial copy from texture to our sample result shadow.
+ TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
+ result, loc);
+
+ conversionAggregate->getSequence().push_back(shadowCopy);
+
+ unsigned vec4Pos = 0;
+
+ for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
+ const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
+
+ // Check for bad struct members. This should have been caught upstream. Complain, because
+ // wwe don't know what to do with it. This algorithm could be generalized to handle
+ // other things, e.g, sub-structures, but HLSL doesn't allow them.
+ if (!memberType.isVector() && !memberType.isScalar()) {
+ error(loc, "expected: scalar or vector type in texture structure", "", "");
+ return nullptr;
+ }
+
+ // Index into the struct variable to find the member to assign.
+ TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
+ intermediate.addSymbol(*structVar, loc),
+ intermediate.addConstantUnion(m, loc), loc);
+
+ structMember->setType(memberType);
+
+ // Assign each component of (possible) vector in struct member.
+ for (int component = 0; component < memberType.getVectorSize(); ++component) {
+ TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
+ intermediate.addSymbol(*sampleShadow, loc),
+ intermediate.addConstantUnion(vec4Pos++, loc), loc);
+ vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
+
+ TIntermTyped* memberAssign = nullptr;
+
+ if (memberType.isVector()) {
+ // Vector member: we need to create an access chain to the vector component.
+
+ TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
+ intermediate.addConstantUnion(component, loc), loc);
+
+ memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
+ } else {
+ // Scalar member: we can assign to it directly.
+ memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
+ }
+
+
+ conversionAggregate->getSequence().push_back(memberAssign);
+ }
+ }
+
+ // Add completed variable so the expression results in the whole struct value we just built.
+ conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
+
+ // Make it a sequence.
+ intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
+ } else {
+ // vector clamp the output if template vector type is smaller than sample result.
+ if (retType.getVectorSize() < node->getVectorSize()) {
+ // Too many components. Construct shorter vector from it.
+ const TOperator op = intermediate.mapTypeToConstructorOp(retType);
+
+ convertedResult = constructBuiltIn(retType, op, result, loc, false);
+ } else {
+ // Enough components. Use directly.
+ convertedResult = result;
+ }
+ }
+
+ convertedResult->setLoc(loc);
+ return convertedResult;
+ };
+
+ const TOperator op = node->getAsOperator()->getOp();
+ const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
+
+ // Bail out if not a sampler method.
+ // Note though this is odd to do before checking the op, because the op
+ // could be something that takes the arguments, and the function in question
+ // takes the result of the op. So, this is not the final word.
+ if (arguments != nullptr) {
+ if (argAggregate == nullptr) {
+ if (arguments->getAsTyped()->getBasicType() != EbtSampler)
+ return;
+ } else {
+ if (argAggregate->getSequence().size() == 0 ||
+ argAggregate->getSequence()[0] == nullptr ||
+ argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
+ return;
+ }
+ }
+
+ switch (op) {
+ // **** DX9 intrinsics: ****
+ case EOpTexture:
+ {
+ // Texture with ddx & ddy is really gradient form in HLSL
+ if (argAggregate->getSequence().size() == 4)
+ node->getAsAggregate()->setOperator(EOpTextureGrad);
+
+ break;
+ }
+ case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
+ {
+ TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped(); // sampler
+ TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped(); // coord
+
+ assert(argCoord->getVectorSize() == 4);
+ TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
+ TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
+
+ TOperator constructOp = EOpNull;
+ const TSampler &sampler = argSamp->getType().getSampler();
+ int coordSize = 0;
+
+ switch (sampler.dim)
+ {
+ case Esd1D: constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
+ case Esd2D: constructOp = EOpConstructVec2; coordSize = 2; break; // 2D
+ case Esd3D: constructOp = EOpConstructVec3; coordSize = 3; break; // 3D
+ case EsdCube: constructOp = EOpConstructVec3; coordSize = 3; break; // also 3D
+ default:
+ break;
+ }
+
+ TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
+ constructCoord->getSequence().push_back(argCoord);
+ constructCoord->setLoc(loc);
+ constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
+
+ TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
+ tex->getSequence().push_back(argSamp); // sampler
+ tex->getSequence().push_back(constructCoord); // coordinate
+ tex->getSequence().push_back(argLod); // lod
+
+ node = convertReturn(tex, sampler);
+
+ break;
+ }
+
+ case EOpTextureBias:
+ {
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord
+
+ // HLSL puts bias in W component of coordinate. We extract it and add it to
+ // the argument list, instead
+ TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
+ TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
+
+ TOperator constructOp = EOpNull;
+ const TSampler& sampler = arg0->getType().getSampler();
+
+ switch (sampler.dim) {
+ case Esd1D: constructOp = EOpConstructFloat; break; // 1D
+ case Esd2D: constructOp = EOpConstructVec2; break; // 2D
+ case Esd3D: constructOp = EOpConstructVec3; break; // 3D
+ case EsdCube: constructOp = EOpConstructVec3; break; // also 3D
+ default: break;
+ }
+
+ TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
+ constructCoord->getSequence().push_back(arg1);
+ constructCoord->setLoc(loc);
+
+ // The input vector should never be less than 2, since there's always a bias.
+ // The max is for safety, and should be a no-op.
+ constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
+
+ TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
+ tex->getSequence().push_back(arg0); // sampler
+ tex->getSequence().push_back(constructCoord); // coordinate
+ tex->getSequence().push_back(bias); // bias
+
+ node = convertReturn(tex, sampler);
+
+ break;
+ }
+
+ // **** DX10 methods: ****
+ case EOpMethodSample: // fall through
+ case EOpMethodSampleBias: // ...
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
+ TIntermTyped* argBias = nullptr;
+ TIntermTyped* argOffset = nullptr;
+ const TSampler& sampler = argTex->getType().getSampler();
+
+ int nextArg = 3;
+
+ if (op == EOpMethodSampleBias) // SampleBias has a bias arg
+ argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
+
+ TOperator textureOp = EOpTexture;
+
+ if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
+ textureOp = EOpTextureOffset;
+ argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
+ }
+
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+
+ TIntermAggregate* txsample = new TIntermAggregate(textureOp);
+ txsample->getSequence().push_back(txcombine);
+ txsample->getSequence().push_back(argCoord);
+
+ if (argBias != nullptr)
+ txsample->getSequence().push_back(argBias);
+
+ if (argOffset != nullptr)
+ txsample->getSequence().push_back(argOffset);
+
+ node = convertReturn(txsample, sampler);
+
+ break;
+ }
+
+ case EOpMethodSampleGrad: // ...
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
+ TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped();
+ TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped();
+ TIntermTyped* argOffset = nullptr;
+ const TSampler& sampler = argTex->getType().getSampler();
+
+ TOperator textureOp = EOpTextureGrad;
+
+ if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
+ textureOp = EOpTextureGradOffset;
+ argOffset = argAggregate->getSequence()[5]->getAsTyped();
+ }
+
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+
+ TIntermAggregate* txsample = new TIntermAggregate(textureOp);
+ txsample->getSequence().push_back(txcombine);
+ txsample->getSequence().push_back(argCoord);
+ txsample->getSequence().push_back(argDDX);
+ txsample->getSequence().push_back(argDDY);
+
+ if (argOffset != nullptr)
+ txsample->getSequence().push_back(argOffset);
+
+ node = convertReturn(txsample, sampler);
+
+ break;
+ }
+
+ case EOpMethodGetDimensions:
+ {
+ // AST returns a vector of results, which we break apart component-wise into
+ // separate values to assign to the HLSL method's outputs, ala:
+ // tx . GetDimensions(width, height);
+ // float2 sizeQueryTemp = EOpTextureQuerySize
+ // width = sizeQueryTemp.X;
+ // height = sizeQueryTemp.Y;
+
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ const TType& texType = argTex->getType();
+
+ assert(texType.getBasicType() == EbtSampler);
+
+ const TSampler& sampler = texType.getSampler();
+ const TSamplerDim dim = sampler.dim;
+ const bool isImage = sampler.isImage();
+ const bool isMs = sampler.isMultiSample();
+ const int numArgs = (int)argAggregate->getSequence().size();
+
+ int numDims = 0;
+
+ switch (dim) {
+ case Esd1D: numDims = 1; break; // W
+ case Esd2D: numDims = 2; break; // W, H
+ case Esd3D: numDims = 3; break; // W, H, D
+ case EsdCube: numDims = 2; break; // W, H (cube)
+ case EsdBuffer: numDims = 1; break; // W (buffers)
+ case EsdRect: numDims = 2; break; // W, H (rect)
+ default:
+ assert(0 && "unhandled texture dimension");
+ }
+
+ // Arrayed adds another dimension for the number of array elements
+ if (sampler.isArrayed())
+ ++numDims;
+
+ // Establish whether the method itself is querying mip levels. This can be false even
+ // if the underlying query requires a MIP level, due to the available HLSL method overloads.
+ const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
+
+ // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
+ // True if:
+ // 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
+ // or,
+ // 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
+ const bool mipRequired =
+ ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
+ mipQuery; // 2...
+
+ // AST assumes integer return. Will be converted to float if required.
+ TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
+ sizeQuery->getSequence().push_back(argTex);
+
+ // If we're building an LOD query, add the LOD.
+ if (mipRequired) {
+ // If the base HLSL query had no MIP level given, use level 0.
+ TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
+ intermediate.addConstantUnion(0, loc, true);
+ sizeQuery->getSequence().push_back(queryLod);
+ }
+
+ sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
+ sizeQuery->setLoc(loc);
+
+ // Return value from size query
+ TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
+ tempArg->getWritableType().getQualifier().makeTemporary();
+ TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
+ intermediate.addSymbol(*tempArg, loc),
+ sizeQuery, loc);
+
+ // Compound statement for assigning outputs
+ TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
+ // Index of first output parameter
+ const int outParamBase = mipQuery ? 2 : 1;
+
+ for (int compNum = 0; compNum < numDims; ++compNum) {
+ TIntermTyped* indexedOut = nullptr;
+ TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
+
+ if (numDims > 1) {
+ TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
+ indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
+ indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
+ indexedOut->setLoc(loc);
+ } else {
+ indexedOut = sizeQueryReturn;
+ }
+
+ TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
+ TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
+
+ compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
+ }
+
+ // handle mip level parameter
+ if (mipQuery) {
+ TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
+
+ TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
+ levelsQuery->getSequence().push_back(argTex);
+ levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
+ levelsQuery->setLoc(loc);
+
+ TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
+ compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
+ }
+
+ // 2DMS formats query # samples, which needs a different query op
+ if (sampler.isMultiSample()) {
+ TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
+
+ TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
+ samplesQuery->getSequence().push_back(argTex);
+ samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
+ samplesQuery->setLoc(loc);
+
+ TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
+ compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
+ }
+
+ compoundStatement->setOperator(EOpSequence);
+ compoundStatement->setLoc(loc);
+ compoundStatement->setType(TType(EbtVoid));
+
+ node = compoundStatement;
+
+ break;
+ }
+
+ case EOpMethodSampleCmp: // fall through...
+ case EOpMethodSampleCmpLevelZero:
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
+ TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
+ TIntermTyped* argOffset = nullptr;
+
+ // Sampler argument should be a sampler.
+ if (argSamp->getType().getBasicType() != EbtSampler) {
+ error(loc, "expected: sampler type", "", "");
+ return;
+ }
+
+ // Sampler should be a SamplerComparisonState
+ if (! argSamp->getType().getSampler().isShadow()) {
+ error(loc, "expected: SamplerComparisonState", "", "");
+ return;
+ }
+
+ // optional offset value
+ if (argAggregate->getSequence().size() > 4)
+ argOffset = argAggregate->getSequence()[4]->getAsTyped();
+
+ const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
+
+ // AST wants comparison value as one of the texture coordinates
+ TOperator constructOp = EOpNull;
+ switch (coordDimWithCmpVal) {
+ // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
+ case 2: constructOp = EOpConstructVec2; break;
+ case 3: constructOp = EOpConstructVec3; break;
+ case 4: constructOp = EOpConstructVec4; break;
+ case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg.
+ default: assert(0); break;
+ }
+
+ TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
+ coordWithCmp->getSequence().push_back(argCoord);
+ if (coordDimWithCmpVal != 5) // cube array shadow is special.
+ coordWithCmp->getSequence().push_back(argCmpVal);
+ coordWithCmp->setLoc(loc);
+ coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
+
+ TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
+ if (argOffset != nullptr)
+ textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
+
+ // Create combined sampler & texture op
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+ TIntermAggregate* txsample = new TIntermAggregate(textureOp);
+ txsample->getSequence().push_back(txcombine);
+ txsample->getSequence().push_back(coordWithCmp);
+
+ if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
+ txsample->getSequence().push_back(argCmpVal);
+
+ // the LevelZero form uses 0 as an explicit LOD
+ if (op == EOpMethodSampleCmpLevelZero)
+ txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
+
+ // Add offset if present
+ if (argOffset != nullptr)
+ txsample->getSequence().push_back(argOffset);
+
+ txsample->setType(node->getType());
+ txsample->setLoc(loc);
+ node = txsample;
+
+ break;
+ }
+
+ case EOpMethodLoad:
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argOffset = nullptr;
+ TIntermTyped* lodComponent = nullptr;
+ TIntermTyped* coordSwizzle = nullptr;
+
+ const TSampler& sampler = argTex->getType().getSampler();
+ const bool isMS = sampler.isMultiSample();
+ const bool isBuffer = sampler.dim == EsdBuffer;
+ const bool isImage = sampler.isImage();
+ const TBasicType coordBaseType = argCoord->getType().getBasicType();
+
+ // Last component of coordinate is the mip level, for non-MS. we separate them here:
+ if (isMS || isBuffer || isImage) {
+ // MS, Buffer, and Image have no LOD
+ coordSwizzle = argCoord;
+ } else {
+ // Extract coordinate
+ int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
+ TSwizzleSelectors<TVectorSelector> coordFields;
+ for (int i = 0; i < swizzleSize; ++i)
+ coordFields.push_back(i);
+ TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
+ coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
+ coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
+
+ // Extract LOD
+ TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
+ lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
+ lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
+ }
+
+ const int numArgs = (int)argAggregate->getSequence().size();
+ const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
+
+ // Create texel fetch
+ const TOperator fetchOp = (isImage ? EOpImageLoad :
+ hasOffset ? EOpTextureFetchOffset :
+ EOpTextureFetch);
+ TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
+
+ // Build up the fetch
+ txfetch->getSequence().push_back(argTex);
+ txfetch->getSequence().push_back(coordSwizzle);
+
+ if (isMS) {
+ // add 2DMS sample index
+ TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped();
+ txfetch->getSequence().push_back(argSampleIdx);
+ } else if (isBuffer) {
+ // Nothing else to do for buffers.
+ } else if (isImage) {
+ // Nothing else to do for images.
+ } else {
+ // 2DMS and buffer have no LOD, but everything else does.
+ txfetch->getSequence().push_back(lodComponent);
+ }
+
+ // Obtain offset arg, if there is one.
+ if (hasOffset) {
+ const int offsetPos = (isMS ? 3 : 2);
+ argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
+ txfetch->getSequence().push_back(argOffset);
+ }
+
+ node = convertReturn(txfetch, sampler);
+
+ break;
+ }
+
+ case EOpMethodSampleLevel:
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
+ TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped();
+ TIntermTyped* argOffset = nullptr;
+ const TSampler& sampler = argTex->getType().getSampler();
+
+ const int numArgs = (int)argAggregate->getSequence().size();
+
+ if (numArgs == 5) // offset, if present
+ argOffset = argAggregate->getSequence()[4]->getAsTyped();
+
+ const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
+ TIntermAggregate* txsample = new TIntermAggregate(textureOp);
+
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+
+ txsample->getSequence().push_back(txcombine);
+ txsample->getSequence().push_back(argCoord);
+ txsample->getSequence().push_back(argLod);
+
+ if (argOffset != nullptr)
+ txsample->getSequence().push_back(argOffset);
+
+ node = convertReturn(txsample, sampler);
+
+ break;
+ }
+
+ case EOpMethodGather:
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
+ TIntermTyped* argOffset = nullptr;
+
+ // Offset is optional
+ if (argAggregate->getSequence().size() > 3)
+ argOffset = argAggregate->getSequence()[3]->getAsTyped();
+
+ const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
+ TIntermAggregate* txgather = new TIntermAggregate(textureOp);
+
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+
+ txgather->getSequence().push_back(txcombine);
+ txgather->getSequence().push_back(argCoord);
+ // Offset if not given is implicitly channel 0 (red)
+
+ if (argOffset != nullptr)
+ txgather->getSequence().push_back(argOffset);
+
+ txgather->setType(node->getType());
+ txgather->setLoc(loc);
+ node = txgather;
+
+ break;
+ }
+
+ case EOpMethodGatherRed: // fall through...
+ case EOpMethodGatherGreen: // ...
+ case EOpMethodGatherBlue: // ...
+ case EOpMethodGatherAlpha: // ...
+ case EOpMethodGatherCmpRed: // ...
+ case EOpMethodGatherCmpGreen: // ...
+ case EOpMethodGatherCmpBlue: // ...
+ case EOpMethodGatherCmpAlpha: // ...
+ {
+ int channel = 0; // the channel we are gathering
+ int cmpValues = 0; // 1 if there is a compare value (handier than a bool below)
+
+ switch (op) {
+ case EOpMethodGatherCmpRed: cmpValues = 1; // fall through
+ case EOpMethodGatherRed: channel = 0; break;
+ case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through
+ case EOpMethodGatherGreen: channel = 1; break;
+ case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through
+ case EOpMethodGatherBlue: channel = 2; break;
+ case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through
+ case EOpMethodGatherAlpha: channel = 3; break;
+ default: assert(0); break;
+ }
+
+ // For now, we have nothing to map the component-wise comparison forms
+ // to, because neither GLSL nor SPIR-V has such an opcode. Issue an
+ // unimplemented error instead. Most of the machinery is here if that
+ // should ever become available. However, red can be passed through
+ // to OpImageDrefGather. G/B/A cannot, because that opcode does not
+ // accept a component.
+ if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
+ error(loc, "unimplemented: component-level gather compare", "", "");
+ return;
+ }
+
+ int arg = 0;
+
+ TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped();
+ TIntermTyped* argOffset = nullptr;
+ TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
+ // TIntermTyped* argStatus = nullptr; // TODO: residency
+ TIntermTyped* argCmp = nullptr;
+
+ const TSamplerDim dim = argTex->getType().getSampler().dim;
+
+ const int argSize = (int)argAggregate->getSequence().size();
+ bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
+ bool hasOffset1 = false;
+ bool hasOffset4 = false;
+
+ // Sampler argument should be a sampler.
+ if (argSamp->getType().getBasicType() != EbtSampler) {
+ error(loc, "expected: sampler type", "", "");
+ return;
+ }
+
+ // Cmp forms require SamplerComparisonState
+ if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
+ error(loc, "expected: SamplerComparisonState", "", "");
+ return;
+ }
+
+ // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets.
+ if (dim == Esd2D) {
+ hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
+ hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
+ }
+
+ assert(!(hasOffset1 && hasOffset4));
+
+ TOperator textureOp = EOpTextureGather;
+
+ // Compare forms have compare value
+ if (cmpValues != 0)
+ argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
+
+ // Some forms have single offset
+ if (hasOffset1) {
+ textureOp = EOpTextureGatherOffset; // single offset form
+ argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
+ }
+
+ // Some forms have 4 gather offsets
+ if (hasOffset4) {
+ textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form
+ for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
+ argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
+ }
+
+ // Residency status
+ if (hasStatus) {
+ // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
+ error(loc, "unimplemented: residency status", "", "");
+ return;
+ }
+
+ TIntermAggregate* txgather = new TIntermAggregate(textureOp);
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+
+ TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
+
+ txgather->getSequence().push_back(txcombine);
+ txgather->getSequence().push_back(argCoord);
+
+ // AST wants an array of 4 offsets, where HLSL has separate args. Here
+ // we construct an array from the separate args.
+ if (hasOffset4) {
+ TType arrayType(EbtInt, EvqTemporary, 2);
+ TArraySizes* arraySizes = new TArraySizes;
+ arraySizes->addInnerSize(4);
+ arrayType.transferArraySizes(arraySizes);
+
+ TIntermAggregate* initList = new TIntermAggregate(EOpNull);
+
+ for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
+ initList->getSequence().push_back(argOffsets[offsetNum]);
+
+ argOffset = addConstructor(loc, initList, arrayType);
+ }
+
+ // Add comparison value if we have one
+ if (argCmp != nullptr)
+ txgather->getSequence().push_back(argCmp);
+
+ // Add offset (either 1, or an array of 4) if we have one
+ if (argOffset != nullptr)
+ txgather->getSequence().push_back(argOffset);
+
+ // Add channel value if the sampler is not shadow
+ if (! argSamp->getType().getSampler().isShadow())
+ txgather->getSequence().push_back(argChannel);
+
+ txgather->setType(node->getType());
+ txgather->setLoc(loc);
+ node = txgather;
+
+ break;
+ }
+
+ case EOpMethodCalculateLevelOfDetail:
+ case EOpMethodCalculateLevelOfDetailUnclamped:
+ {
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
+
+ TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
+
+ TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
+ txquerylod->getSequence().push_back(txcombine);
+ txquerylod->getSequence().push_back(argCoord);
+
+ TIntermTyped* lodComponent = intermediate.addConstantUnion(
+ op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
+ loc, true);
+ TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
+ lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
+ node = lodComponentIdx;
+
+ break;
+ }
+
+ case EOpMethodGetSamplePosition:
+ {
+ // TODO: this entire decomposition exists because there is not yet a way to query
+ // the sample position directly through SPIR-V. Instead, we return fixed sample
+ // positions for common cases. *** If the sample positions are set differently,
+ // this will be wrong. ***
+
+ TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
+
+ TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
+ samplesQuery->getSequence().push_back(argTex);
+ samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
+ samplesQuery->setLoc(loc);
+
+ TIntermAggregate* compoundStatement = nullptr;
+
+ TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
+ outSampleCount->getWritableType().getQualifier().makeTemporary();
+ TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
+ samplesQuery, loc);
+ compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
+
+ TIntermTyped* idxtest[4];
+
+ // Create tests against 2, 4, 8, and 16 sample values
+ int count = 0;
+ for (int val = 2; val <= 16; val *= 2)
+ idxtest[count++] =
+ intermediate.addBinaryNode(EOpEqual,
+ intermediate.addSymbol(*outSampleCount, loc),
+ intermediate.addConstantUnion(val, loc),
+ loc, TType(EbtBool));
+
+ const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
+
+ // Create index ops into position arrays given sample index.
+ // TODO: should it be clamped?
+ TIntermTyped* index[4];
+ count = 0;
+ for (int val = 2; val <= 16; val *= 2) {
+ index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
+ index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
+ }
+
+ // Create expression as:
+ // (sampleCount == 2) ? pos2[idx] :
+ // (sampleCount == 4) ? pos4[idx] :
+ // (sampleCount == 8) ? pos8[idx] :
+ // (sampleCount == 16) ? pos16[idx] : float2(0,0);
+ TIntermTyped* test =
+ intermediate.addSelection(idxtest[0], index[0],
+ intermediate.addSelection(idxtest[1], index[1],
+ intermediate.addSelection(idxtest[2], index[2],
+ intermediate.addSelection(idxtest[3], index[3],
+ getSamplePosArray(1), loc), loc), loc), loc);
+
+ compoundStatement = intermediate.growAggregate(compoundStatement, test);
+ compoundStatement->setOperator(EOpSequence);
+ compoundStatement->setLoc(loc);
+ compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
+
+ node = compoundStatement;
+
+ break;
+ }
+
+ case EOpSubpassLoad:
+ {
+ const TIntermTyped* argSubpass =
+ argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
+ arguments->getAsTyped();
+
+ const TSampler& sampler = argSubpass->getType().getSampler();
+
+ // subpass load: the multisample form is overloaded. Here, we convert that to
+ // the EOpSubpassLoadMS opcode.
+ if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
+ node->getAsOperator()->setOp(EOpSubpassLoadMS);
+
+ node = convertReturn(node, sampler);
+
+ break;
+ }
+
+
+ default:
+ break; // most pass through unchanged
+ }
+}
+
+//
+// Decompose geometry shader methods
+//
+void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
+{
+ if (node == nullptr || !node->getAsOperator())
+ return;
+
+ const TOperator op = node->getAsOperator()->getOp();
+ const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
+
+ switch (op) {
+ case EOpMethodAppend:
+ if (argAggregate) {
+ // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
+ if (language != EShLangGeometry) {
+ node = nullptr;
+ return;
+ }
+
+ TIntermAggregate* sequence = nullptr;
+ TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
+
+ emit->setLoc(loc);
+ emit->setType(TType(EbtVoid));
+
+ TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
+
+ // This will be patched in finalization during finalizeAppendMethods()
+ sequence = intermediate.growAggregate(sequence, data, loc);
+ sequence = intermediate.growAggregate(sequence, emit);
+
+ sequence->setOperator(EOpSequence);
+ sequence->setLoc(loc);
+ sequence->setType(TType(EbtVoid));
+
+ gsAppends.push_back({sequence, loc});
+
+ node = sequence;
+ }
+ break;
+
+ case EOpMethodRestartStrip:
+ {
+ // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
+ if (language != EShLangGeometry) {
+ node = nullptr;
+ return;
+ }
+
+ TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
+ cut->setLoc(loc);
+ cut->setType(TType(EbtVoid));
+ node = cut;
+ }
+ break;
+
+ default:
+ break; // most pass through unchanged
+ }
+}
+
+//
+// Optionally decompose intrinsics to AST opcodes.
+//
+void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
+{
+ // Helper to find image data for image atomics:
+ // OpImageLoad(image[idx])
+ // We take the image load apart and add its params to the atomic op aggregate node
+ const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
+ TIntermAggregate* loadOp = load->getAsAggregate();
+ if (loadOp == nullptr) {
+ error(loc, "unknown image type in atomic operation", "", "");
+ node = nullptr;
+ return;
+ }
+
+ atomic->getSequence().push_back(loadOp->getSequence()[0]);
+ atomic->getSequence().push_back(loadOp->getSequence()[1]);
+ };
+
+ // Return true if this is an imageLoad, which we will change to an image atomic.
+ const auto isImageParam = [](TIntermTyped* image) -> bool {
+ TIntermAggregate* imageAggregate = image->getAsAggregate();
+ return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
+ };
+
+ const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
+ TSymbol* symbol = symbolTable.find(name);
+ if (nullptr == symbol) {
+ type.getQualifier().builtIn = builtin;
+
+ TVariable* variable = new TVariable(NewPoolTString(name), type);
+
+ symbolTable.insert(*variable);
+
+ symbol = symbolTable.find(name);
+ assert(symbol && "Inserted symbol could not be found!");
+ }
+
+ return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
+ };
+
+ // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
+ // opcodes for compatibility with existing software stacks.
+ static const bool decomposeHlslIntrinsics = true;
+
+ if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
+ return;
+
+ const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
+ TIntermUnary* fnUnary = node->getAsUnaryNode();
+ const TOperator op = node->getAsOperator()->getOp();
+
+ switch (op) {
+ case EOpGenMul:
+ {
+ // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
+ // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
+ // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc.
+ TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
+
+ if (arg0->isVector() && arg1->isVector()) { // vec * vec
+ node->getAsAggregate()->setOperator(EOpDot);
+ } else {
+ node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
+ }
+
+ break;
+ }
+
+ case EOpRcp:
+ {
+ // rcp(a) -> 1 / a
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TBasicType type0 = arg0->getBasicType();
+ TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
+ node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
+
+ break;
+ }
+
+ case EOpAny: // fall through
+ case EOpAll:
+ {
+ TIntermTyped* typedArg = arguments->getAsTyped();
+
+ // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
+ // We'll convert here. Note that for efficiency, we could add a smarter
+ // decomposition for some type cases, e.g, maybe by decomposing a dot product.
+ if (typedArg->getType().getBasicType() != EbtBool) {
+ const TType boolType(EbtBool, EvqTemporary,
+ typedArg->getVectorSize(),
+ typedArg->getMatrixCols(),
+ typedArg->getMatrixRows(),
+ typedArg->isVector());
+
+ typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
+ node->getAsUnaryNode()->setOperand(typedArg);
+ }
+
+ break;
+ }
+
+ case EOpSaturate:
+ {
+ // saturate(a) -> clamp(a,0,1)
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TBasicType type0 = arg0->getBasicType();
+ TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
+
+ clamp->getSequence().push_back(arg0);
+ clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
+ clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
+ clamp->setLoc(loc);
+ clamp->setType(node->getType());
+ clamp->getWritableType().getQualifier().makeTemporary();
+ node = clamp;
+
+ break;
+ }
+
+ case EOpSinCos:
+ {
+ // sincos(a,b,c) -> b = sin(a), c = cos(a)
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
+
+ TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
+ TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
+ TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
+ TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
+
+ TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
+ compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
+ compoundStatement->setOperator(EOpSequence);
+ compoundStatement->setLoc(loc);
+ compoundStatement->setType(TType(EbtVoid));
+
+ node = compoundStatement;
+
+ break;
+ }
+
+ case EOpClip:
+ {
+ // clip(a) -> if (any(a<0)) discard;
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TBasicType type0 = arg0->getBasicType();
+ TIntermTyped* compareNode = nullptr;
+
+ // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
+ if (!arg0->isScalar()) {
+ // component-wise compare: a < 0
+ TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
+ less->getSequence().push_back(arg0);
+ less->setLoc(loc);
+
+ // make vec or mat of bool matching dimensions of input
+ less->setType(TType(EbtBool, EvqTemporary,
+ arg0->getType().getVectorSize(),
+ arg0->getType().getMatrixCols(),
+ arg0->getType().getMatrixRows(),
+ arg0->getType().isVector()));
+
+ // calculate # of components for comparison const
+ const int constComponentCount =
+ std::max(arg0->getType().getVectorSize(), 1) *
+ std::max(arg0->getType().getMatrixCols(), 1) *
+ std::max(arg0->getType().getMatrixRows(), 1);
+
+ TConstUnion zero;
+ if (arg0->getType().isIntegerDomain())
+ zero.setDConst(0);
+ else
+ zero.setDConst(0.0);
+ TConstUnionArray zeros(constComponentCount, zero);
+
+ less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
+
+ compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
+ } else {
+ TIntermTyped* zero;
+ if (arg0->getType().isIntegerDomain())
+ zero = intermediate.addConstantUnion(0, loc, true);
+ else
+ zero = intermediate.addConstantUnion(0.0, type0, loc, true);
+ compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
+ }
+
+ TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
+
+ node = new TIntermSelection(compareNode, killNode, nullptr);
+ node->setLoc(loc);
+
+ break;
+ }
+
+ case EOpLog10:
+ {
+ // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
+ TIntermTyped* arg0 = fnUnary->getOperand();
+ TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
+ TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
+
+ node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
+
+ break;
+ }
+
+ case EOpDst:
+ {
+ // dest.x = 1;
+ // dest.y = src0.y * src1.y;
+ // dest.z = src0.z;
+ // dest.w = src1.w;
+
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+
+ TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
+ TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
+ TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
+
+ TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
+ TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
+ TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
+ TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
+
+ TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
+
+ dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
+ dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
+ dst->getSequence().push_back(src0z);
+ dst->getSequence().push_back(src1w);
+ dst->setType(TType(EbtFloat, EvqTemporary, 4));
+ dst->setLoc(loc);
+ node = dst;
+
+ break;
+ }
+
+ case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
+ case EOpInterlockedMin: // ...
+ case EOpInterlockedMax: // ...
+ case EOpInterlockedAnd: // ...
+ case EOpInterlockedOr: // ...
+ case EOpInterlockedXor: // ...
+ case EOpInterlockedExchange: // always has output arg
+ {
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value
+ TIntermTyped* arg2 = nullptr;
+
+ if (argAggregate->getSequence().size() > 2)
+ arg2 = argAggregate->getSequence()[2]->getAsTyped();
+
+ const bool isImage = isImageParam(arg0);
+ const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
+ TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
+ atomic->setType(arg0->getType());
+ atomic->getWritableType().getQualifier().makeTemporary();
+ atomic->setLoc(loc);
+
+ if (isImage) {
+ // orig_value = imageAtomicOp(image, loc, data)
+ imageAtomicParams(atomic, arg0);
+ atomic->getSequence().push_back(arg1);
+
+ if (argAggregate->getSequence().size() > 2) {
+ node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
+ } else {
+ node = atomic; // no assignment needed, as there was no out var.
+ }
+ } else {
+ // Normal memory variable:
+ // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
+ if (argAggregate->getSequence().size() > 2) {
+ // optional output param is present. return value goes to arg2.
+ atomic->getSequence().push_back(arg0);
+ atomic->getSequence().push_back(arg1);
+
+ node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
+ } else {
+ // Set the matching operator. Since output is absent, this is all we need to do.
+ node->getAsAggregate()->setOperator(atomicOp);
+ node->setType(atomic->getType());
+ }
+ }
+
+ break;
+ }
+
+ case EOpInterlockedCompareExchange:
+ {
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp
+ TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value
+ TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig
+
+ const bool isImage = isImageParam(arg0);
+ TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
+ atomic->setLoc(loc);
+ atomic->setType(arg2->getType());
+ atomic->getWritableType().getQualifier().makeTemporary();
+
+ if (isImage) {
+ imageAtomicParams(atomic, arg0);
+ } else {
+ atomic->getSequence().push_back(arg0);
+ }
+
+ atomic->getSequence().push_back(arg1);
+ atomic->getSequence().push_back(arg2);
+ node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
+
+ break;
+ }
+
+ case EOpEvaluateAttributeSnapped:
+ {
+ // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
+ // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
+ // iU = (iU<<28)>>28
+ // fU = ((float)iU)/16
+ // Targets might handle this natively, in which case they can disable
+ // decompositions.
+
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset
+
+ TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
+ TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
+ handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
+ i28);
+
+ TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
+ TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
+ intermediate.addConversion(EOpConstructFloat,
+ TType(EbtFloat, EvqTemporary, 2), iU),
+ recip16);
+
+ TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
+ interp->getSequence().push_back(arg0);
+ interp->getSequence().push_back(floatOffset);
+ interp->setLoc(loc);
+ interp->setType(arg0->getType());
+ interp->getWritableType().getQualifier().makeTemporary();
+
+ node = interp;
+
+ break;
+ }
+
+ case EOpLit:
+ {
+ TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
+ TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
+
+ TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
+
+ // Ambient
+ dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
+
+ // Diffuse:
+ TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
+ TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
+ diffuse->getSequence().push_back(n_dot_l);
+ diffuse->getSequence().push_back(zero);
+ diffuse->setLoc(loc);
+ diffuse->setType(TType(EbtFloat));
+ dst->getSequence().push_back(diffuse);
+
+ // Specular:
+ TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
+ min_ndot->getSequence().push_back(n_dot_l);
+ min_ndot->getSequence().push_back(n_dot_h);
+ min_ndot->setLoc(loc);
+ min_ndot->setType(TType(EbtFloat));
+
+ TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
+ TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m
+
+ dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
+
+ // One:
+ dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
+
+ dst->setLoc(loc);
+ dst->setType(TType(EbtFloat, EvqTemporary, 4));
+ node = dst;
+ break;
+ }
+
+ case EOpAsDouble:
+ {
+ // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must
+ // first construct a uint64.
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+
+ if (arg0->getType().isVector()) { // TODO: ...
+ error(loc, "double2 conversion not implemented", "asdouble", "");
+ break;
+ }
+
+ TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
+
+ uint64->getSequence().push_back(arg0);
+ uint64->getSequence().push_back(arg1);
+ uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2
+ uint64->setLoc(loc);
+
+ // bitcast uint2 to a double
+ TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
+ convert->getAsUnaryNode()->setOperand(uint64);
+ convert->setLoc(loc);
+ convert->setType(TType(EbtDouble, EvqTemporary));
+ node = convert;
+
+ break;
+ }
+
+ case EOpF16tof32:
+ {
+ // input uvecN with low 16 bits of each component holding a float16. convert to float32.
+ TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
+ TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
+ const int vecSize = argValue->getType().getVectorSize();
+
+ TOperator constructOp = EOpNull;
+ switch (vecSize) {
+ case 1: constructOp = EOpNull; break; // direct use, no construct needed
+ case 2: constructOp = EOpConstructVec2; break;
+ case 3: constructOp = EOpConstructVec3; break;
+ case 4: constructOp = EOpConstructVec4; break;
+ default: assert(0); break;
+ }
+
+ // For scalar case, we don't need to construct another type.
+ TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
+
+ if (result) {
+ result->setType(TType(EbtFloat, EvqTemporary, vecSize));
+ result->setLoc(loc);
+ }
+
+ for (int idx = 0; idx < vecSize; ++idx) {
+ TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
+ TIntermTyped* component = argValue->getType().isVector() ?
+ intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
+
+ if (component != argValue)
+ component->setType(TType(argValue->getBasicType(), EvqTemporary));
+
+ TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16);
+ unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
+ unpackOp->getAsUnaryNode()->setOperand(component);
+ unpackOp->setLoc(loc);
+
+ TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
+
+ if (result != nullptr) {
+ result->getSequence().push_back(lowOrder);
+ node = result;
+ } else {
+ node = lowOrder;
+ }
+ }
+
+ break;
+ }
+
+ case EOpF32tof16:
+ {
+ // input floatN converted to 16 bit float in low order bits of each component of uintN
+ TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
+
+ TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
+ const int vecSize = argValue->getType().getVectorSize();
+
+ TOperator constructOp = EOpNull;
+ switch (vecSize) {
+ case 1: constructOp = EOpNull; break; // direct use, no construct needed
+ case 2: constructOp = EOpConstructUVec2; break;
+ case 3: constructOp = EOpConstructUVec3; break;
+ case 4: constructOp = EOpConstructUVec4; break;
+ default: assert(0); break;
+ }
+
+ // For scalar case, we don't need to construct another type.
+ TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
+
+ if (result) {
+ result->setType(TType(EbtUint, EvqTemporary, vecSize));
+ result->setLoc(loc);
+ }
+
+ for (int idx = 0; idx < vecSize; ++idx) {
+ TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
+ TIntermTyped* component = argValue->getType().isVector() ?
+ intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
+
+ if (component != argValue)
+ component->setType(TType(argValue->getBasicType(), EvqTemporary));
+
+ TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
+ vec2ComponentAndZero->getSequence().push_back(component);
+ vec2ComponentAndZero->getSequence().push_back(zero);
+ vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
+ vec2ComponentAndZero->setLoc(loc);
+
+ TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
+ packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
+ packOp->setLoc(loc);
+ packOp->setType(TType(EbtUint, EvqTemporary));
+
+ if (result != nullptr) {
+ result->getSequence().push_back(packOp);
+ node = result;
+ } else {
+ node = packOp;
+ }
+ }
+
+ break;
+ }
+
+ case EOpD3DCOLORtoUBYTE4:
+ {
+ // ivec4 ( x.zyxw * 255.001953 );
+ TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
+ TSwizzleSelectors<TVectorSelector> selectors;
+ selectors.push_back(2);
+ selectors.push_back(1);
+ selectors.push_back(0);
+ selectors.push_back(3);
+ TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
+ TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
+ swizzled->setType(arg0->getType());
+ swizzled->getWritableType().getQualifier().makeTemporary();
+
+ TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
+ TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
+ rangeConverted->setType(arg0->getType());
+ rangeConverted->getWritableType().getQualifier().makeTemporary();
+
+ node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
+ node->setLoc(loc);
+ node->setType(TType(EbtInt, EvqTemporary, 4));
+ break;
+ }
+
+ case EOpIsFinite:
+ {
+ // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
+ // it to !isnan && !isinf
+
+ TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
+
+ // We'll make a temporary in case the RHS is cmoplex
+ TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
+ tempArg->getWritableType().getQualifier().makeTemporary();
+
+ TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
+ intermediate.addSymbol(*tempArg, loc),
+ arg0, loc);
+
+ TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
+
+ const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
+ arg0->getMatrixRows());
+
+ TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
+ isnan->setType(boolType);
+
+ TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
+ notnan->setType(boolType);
+
+ TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
+ isinf->setType(boolType);
+
+ TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
+ notinf->setType(boolType);
+
+ TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
+ andNode->setType(boolType);
+
+ compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
+ compoundStatement->setOperator(EOpSequence);
+ compoundStatement->setLoc(loc);
+ compoundStatement->setType(boolType);
+
+ node = compoundStatement;
+
+ break;
+ }
+ case EOpWaveGetLaneCount:
+ {
+ // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
+ // so that it inhabits the symbol table, but has a user-invalid name
+ // in-case some source HLSL defined the symbol also).
+ TType type(EbtUint, EvqVaryingIn);
+ node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
+ break;
+ }
+ case EOpWaveGetLaneIndex:
+ {
+ // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
+ // symbol so that it inhabits the symbol table, but has a
+ // user-invalid name in-case some source HLSL defined the symbol
+ // also).
+ TType type(EbtUint, EvqVaryingIn);
+ node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
+ break;
+ }
+ case EOpWaveActiveCountBits:
+ {
+ // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
+
+ // uvec4 type.
+ TType uvec4Type(EbtUint, EvqTemporary, 4);
+
+ // Get the uvec4 return from subgroupBallot().
+ TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
+ EOpSubgroupBallot, true, arguments, uvec4Type);
+
+ // uint type.
+ TType uintType(EbtUint, EvqTemporary);
+
+ node = intermediate.addBuiltInFunctionCall(loc,
+ EOpSubgroupBallotBitCount, true, res, uintType);
+
+ break;
+ }
+ case EOpWavePrefixCountBits:
+ {
+ // Mapped to subgroupBallotInclusiveBitCount(subgroupBallot())
+ // builtin
+
+ // uvec4 type.
+ TType uvec4Type(EbtUint, EvqTemporary, 4);
+
+ // Get the uvec4 return from subgroupBallot().
+ TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
+ EOpSubgroupBallot, true, arguments, uvec4Type);
+
+ // uint type.
+ TType uintType(EbtUint, EvqTemporary);
+
+ node = intermediate.addBuiltInFunctionCall(loc,
+ EOpSubgroupBallotInclusiveBitCount, true, res, uintType);
+
+ break;
+ }
+
+ default:
+ break; // most pass through unchanged
+ }
+}
+
+//
+// Handle seeing function call syntax in the grammar, which could be any of
+// - .length() method
+// - constructor
+// - a call to a built-in function mapped to an operator
+// - a call to a built-in function that will remain a function call (e.g., texturing)
+// - user function
+// - subroutine call (not implemented yet)
+//
+TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
+{
+ TIntermTyped* result = nullptr;
+
+ TOperator op = function->getBuiltInOp();
+ if (op != EOpNull) {
+ //
+ // Then this should be a constructor.
+ // Don't go through the symbol table for constructors.
+ // Their parameters will be verified algorithmically.
+ //
+ TType type(EbtVoid); // use this to get the type back
+ if (! constructorError(loc, arguments, *function, op, type)) {
+ //
+ // It's a constructor, of type 'type'.
+ //
+ result = handleConstructor(loc, arguments, type);
+ if (result == nullptr) {
+ error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
+ return nullptr;
+ }
+ }
+ } else {
+ //
+ // Find it in the symbol table.
+ //
+ const TFunction* fnCandidate = nullptr;
+ bool builtIn = false;
+ int thisDepth = 0;
+
+ // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
+ // and clamp the opposite arg. Since that's complex, we farm it off to a separate method.
+ // It doesn't naturally fall out of processing an argument at a time in isolation.
+ if (function->getName() == "mul")
+ addGenMulArgumentConversion(loc, *function, arguments);
+
+ TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
+
+ // TODO: this needs improvement: there's no way at present to look up a signature in
+ // the symbol table for an arbitrary type. This is a temporary hack until that ability exists.
+ // It will have false positives, since it doesn't check arg counts or types.
+ if (arguments) {
+ // Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we
+ // look for either case.
+
+ TIntermTyped* arg0 = nullptr;
+
+ if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
+ arg0 = aggregate->getSequence()[0]->getAsTyped();
+ else if (arguments->getAsSymbolNode())
+ arg0 = arguments->getAsSymbolNode();
+
+ if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
+ static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
+
+ if (function->getName().length() > methodPrefixSize &&
+ isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
+ const TString mangle = function->getName() + "(";
+ TSymbol* symbol = symbolTable.find(mangle, &builtIn);
+
+ if (symbol)
+ fnCandidate = symbol->getAsFunction();
+ }
+ }
+ }
+
+ if (fnCandidate == nullptr)
+ fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
+
+ if (fnCandidate) {
+ // This is a declared function that might map to
+ // - a built-in operator,
+ // - a built-in function not mapped to an operator, or
+ // - a user function.
+
+ // turn an implicit member-function resolution into an explicit call
+ TString callerName;
+ if (thisDepth == 0)
+ callerName = fnCandidate->getMangledName();
+ else {
+ // get the explicit (full) name of the function
+ callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
+ callerName += fnCandidate->getMangledName();
+ // insert the implicit calling argument
+ pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
+ }
+
+ // Convert 'in' arguments, so that types match.
+ // However, skip those that need expansion, that is covered next.
+ if (arguments)
+ addInputArgumentConversions(*fnCandidate, arguments);
+
+ // Expand arguments. Some arguments must physically expand to a different set
+ // than what the shader declared and passes.
+ if (arguments && !builtIn)
+ expandArguments(loc, *fnCandidate, arguments);
+
+ // Expansion may have changed the form of arguments
+ aggregate = arguments ? arguments->getAsAggregate() : nullptr;
+
+ op = fnCandidate->getBuiltInOp();
+ if (builtIn && op != EOpNull) {
+ // A function call mapped to a built-in operation.
+ result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
+ fnCandidate->getType());
+ if (result == nullptr) {
+ error(arguments->getLoc(), " wrong operand type", "Internal Error",
+ "built in unary operator function. Type: %s",
+ static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
+ } else if (result->getAsOperator()) {
+ builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
+ }
+ } else {
+ // This is a function call not mapped to built-in operator.
+ // It could still be a built-in function, but only if PureOperatorBuiltins == false.
+ result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
+ TIntermAggregate* call = result->getAsAggregate();
+ call->setName(callerName);
+
+ // this is how we know whether the given function is a built-in function or a user-defined function
+ // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
+ // if builtIn == true, it's definitely a built-in function with EOpNull
+ if (! builtIn) {
+ call->setUserDefined();
+ intermediate.addToCallGraph(infoSink, currentCaller, callerName);
+ }
+ }
+
+ // for decompositions, since we want to operate on the function node, not the aggregate holding
+ // output conversions.
+ const TIntermTyped* fnNode = result;
+
+ decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
+ decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
+ decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
+ decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
+
+ // Create the qualifier list, carried in the AST for the call.
+ // Because some arguments expand to multiple arguments, the qualifier list will
+ // be longer than the formal parameter list.
+ if (result == fnNode && result->getAsAggregate()) {
+ TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
+ for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
+ TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
+ if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
+ // add buffer and counter buffer argument qualifier
+ qualifierList.push_back(qual);
+ qualifierList.push_back(qual);
+ } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
+ true)) {
+ // add structure member expansion
+ for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
+ qualifierList.push_back(qual);
+ } else {
+ // Normal 1:1 case
+ qualifierList.push_back(qual);
+ }
+ }
+ }
+
+ // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
+ // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
+ // Also, build the qualifier list for user function calls, which are always called with an aggregate.
+ // We don't do this is if there has been a decomposition, which will have added its own conversions
+ // for output parameters.
+ if (result == fnNode && result->getAsAggregate())
+ result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
+ }
+ }
+
+ // generic error recovery
+ // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
+ // reduce cascades
+ if (result == nullptr)
+ result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
+
+ return result;
+}
+
+// An initial argument list is difficult: it can be null, or a single node,
+// or an aggregate if more than one argument. Add one to the front, maintaining
+// this lack of uniformity.
+void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
+{
+ if (arguments == nullptr)
+ arguments = front;
+ else if (arguments->getAsAggregate() != nullptr)
+ arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
+ else
+ arguments = intermediate.growAggregate(front, arguments);
+}
+
+//
+// HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a
+// situation not well suited to resolution in intrinsic selection, but we can do so here, since we
+// can look at both arguments insert explicit shape changes if required.
+//
+void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
+{
+ TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
+
+ if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
+ // It really ought to have two arguments.
+ error(loc, "expected: mul arguments", "", "");
+ return;
+ }
+
+ TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
+ TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
+
+ if (arg0->isVector() && arg1->isVector()) {
+ // For:
+ // vec * vec: it's handled during intrinsic selection, so while we could do it here,
+ // we can also ignore it, which is easier.
+ } else if (arg0->isVector() && arg1->isMatrix()) {
+ // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
+ if (arg0->getVectorSize() < arg1->getMatrixCols()) {
+ // vec is smaller, so truncate larger mat dimension
+ const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
+ 0, arg0->getVectorSize(), arg1->getMatrixRows());
+ arg1 = addConstructor(loc, arg1, truncType);
+ } else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
+ // vec is larger, so truncate vec to mat size
+ const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
+ arg1->getMatrixCols());
+ arg0 = addConstructor(loc, arg0, truncType);
+ }
+ } else if (arg0->isMatrix() && arg1->isVector()) {
+ // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
+ if (arg1->getVectorSize() < arg0->getMatrixRows()) {
+ // vec is smaller, so truncate larger mat dimension
+ const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
+ 0, arg0->getMatrixCols(), arg1->getVectorSize());
+ arg0 = addConstructor(loc, arg0, truncType);
+ } else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
+ // vec is larger, so truncate vec to mat size
+ const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
+ arg0->getMatrixRows());
+ arg1 = addConstructor(loc, arg1, truncType);
+ }
+ } else if (arg0->isMatrix() && arg1->isMatrix()) {
+ // mat * mat: we clamp the smaller inner dimension to match the other matrix size.
+ // Remember, HLSL Mrc = GLSL/SPIRV Mcr.
+ if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
+ const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
+ 0, arg0->getMatrixCols(), arg1->getMatrixCols());
+ arg0 = addConstructor(loc, arg0, truncType);
+ } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
+ const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
+ 0, arg0->getMatrixRows(), arg1->getMatrixRows());
+ arg1 = addConstructor(loc, arg1, truncType);
+ }
+ } else {
+ // It's something with scalars: we'll just leave it alone. Function selection will handle it
+ // downstream.
+ }
+
+ // Warn if we altered one of the arguments
+ if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
+ warn(loc, "mul() matrix size mismatch", "", "");
+
+ // Put arguments back. (They might be unchanged, in which case this is harmless).
+ argAggregate->getSequence()[0] = arg0;
+ argAggregate->getSequence()[1] = arg1;
+
+ call[0].type = &arg0->getWritableType();
+ call[1].type = &arg1->getWritableType();
+}
+
+//
+// Add any needed implicit conversions for function-call arguments to input parameters.
+//
+void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
+{
+ TIntermAggregate* aggregate = arguments->getAsAggregate();
+
+ // Replace a single argument with a single argument.
+ const auto setArg = [&](int paramNum, TIntermTyped* arg) {
+ if (function.getParamCount() == 1)
+ arguments = arg;
+ else {
+ if (aggregate == nullptr)
+ arguments = arg;
+ else
+ aggregate->getSequence()[paramNum] = arg;
+ }
+ };
+
+ // Process each argument's conversion
+ for (int param = 0; param < function.getParamCount(); ++param) {
+ if (! function[param].type->getQualifier().isParamInput())
+ continue;
+
+ // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
+ // is the single argument itself or its children are the arguments. Only one argument
+ // means take 'arguments' itself as the one argument.
+ TIntermTyped* arg = function.getParamCount() == 1
+ ? arguments->getAsTyped()
+ : (aggregate ?
+ aggregate->getSequence()[param]->getAsTyped() :
+ arguments->getAsTyped());
+ if (*function[param].type != arg->getType()) {
+ // In-qualified arguments just need an extra node added above the argument to
+ // convert to the correct type.
+ TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
+ if (convArg != nullptr)
+ convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
+ if (convArg != nullptr)
+ setArg(param, convArg);
+ else
+ error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
+ } else {
+ if (wasFlattened(arg)) {
+ // If both formal and calling arg are to be flattened, leave that to argument
+ // expansion, not conversion.
+ if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
+ // Will make a two-level subtree.
+ // The deepest will copy member-by-member to build the structure to pass.
+ // The level above that will be a two-operand EOpComma sequence that follows the copy by the
+ // object itself.
+ TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
+ internalAggregate->getWritableType().getQualifier().makeTemporary();
+ TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
+ internalAggregate->getName(),
+ internalAggregate->getType());
+ internalSymbolNode->setLoc(arg->getLoc());
+ // This makes the deepest level, the member-wise copy
+ TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
+ internalSymbolNode, arg)->getAsAggregate();
+
+ // Now, pair that with the resulting aggregate.
+ assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
+ assignAgg->setOperator(EOpComma);
+ assignAgg->setType(internalAggregate->getType());
+ setArg(param, assignAgg);
+ }
+ }
+ }
+ }
+}
+
+//
+// Add any needed implicit expansion of calling arguments from what the shader listed to what's
+// internally needed for the AST (given the constraints downstream).
+//
+void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
+{
+ TIntermAggregate* aggregate = arguments->getAsAggregate();
+ int functionParamNumberOffset = 0;
+
+ // Replace a single argument with a single argument.
+ const auto setArg = [&](int paramNum, TIntermTyped* arg) {
+ if (function.getParamCount() + functionParamNumberOffset == 1)
+ arguments = arg;
+ else {
+ if (aggregate == nullptr)
+ arguments = arg;
+ else
+ aggregate->getSequence()[paramNum] = arg;
+ }
+ };
+
+ // Replace a single argument with a list of arguments
+ const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
+ if (args.size() == 1)
+ setArg(paramNum, args.front());
+ else if (args.size() > 1) {
+ if (function.getParamCount() + functionParamNumberOffset == 1) {
+ arguments = intermediate.makeAggregate(args.front());
+ std::for_each(args.begin() + 1, args.end(),
+ [&](TIntermTyped* arg) {
+ arguments = intermediate.growAggregate(arguments, arg);
+ });
+ } else {
+ auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
+ aggregate->getSequence().insert(it, args.begin(), args.end());
+ }
+ functionParamNumberOffset += (int)(args.size() - 1);
+ }
+ };
+
+ // Process each argument's conversion
+ for (int param = 0; param < function.getParamCount(); ++param) {
+ // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
+ // is the single argument itself or its children are the arguments. Only one argument
+ // means take 'arguments' itself as the one argument.
+ TIntermTyped* arg = function.getParamCount() == 1
+ ? arguments->getAsTyped()
+ : (aggregate ?
+ aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
+ arguments->getAsTyped());
+
+ if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
+ // Need to pass the structure members instead of the structure.
+ TVector<TIntermTyped*> memberArgs;
+ for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
+ memberArgs.push_back(flattenAccess(arg, memb));
+ setArgList(param + functionParamNumberOffset, memberArgs);
+ }
+ }
+
+ // TODO: if we need both hidden counter args (below) and struct expansion (above)
+ // the two algorithms need to be merged: Each assumes the list starts out 1:1 between
+ // parameters and arguments.
+
+ // If any argument is a pass-by-reference struct buffer with an associated counter
+ // buffer, we have to add another hidden parameter for that counter.
+ if (aggregate)
+ addStructBuffArguments(loc, aggregate);
+}
+
+//
+// Add any needed implicit output conversions for function-call arguments. This
+// can require a new tree topology, complicated further by whether the function
+// has a return value.
+//
+// Returns a node of a subtree that evaluates to the return value of the function.
+//
+TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
+{
+ assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
+
+ const TSourceLoc& loc = intermNode.getLoc();
+
+ TIntermSequence argSequence; // temp sequence for unary node args
+
+ if (intermNode.getAsUnaryNode())
+ argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
+
+ TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
+
+ const auto needsConversion = [&](int argNum) {
+ return function[argNum].type->getQualifier().isParamOutput() &&
+ (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
+ shouldConvertLValue(arguments[argNum]) ||
+ wasFlattened(arguments[argNum]->getAsTyped()));
+ };
+
+ // Will there be any output conversions?
+ bool outputConversions = false;
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ if (needsConversion(i)) {
+ outputConversions = true;
+ break;
+ }
+ }
+
+ if (! outputConversions)
+ return &intermNode;
+
+ // Setup for the new tree, if needed:
+ //
+ // Output conversions need a different tree topology.
+ // Out-qualified arguments need a temporary of the correct type, with the call
+ // followed by an assignment of the temporary to the original argument:
+ // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
+ // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
+ // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
+ TIntermTyped* conversionTree = nullptr;
+ TVariable* tempRet = nullptr;
+ if (intermNode.getBasicType() != EbtVoid) {
+ // do the "tempRet = function(...), " bit from above
+ tempRet = makeInternalVariable("tempReturn", intermNode.getType());
+ TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
+ conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
+ } else
+ conversionTree = &intermNode;
+
+ conversionTree = intermediate.makeAggregate(conversionTree);
+
+ // Process each argument's conversion
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ if (needsConversion(i)) {
+ // Out-qualified arguments needing conversion need to use the topology setup above.
+ // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
+
+ // Make a temporary for what the function expects the argument to look like.
+ TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
+ tempArg->getWritableType().getQualifier().makeTemporary();
+ TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
+
+ // This makes the deepest level, the member-wise copy
+ TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
+ tempArgNode);
+ tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
+ conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
+
+ // replace the argument with another node for the same tempArg variable
+ arguments[i] = intermediate.addSymbol(*tempArg, loc);
+ }
+ }
+
+ // Finalize the tree topology (see bigger comment above).
+ if (tempRet) {
+ // do the "..., tempRet" bit from above
+ TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
+ conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
+ }
+
+ conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
+
+ return conversionTree;
+}
+
+//
+// Add any needed "hidden" counter buffer arguments for function calls.
+//
+// Modifies the 'aggregate' argument if needed. Otherwise, is no-op.
+//
+void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
+{
+ // See if there are any SB types with counters.
+ const bool hasStructBuffArg =
+ std::any_of(aggregate->getSequence().begin(),
+ aggregate->getSequence().end(),
+ [this](const TIntermNode* node) {
+ return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
+ });
+
+ // Nothing to do, if we didn't find one.
+ if (! hasStructBuffArg)
+ return;
+
+ TIntermSequence argsWithCounterBuffers;
+
+ for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
+ argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
+
+ if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
+ const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
+ if (blockSym != nullptr) {
+ TType counterType;
+ counterBufferType(loc, counterType);
+
+ const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
+
+ TVariable* variable = makeInternalVariable(counterBlockName, counterType);
+
+ // Mark this buffer's counter block as being in use
+ structBufferCounter[counterBlockName] = true;
+
+ TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
+ argsWithCounterBuffers.push_back(sym);
+ }
+ }
+ }
+
+ // Swap with the temp list we've built up.
+ aggregate->getSequence().swap(argsWithCounterBuffers);
+}
+
+
+//
+// Do additional checking of built-in function calls that is not caught
+// by normal semantic checks on argument type, extension tagging, etc.
+//
+// Assumes there has been a semantically correct match to a built-in function prototype.
+//
+void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
+{
+ // Set up convenience accessors to the argument(s). There is almost always
+ // multiple arguments for the cases below, but when there might be one,
+ // check the unaryArg first.
+ const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
+ const TIntermTyped* unaryArg = nullptr;
+ const TIntermTyped* arg0 = nullptr;
+ if (callNode.getAsAggregate()) {
+ argp = &callNode.getAsAggregate()->getSequence();
+ if (argp->size() > 0)
+ arg0 = (*argp)[0]->getAsTyped();
+ } else {
+ assert(callNode.getAsUnaryNode());
+ unaryArg = callNode.getAsUnaryNode()->getOperand();
+ arg0 = unaryArg;
+ }
+ const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
+
+ switch (callNode.getOp()) {
+ case EOpTextureGather:
+ case EOpTextureGatherOffset:
+ case EOpTextureGatherOffsets:
+ {
+ // Figure out which variants are allowed by what extensions,
+ // and what arguments must be constant for which situations.
+
+ TString featureString = fnCandidate.getName() + "(...)";
+ const char* feature = featureString.c_str();
+ int compArg = -1; // track which argument, if any, is the constant component argument
+ switch (callNode.getOp()) {
+ case EOpTextureGather:
+ // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
+ // otherwise, need GL_ARB_texture_gather.
+ if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
+ fnCandidate[0].type->getSampler().shadow) {
+ if (! fnCandidate[0].type->getSampler().shadow)
+ compArg = 2;
+ }
+ break;
+ case EOpTextureGatherOffset:
+ // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
+ if (! fnCandidate[0].type->getSampler().shadow)
+ compArg = 3;
+ break;
+ case EOpTextureGatherOffsets:
+ if (! fnCandidate[0].type->getSampler().shadow)
+ compArg = 3;
+ break;
+ default:
+ break;
+ }
+
+ if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
+ if (aggArgs[compArg]->getAsConstantUnion()) {
+ int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
+ if (value < 0 || value > 3)
+ error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
+ } else
+ error(loc, "must be a compile-time constant:", feature, "component argument");
+ }
+
+ break;
+ }
+
+ case EOpTextureOffset:
+ case EOpTextureFetchOffset:
+ case EOpTextureProjOffset:
+ case EOpTextureLodOffset:
+ case EOpTextureProjLodOffset:
+ case EOpTextureGradOffset:
+ case EOpTextureProjGradOffset:
+ {
+ // Handle texture-offset limits checking
+ // Pick which argument has to hold constant offsets
+ int arg = -1;
+ switch (callNode.getOp()) {
+ case EOpTextureOffset: arg = 2; break;
+ case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
+ case EOpTextureProjOffset: arg = 2; break;
+ case EOpTextureLodOffset: arg = 3; break;
+ case EOpTextureProjLodOffset: arg = 3; break;
+ case EOpTextureGradOffset: arg = 4; break;
+ case EOpTextureProjGradOffset: arg = 4; break;
+ default:
+ assert(0);
+ break;
+ }
+
+ if (arg > 0) {
+ if (aggArgs[arg]->getAsConstantUnion() == nullptr)
+ error(loc, "argument must be compile-time constant", "texel offset", "");
+ else {
+ const TType& type = aggArgs[arg]->getAsTyped()->getType();
+ for (int c = 0; c < type.getVectorSize(); ++c) {
+ int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
+ if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
+ error(loc, "value is out of range:", "texel offset",
+ "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
+ }
+ }
+ }
+
+ break;
+ }
+
+ case EOpTextureQuerySamples:
+ case EOpImageQuerySamples:
+ break;
+
+ case EOpImageAtomicAdd:
+ case EOpImageAtomicMin:
+ case EOpImageAtomicMax:
+ case EOpImageAtomicAnd:
+ case EOpImageAtomicOr:
+ case EOpImageAtomicXor:
+ case EOpImageAtomicExchange:
+ case EOpImageAtomicCompSwap:
+ break;
+
+ case EOpInterpolateAtCentroid:
+ case EOpInterpolateAtSample:
+ case EOpInterpolateAtOffset:
+ // Make sure the first argument is an interpolant, or an array element of an interpolant
+ if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
+ // It might still be an array element.
+ //
+ // We could check more, but the semantics of the first argument are already met; the
+ // only way to turn an array into a float/vec* is array dereference and swizzle.
+ //
+ // ES and desktop 4.3 and earlier: swizzles may not be used
+ // desktop 4.4 and later: swizzles may be used
+ const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
+ if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
+ error(loc, "first argument must be an interpolant, or interpolant-array element",
+ fnCandidate.getName().c_str(), "");
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+//
+// Handle seeing something in a grammar production that can be done by calling
+// a constructor.
+//
+// The constructor still must be "handled" by handleFunctionCall(), which will
+// then call handleConstructor().
+//
+TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
+{
+ TOperator op = intermediate.mapTypeToConstructorOp(type);
+
+ if (op == EOpNull) {
+ error(loc, "cannot construct this type", type.getBasicString(), "");
+ return nullptr;
+ }
+
+ TString empty("");
+
+ return new TFunction(&empty, type, op);
+}
+
+//
+// Handle seeing a "COLON semantic" at the end of a type declaration,
+// by updating the type according to the semantic.
+//
+void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
+ const TString& upperCase)
+{
+ // Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed
+ // semantic number is >= limit, errorMsg is issued and 0 is returned.
+ // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
+ // accept those in lambda functions.
+ const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
+ size_t pos = semantic.find_last_not_of("0123456789");
+ if (pos == std::string::npos)
+ return 0u;
+
+ unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
+
+ if (limit != 0 && semanticNum >= limit) {
+ error(loc, errorMsg, semantic.c_str(), "");
+ return 0u;
+ }
+
+ return semanticNum;
+ };
+
+ switch(builtIn) {
+ case EbvNone:
+ // Get location numbers from fragment outputs, instead of
+ // auto-assigning them.
+ if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
+ qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
+ nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
+ } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
+ builtIn = EbvClipDistance;
+ qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
+ } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
+ builtIn = EbvCullDistance;
+ qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
+ }
+ break;
+ case EbvPosition:
+ // adjust for stage in/out
+ if (language == EShLangFragment)
+ builtIn = EbvFragCoord;
+ break;
+ case EbvFragStencilRef:
+ error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
+ break;
+ case EbvTessLevelInner:
+ case EbvTessLevelOuter:
+ qualifier.patch = true;
+ break;
+ default:
+ break;
+ }
+
+ if (qualifier.builtIn == EbvNone)
+ qualifier.builtIn = builtIn;
+ qualifier.semanticName = intermediate.addSemanticName(upperCase);
+}
+
+//
+// Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
+//
+// 'location' has the "c[Subcomponent]" part.
+// 'component' points to the "component" part, or nullptr if not present.
+//
+void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
+ const glslang::TString* component)
+{
+ if (location.size() == 0 || location[0] != 'c') {
+ error(loc, "expected 'c'", "packoffset", "");
+ return;
+ }
+ if (location.size() == 1)
+ return;
+ if (! isdigit(location[1])) {
+ error(loc, "expected number after 'c'", "packoffset", "");
+ return;
+ }
+
+ qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
+ if (component != nullptr) {
+ int componentOffset = 0;
+ switch ((*component)[0]) {
+ case 'x': componentOffset = 0; break;
+ case 'y': componentOffset = 4; break;
+ case 'z': componentOffset = 8; break;
+ case 'w': componentOffset = 12; break;
+ default:
+ componentOffset = -1;
+ break;
+ }
+ if (componentOffset < 0 || component->size() > 1) {
+ error(loc, "expected {x, y, z, w} for component", "packoffset", "");
+ return;
+ }
+ qualifier.layoutOffset += componentOffset;
+ }
+}
+
+//
+// Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
+//
+// 'profile' points to the shader_profile part, or nullptr if not present.
+// 'desc' is the type# part.
+//
+void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
+ const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
+{
+ if (profile != nullptr)
+ warn(loc, "ignoring shader_profile", "register", "");
+
+ if (desc.size() < 1) {
+ error(loc, "expected register type", "register", "");
+ return;
+ }
+
+ int regNumber = 0;
+ if (desc.size() > 1) {
+ if (isdigit(desc[1]))
+ regNumber = atoi(desc.substr(1, desc.size()).c_str());
+ else {
+ error(loc, "expected register number after register type", "register", "");
+ return;
+ }
+ }
+
+ // more information about register types see
+ // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
+ const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
+ switch (std::tolower(desc[0])) {
+ case 'c':
+ // c register is the register slot in the global const buffer
+ // each slot is a vector of 4 32 bit components
+ qualifier.layoutOffset = regNumber * 4 * 4;
+ break;
+ // const buffer register slot
+ case 'b':
+ // textrues and structured buffers
+ case 't':
+ // samplers
+ case 's':
+ // uav resources
+ case 'u':
+ // if nothing else has set the binding, do so now
+ // (other mechanisms override this one)
+ if (!qualifier.hasBinding())
+ qualifier.layoutBinding = regNumber + subComponent;
+
+ // This handles per-register layout sets numbers. For the global mode which sets
+ // every symbol to the same value, see setLinkageLayoutSets().
+ if ((resourceInfo.size() % 3) == 0) {
+ // Apply per-symbol resource set and binding.
+ for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
+ if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
+ qualifier.layoutSet = atoi(it[1].c_str());
+ qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
+ break;
+ }
+ }
+ }
+ break;
+ default:
+ warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
+ break;
+ }
+
+ // space
+ unsigned int setNumber;
+ const auto crackSpace = [&]() -> bool {
+ const int spaceLen = 5;
+ if (spaceDesc->size() < spaceLen + 1)
+ return false;
+ if (spaceDesc->compare(0, spaceLen, "space") != 0)
+ return false;
+ if (! isdigit((*spaceDesc)[spaceLen]))
+ return false;
+ setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
+ return true;
+ };
+
+ // if nothing else has set the set, do so now
+ // (other mechanisms override this one)
+ if (spaceDesc && !qualifier.hasSet()) {
+ if (! crackSpace()) {
+ error(loc, "expected spaceN", "register", "");
+ return;
+ }
+ qualifier.layoutSet = setNumber;
+ }
+}
+
+// Convert to a scalar boolean, or if not allowed by HLSL semantics,
+// report an error and return nullptr.
+TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
+ bool mustBeScalar)
+{
+ if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
+ error(loc, "requires a scalar", "conditional expression", "");
+ return nullptr;
+ }
+
+ return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
+ condition);
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
+{
+ error(loc, "", op, "cannot convert from '%s' to '%s'",
+ right.c_str(), left.c_str());
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
+{
+ error(loc, " wrong operand type", op,
+ "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
+ op, operand.c_str());
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
+{
+ error(loc, " wrong operand types:", op,
+ "no operation '%s' exists that takes a left-hand operand of type '%s' and "
+ "a right operand of type '%s' (or there is no acceptable conversion)",
+ op, left.c_str(), right.c_str());
+}
+
+//
+// A basic type of EbtVoid is a key that the name string was seen in the source, but
+// it was not found as a variable in the symbol table. If so, give the error
+// message and insert a dummy variable in the symbol table to prevent future errors.
+//
+void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
+{
+ TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
+ if (! symbol)
+ return;
+
+ if (symbol->getType().getBasicType() == EbtVoid) {
+ error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
+
+ // Add to symbol table to prevent future error messages on the same name
+ if (symbol->getName().size() > 0) {
+ TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
+ symbolTable.insert(*fakeVariable);
+
+ // substitute a symbol node for this new variable
+ nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
+ }
+ }
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+//
+void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
+{
+ if (node->getQualifier().storage != EvqConst)
+ error(node->getLoc(), "constant expression required", token, "");
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+//
+void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
+{
+ if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
+ return;
+
+ error(node->getLoc(), "scalar integer expression required", token, "");
+}
+
+//
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+//
+void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
+{
+ if (! symbolTable.atGlobalLevel())
+ error(loc, "not allowed in nested scope", token, "");
+}
+
+bool HlslParseContext::builtInName(const TString& /*identifier*/)
+{
+ return false;
+}
+
+//
+// Make sure there is enough data and not too many arguments provided to the
+// constructor to build something of the type of the constructor. Also returns
+// the type of the constructor.
+//
+// Returns true if there was an error in construction.
+//
+bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
+ TOperator op, TType& type)
+{
+ type.shallowCopy(function.getType());
+
+ bool constructingMatrix = false;
+ switch (op) {
+ case EOpConstructTextureSampler:
+ error(loc, "unhandled texture constructor", "constructor", "");
+ return true;
+ case EOpConstructMat2x2:
+ case EOpConstructMat2x3:
+ case EOpConstructMat2x4:
+ case EOpConstructMat3x2:
+ case EOpConstructMat3x3:
+ case EOpConstructMat3x4:
+ case EOpConstructMat4x2:
+ case EOpConstructMat4x3:
+ case EOpConstructMat4x4:
+ case EOpConstructDMat2x2:
+ case EOpConstructDMat2x3:
+ case EOpConstructDMat2x4:
+ case EOpConstructDMat3x2:
+ case EOpConstructDMat3x3:
+ case EOpConstructDMat3x4:
+ case EOpConstructDMat4x2:
+ case EOpConstructDMat4x3:
+ case EOpConstructDMat4x4:
+ case EOpConstructIMat2x2:
+ case EOpConstructIMat2x3:
+ case EOpConstructIMat2x4:
+ case EOpConstructIMat3x2:
+ case EOpConstructIMat3x3:
+ case EOpConstructIMat3x4:
+ case EOpConstructIMat4x2:
+ case EOpConstructIMat4x3:
+ case EOpConstructIMat4x4:
+ case EOpConstructUMat2x2:
+ case EOpConstructUMat2x3:
+ case EOpConstructUMat2x4:
+ case EOpConstructUMat3x2:
+ case EOpConstructUMat3x3:
+ case EOpConstructUMat3x4:
+ case EOpConstructUMat4x2:
+ case EOpConstructUMat4x3:
+ case EOpConstructUMat4x4:
+ case EOpConstructBMat2x2:
+ case EOpConstructBMat2x3:
+ case EOpConstructBMat2x4:
+ case EOpConstructBMat3x2:
+ case EOpConstructBMat3x3:
+ case EOpConstructBMat3x4:
+ case EOpConstructBMat4x2:
+ case EOpConstructBMat4x3:
+ case EOpConstructBMat4x4:
+ constructingMatrix = true;
+ break;
+ default:
+ break;
+ }
+
+ //
+ // Walk the arguments for first-pass checks and collection of information.
+ //
+
+ int size = 0;
+ bool constType = true;
+ bool full = false;
+ bool overFull = false;
+ bool matrixInMatrix = false;
+ bool arrayArg = false;
+ for (int arg = 0; arg < function.getParamCount(); ++arg) {
+ if (function[arg].type->isArray()) {
+ if (function[arg].type->isUnsizedArray()) {
+ // Can't construct from an unsized array.
+ error(loc, "array argument must be sized", "constructor", "");
+ return true;
+ }
+ arrayArg = true;
+ }
+ if (constructingMatrix && function[arg].type->isMatrix())
+ matrixInMatrix = true;
+
+ // 'full' will go to true when enough args have been seen. If we loop
+ // again, there is an extra argument.
+ if (full) {
+ // For vectors and matrices, it's okay to have too many components
+ // available, but not okay to have unused arguments.
+ overFull = true;
+ }
+
+ size += function[arg].type->computeNumComponents();
+ if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
+ full = true;
+
+ if (function[arg].type->getQualifier().storage != EvqConst)
+ constType = false;
+ }
+
+ if (constType)
+ type.getQualifier().storage = EvqConst;
+
+ if (type.isArray()) {
+ if (function.getParamCount() == 0) {
+ error(loc, "array constructor must have at least one argument", "constructor", "");
+ return true;
+ }
+
+ if (type.isUnsizedArray()) {
+ // auto adapt the constructor type to the number of arguments
+ type.changeOuterArraySize(function.getParamCount());
+ } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
+ error(loc, "array constructor needs one argument per array element", "constructor", "");
+ return true;
+ }
+
+ if (type.isArrayOfArrays()) {
+ // Types have to match, but we're still making the type.
+ // Finish making the type, and the comparison is done later
+ // when checking for conversion.
+ TArraySizes& arraySizes = *type.getArraySizes();
+
+ // At least the dimensionalities have to match.
+ if (! function[0].type->isArray() ||
+ arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
+ error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
+ return true;
+ }
+
+ if (arraySizes.isInnerUnsized()) {
+ // "Arrays of arrays ..., and the size for any dimension is optional"
+ // That means we need to adopt (from the first argument) the other array sizes into the type.
+ for (int d = 1; d < arraySizes.getNumDims(); ++d) {
+ if (arraySizes.getDimSize(d) == UnsizedArraySize) {
+ arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
+ }
+ }
+ }
+ }
+ }
+
+ // Some array -> array type casts are okay
+ if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
+ !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
+ type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
+ return false;
+
+ if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
+ error(loc, "constructing non-array constituent from array argument", "constructor", "");
+ return true;
+ }
+
+ if (matrixInMatrix && ! type.isArray()) {
+ return false;
+ }
+
+ if (overFull) {
+ error(loc, "too many arguments", "constructor", "");
+ return true;
+ }
+
+ if (op == EOpConstructStruct && ! type.isArray()) {
+ if (isScalarConstructor(node))
+ return false;
+
+ // Self-type construction: e.g, we can construct a struct from a single identically typed object.
+ if (function.getParamCount() == 1 && type == *function[0].type)
+ return false;
+
+ if ((int)type.getStruct()->size() != function.getParamCount()) {
+ error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
+ return true;
+ }
+ }
+
+ if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
+ (op == EOpConstructStruct && size < type.computeNumComponents())) {
+ error(loc, "not enough data provided for construction", "constructor", "");
+ return true;
+ }
+
+ return false;
+}
+
+// See if 'node', in the context of constructing aggregates, is a scalar argument
+// to a constructor.
+//
+bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
+{
+ // Obviously, it must be a scalar, but an aggregate node might not be fully
+ // completed yet: holding a sequence of initializers under an aggregate
+ // would not yet be typed, so don't check it's type. This corresponds to
+ // the aggregate operator also not being set yet. (An aggregate operation
+ // that legitimately yields a scalar will have a getOp() of that operator,
+ // not EOpNull.)
+
+ return node->getAsTyped() != nullptr &&
+ node->getAsTyped()->isScalar() &&
+ (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
+}
+
+// Checks to see if a void variable has been declared and raise an error message for such a case
+//
+// returns true in case of an error
+//
+bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
+{
+ if (basicType == EbtVoid) {
+ error(loc, "illegal use of type 'void'", identifier.c_str(), "");
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
+//
+void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
+{
+ // move from parameter/unknown qualifiers to pipeline in/out qualifiers
+ switch (qualifier.storage) {
+ case EvqIn:
+ qualifier.storage = EvqVaryingIn;
+ break;
+ case EvqOut:
+ qualifier.storage = EvqVaryingOut;
+ break;
+ default:
+ break;
+ }
+}
+
+//
+// Merge characteristics of the 'src' qualifier into the 'dst'.
+// If there is duplication, issue error messages, unless 'force'
+// is specified, which means to just override default settings.
+//
+// Also, when force is false, it will be assumed that 'src' follows
+// 'dst', for the purpose of error checking order for versions
+// that require specific orderings of qualifiers.
+//
+void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
+{
+ // Storage qualification
+ if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
+ dst.storage = src.storage;
+ else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
+ (dst.storage == EvqOut && src.storage == EvqIn))
+ dst.storage = EvqInOut;
+ else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
+ (dst.storage == EvqConst && src.storage == EvqIn))
+ dst.storage = EvqConstReadOnly;
+
+ // Layout qualifiers
+ mergeObjectLayoutQualifiers(dst, src, false);
+
+ // individual qualifiers
+ bool repeated = false;
+#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
+ MERGE_SINGLETON(invariant);
+ MERGE_SINGLETON(noContraction);
+ MERGE_SINGLETON(centroid);
+ MERGE_SINGLETON(smooth);
+ MERGE_SINGLETON(flat);
+ MERGE_SINGLETON(nopersp);
+ MERGE_SINGLETON(patch);
+ MERGE_SINGLETON(sample);
+ MERGE_SINGLETON(coherent);
+ MERGE_SINGLETON(volatil);
+ MERGE_SINGLETON(restrict);
+ MERGE_SINGLETON(readonly);
+ MERGE_SINGLETON(writeonly);
+ MERGE_SINGLETON(specConstant);
+ MERGE_SINGLETON(nonUniform);
+}
+
+// used to flatten the sampler type space into a single dimension
+// correlates with the declaration of defaultSamplerPrecision[]
+int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
+{
+ int arrayIndex = sampler.arrayed ? 1 : 0;
+ int shadowIndex = sampler.shadow ? 1 : 0;
+ int externalIndex = sampler.external ? 1 : 0;
+
+ return EsdNumDims *
+ (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
+}
+
+//
+// Do size checking for an array type's size.
+//
+void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
+{
+ bool isConst = false;
+ sizePair.size = 1;
+ sizePair.node = nullptr;
+
+ TIntermConstantUnion* constant = expr->getAsConstantUnion();
+ if (constant) {
+ // handle true (non-specialization) constant
+ sizePair.size = constant->getConstArray()[0].getIConst();
+ isConst = true;
+ } else {
+ // see if it's a specialization constant instead
+ if (expr->getQualifier().isSpecConstant()) {
+ isConst = true;
+ sizePair.node = expr;
+ TIntermSymbol* symbol = expr->getAsSymbolNode();
+ if (symbol && symbol->getConstArray().size() > 0)
+ sizePair.size = symbol->getConstArray()[0].getIConst();
+ }
+ }
+
+ if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
+ error(loc, "array size must be a constant integer expression", "", "");
+ return;
+ }
+
+ if (sizePair.size <= 0) {
+ error(loc, "array size must be a positive integer", "", "");
+ return;
+ }
+}
+
+//
+// Require array to be completely sized
+//
+void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
+{
+ if (arraySizes.hasUnsized())
+ error(loc, "array size required", "", "");
+}
+
+void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
+{
+ const TTypeList& structure = *type.getStruct();
+ for (int m = 0; m < (int)structure.size(); ++m) {
+ const TType& member = *structure[m].type;
+ if (member.isArray())
+ arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
+ }
+}
+
+//
+// Do all the semantic checking for declaring or redeclaring an array, with and
+// without a size, and make the right changes to the symbol table.
+//
+void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
+ TSymbol*& symbol, bool track)
+{
+ if (symbol == nullptr) {
+ bool currentScope;
+ symbol = symbolTable.find(identifier, nullptr, &currentScope);
+
+ if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
+ // bad shader (errors already reported) trying to redeclare a built-in name as an array
+ return;
+ }
+ if (symbol == nullptr || ! currentScope) {
+ //
+ // Successfully process a new definition.
+ // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
+ //
+ symbol = new TVariable(&identifier, type);
+ symbolTable.insert(*symbol);
+ if (track && symbolTable.atGlobalLevel())
+ trackLinkage(*symbol);
+
+ return;
+ }
+ if (symbol->getAsAnonMember()) {
+ error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
+ symbol = nullptr;
+ return;
+ }
+ }
+
+ //
+ // Process a redeclaration.
+ //
+
+ if (symbol == nullptr) {
+ error(loc, "array variable name expected", identifier.c_str(), "");
+ return;
+ }
+
+ // redeclareBuiltinVariable() should have already done the copyUp()
+ TType& existingType = symbol->getWritableType();
+
+ if (existingType.isSizedArray()) {
+ // be more lenient for input arrays to geometry shaders and tessellation control outputs,
+ // where the redeclaration is the same size
+ return;
+ }
+
+ existingType.updateArraySizes(type);
+}
+
+//
+// Enforce non-initializer type/qualifier rules.
+//
+void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
+ TIntermTyped*& initializer)
+{
+ //
+ // Make the qualifier make sense, given that there is an initializer.
+ //
+ if (initializer == nullptr) {
+ if (type.getQualifier().storage == EvqConst ||
+ type.getQualifier().storage == EvqConstReadOnly) {
+ initializer = intermediate.makeAggregate(loc);
+ warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
+ }
+ }
+}
+
+//
+// See if the identifier is a built-in symbol that can be redeclared, and if so,
+// copy the symbol table's read-only built-in variable to the current
+// global level, where it can be modified based on the passed in type.
+//
+// Returns nullptr if no redeclaration took place; meaning a normal declaration still
+// needs to occur for it, not necessarily an error.
+//
+// Returns a redeclared and type-modified variable if a redeclared occurred.
+//
+TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
+ const TQualifier& /*qualifier*/,
+ const TShaderQualifiers& /*publicType*/)
+{
+ if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
+ return nullptr;
+
+ return nullptr;
+}
+
+//
+// Generate index to the array element in a structure buffer (SSBO)
+//
+TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
+{
+ // Bail out if not a struct buffer
+ if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
+ return nullptr;
+
+ // Runtime sized array is always the last element.
+ const TTypeList* bufferStruct = buffer->getType().getStruct();
+ TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
+
+ TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
+ argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
+
+ return argArray;
+}
+
+//
+// IFF type is a structuredbuffer/byteaddressbuffer type, return the content
+// (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr.
+//
+TType* HlslParseContext::getStructBufferContentType(const TType& type) const
+{
+ if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
+ return nullptr;
+
+ const int memberCount = (int)type.getStruct()->size();
+ assert(memberCount > 0);
+
+ TType* contentType = (*type.getStruct())[memberCount-1].type;
+
+ return contentType->isUnsizedArray() ? contentType : nullptr;
+}
+
+//
+// If an existing struct buffer has a sharable type, then share it.
+//
+void HlslParseContext::shareStructBufferType(TType& type)
+{
+ // PackOffset must be equivalent to share types on a per-member basis.
+ // Note: cannot use auto type due to recursion. Thus, this is a std::function.
+ const std::function<bool(TType& lhs, TType& rhs)>
+ compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
+ if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
+ return false;
+
+ if (lhs.isStruct() != rhs.isStruct())
+ return false;
+
+ if (lhs.isStruct() && rhs.isStruct()) {
+ if (lhs.getStruct()->size() != rhs.getStruct()->size())
+ return false;
+
+ for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
+ if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
+ return false;
+ }
+
+ return true;
+ };
+
+ // We need to compare certain qualifiers in addition to the type.
+ const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
+ if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
+ return false;
+
+ // If both are structures, recursively look for packOffset equality
+ // as well as type equality.
+ return compareQualifiers(lhs, rhs) && lhs == rhs;
+ };
+
+ // This is an exhaustive O(N) search, but real world shaders have
+ // only a small number of these.
+ for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
+ // If the deep structure matches, modulo qualifiers, use it
+ if (typeEqual(*structBufferTypes[idx], type)) {
+ type.shallowCopy(*structBufferTypes[idx]);
+ return;
+ }
+ }
+
+ // Otherwise, remember it:
+ TType* typeCopy = new TType;
+ typeCopy->shallowCopy(type);
+ structBufferTypes.push_back(typeCopy);
+}
+
+void HlslParseContext::paramFix(TType& type)
+{
+ switch (type.getQualifier().storage) {
+ case EvqConst:
+ type.getQualifier().storage = EvqConstReadOnly;
+ break;
+ case EvqGlobal:
+ case EvqUniform:
+ case EvqTemporary:
+ type.getQualifier().storage = EvqIn;
+ break;
+ case EvqBuffer:
+ {
+ // SSBO parameter. These do not go through the declareBlock path since they are fn parameters.
+ correctUniform(type.getQualifier());
+ TQualifier bufferQualifier = globalBufferDefaults;
+ mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
+ bufferQualifier.storage = type.getQualifier().storage;
+ bufferQualifier.readonly = type.getQualifier().readonly;
+ bufferQualifier.coherent = type.getQualifier().coherent;
+ bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
+ type.getQualifier() = bufferQualifier;
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
+{
+ if (type.containsSpecializationSize())
+ error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
+}
+
+//
+// Layout qualifier stuff.
+//
+
+// Put the id's layout qualification into the public type, for qualifiers not having a number set.
+// This is before we know any type information for error checking.
+void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
+{
+ std::transform(id.begin(), id.end(), id.begin(), ::tolower);
+
+ if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
+ qualifier.layoutMatrix = ElmRowMajor;
+ return;
+ }
+ if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
+ qualifier.layoutMatrix = ElmColumnMajor;
+ return;
+ }
+ if (id == "push_constant") {
+ requireVulkan(loc, "push_constant");
+ qualifier.layoutPushConstant = true;
+ return;
+ }
+ if (language == EShLangGeometry || language == EShLangTessEvaluation) {
+ if (id == TQualifier::getGeometryString(ElgTriangles)) {
+ // publicType.shaderQualifiers.geometry = ElgTriangles;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (language == EShLangGeometry) {
+ if (id == TQualifier::getGeometryString(ElgPoints)) {
+ // publicType.shaderQualifiers.geometry = ElgPoints;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgLineStrip)) {
+ // publicType.shaderQualifiers.geometry = ElgLineStrip;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgLines)) {
+ // publicType.shaderQualifiers.geometry = ElgLines;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
+ // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
+ // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
+ // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ } else {
+ assert(language == EShLangTessEvaluation);
+
+ // input primitive
+ if (id == TQualifier::getGeometryString(ElgTriangles)) {
+ // publicType.shaderQualifiers.geometry = ElgTriangles;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgQuads)) {
+ // publicType.shaderQualifiers.geometry = ElgQuads;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getGeometryString(ElgIsolines)) {
+ // publicType.shaderQualifiers.geometry = ElgIsolines;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+
+ // vertex spacing
+ if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
+ // publicType.shaderQualifiers.spacing = EvsEqual;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
+ // publicType.shaderQualifiers.spacing = EvsFractionalEven;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
+ // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+
+ // triangle order
+ if (id == TQualifier::getVertexOrderString(EvoCw)) {
+ // publicType.shaderQualifiers.order = EvoCw;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == TQualifier::getVertexOrderString(EvoCcw)) {
+ // publicType.shaderQualifiers.order = EvoCcw;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+
+ // point mode
+ if (id == "point_mode") {
+ // publicType.shaderQualifiers.pointMode = true;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ }
+ }
+ if (language == EShLangFragment) {
+ if (id == "origin_upper_left") {
+ // publicType.shaderQualifiers.originUpperLeft = true;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "pixel_center_integer") {
+ // publicType.shaderQualifiers.pixelCenterInteger = true;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "early_fragment_tests") {
+ // publicType.shaderQualifiers.earlyFragmentTests = true;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
+ if (id == TQualifier::getLayoutDepthString(depth)) {
+ // publicType.shaderQualifiers.layoutDepth = depth;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ }
+ if (id.compare(0, 13, "blend_support") == 0) {
+ bool found = false;
+ for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
+ if (id == TQualifier::getBlendEquationString(be)) {
+ requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
+ intermediate.addBlendEquation(be);
+ // publicType.shaderQualifiers.blendEquation = true;
+ warn(loc, "ignored", id.c_str(), "");
+ found = true;
+ break;
+ }
+ }
+ if (! found)
+ error(loc, "unknown blend equation", "blend_support", "");
+ return;
+ }
+ }
+ error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
+}
+
+// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
+// This is before we know any type information for error checking.
+void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
+ const TIntermTyped* node)
+{
+ const char* feature = "layout-id value";
+ // const char* nonLiteralFeature = "non-literal layout-id value";
+
+ integerCheck(node, feature);
+ const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
+ int value = 0;
+ if (constUnion) {
+ value = constUnion->getConstArray()[0].getIConst();
+ }
+
+ std::transform(id.begin(), id.end(), id.begin(), ::tolower);
+
+ if (id == "offset") {
+ qualifier.layoutOffset = value;
+ return;
+ } else if (id == "align") {
+ // "The specified alignment must be a power of 2, or a compile-time error results."
+ if (! IsPow2(value))
+ error(loc, "must be a power of 2", "align", "");
+ else
+ qualifier.layoutAlign = value;
+ return;
+ } else if (id == "location") {
+ if ((unsigned int)value >= TQualifier::layoutLocationEnd)
+ error(loc, "location is too large", id.c_str(), "");
+ else
+ qualifier.layoutLocation = value;
+ return;
+ } else if (id == "set") {
+ if ((unsigned int)value >= TQualifier::layoutSetEnd)
+ error(loc, "set is too large", id.c_str(), "");
+ else
+ qualifier.layoutSet = value;
+ return;
+ } else if (id == "binding") {
+ if ((unsigned int)value >= TQualifier::layoutBindingEnd)
+ error(loc, "binding is too large", id.c_str(), "");
+ else
+ qualifier.layoutBinding = value;
+ return;
+ } else if (id == "component") {
+ if ((unsigned)value >= TQualifier::layoutComponentEnd)
+ error(loc, "component is too large", id.c_str(), "");
+ else
+ qualifier.layoutComponent = value;
+ return;
+ } else if (id.compare(0, 4, "xfb_") == 0) {
+ // "Any shader making any static use (after preprocessing) of any of these
+ // *xfb_* qualifiers will cause the shader to be in a transform feedback
+ // capturing mode and hence responsible for describing the transform feedback
+ // setup."
+ intermediate.setXfbMode();
+ if (id == "xfb_buffer") {
+ // "It is a compile-time error to specify an *xfb_buffer* that is greater than
+ // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
+ if (value >= resources.maxTransformFeedbackBuffers)
+ error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
+ resources.maxTransformFeedbackBuffers);
+ if (value >= (int)TQualifier::layoutXfbBufferEnd)
+ error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
+ else
+ qualifier.layoutXfbBuffer = value;
+ return;
+ } else if (id == "xfb_offset") {
+ if (value >= (int)TQualifier::layoutXfbOffsetEnd)
+ error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
+ else
+ qualifier.layoutXfbOffset = value;
+ return;
+ } else if (id == "xfb_stride") {
+ // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
+ // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
+ if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
+ error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
+ resources.maxTransformFeedbackInterleavedComponents);
+ else if (value >= (int)TQualifier::layoutXfbStrideEnd)
+ error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
+ if (value < (int)TQualifier::layoutXfbStrideEnd)
+ qualifier.layoutXfbStride = value;
+ return;
+ }
+ }
+
+ if (id == "input_attachment_index") {
+ requireVulkan(loc, "input_attachment_index");
+ if (value >= (int)TQualifier::layoutAttachmentEnd)
+ error(loc, "attachment index is too large", id.c_str(), "");
+ else
+ qualifier.layoutAttachment = value;
+ return;
+ }
+ if (id == "constant_id") {
+ setSpecConstantId(loc, qualifier, value);
+ return;
+ }
+
+ switch (language) {
+ case EShLangVertex:
+ break;
+
+ case EShLangTessControl:
+ if (id == "vertices") {
+ if (value == 0)
+ error(loc, "must be greater than 0", "vertices", "");
+ else
+ // publicType.shaderQualifiers.vertices = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ break;
+
+ case EShLangTessEvaluation:
+ break;
+
+ case EShLangGeometry:
+ if (id == "invocations") {
+ if (value == 0)
+ error(loc, "must be at least 1", "invocations", "");
+ else
+ // publicType.shaderQualifiers.invocations = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "max_vertices") {
+ // publicType.shaderQualifiers.vertices = value;
+ warn(loc, "ignored", id.c_str(), "");
+ if (value > resources.maxGeometryOutputVertices)
+ error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
+ return;
+ }
+ if (id == "stream") {
+ qualifier.layoutStream = value;
+ return;
+ }
+ break;
+
+ case EShLangFragment:
+ if (id == "index") {
+ qualifier.layoutIndex = value;
+ return;
+ }
+ break;
+
+ case EShLangCompute:
+ if (id.compare(0, 11, "local_size_") == 0) {
+ if (id == "local_size_x") {
+ // publicType.shaderQualifiers.localSize[0] = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "local_size_y") {
+ // publicType.shaderQualifiers.localSize[1] = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "local_size_z") {
+ // publicType.shaderQualifiers.localSize[2] = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (spvVersion.spv != 0) {
+ if (id == "local_size_x_id") {
+ // publicType.shaderQualifiers.localSizeSpecId[0] = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "local_size_y_id") {
+ // publicType.shaderQualifiers.localSizeSpecId[1] = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ if (id == "local_size_z_id") {
+ // publicType.shaderQualifiers.localSizeSpecId[2] = value;
+ warn(loc, "ignored", id.c_str(), "");
+ return;
+ }
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
+}
+
+void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
+{
+ if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
+ error(loc, "specialization-constant id is too large", "constant_id", "");
+ } else {
+ qualifier.layoutSpecConstantId = value;
+ qualifier.specConstant = true;
+ if (! intermediate.addUsedConstantId(value))
+ error(loc, "specialization-constant id already used", "constant_id", "");
+ }
+ return;
+}
+
+// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
+//
+// "More than one layout qualifier may appear in a single declaration.
+// Additionally, the same layout-qualifier-name can occur multiple times
+// within a layout qualifier or across multiple layout qualifiers in the
+// same declaration. When the same layout-qualifier-name occurs
+// multiple times, in a single declaration, the last occurrence overrides
+// the former occurrence(s). Further, if such a layout-qualifier-name
+// will effect subsequent declarations or other observable behavior, it
+// is only the last occurrence that will have any effect, behaving as if
+// the earlier occurrence(s) within the declaration are not present.
+// This is also true for overriding layout-qualifier-names, where one
+// overrides the other (e.g., row_major vs. column_major); only the last
+// occurrence has any effect."
+//
+void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
+{
+ if (src.hasMatrix())
+ dst.layoutMatrix = src.layoutMatrix;
+ if (src.hasPacking())
+ dst.layoutPacking = src.layoutPacking;
+
+ if (src.hasStream())
+ dst.layoutStream = src.layoutStream;
+
+ if (src.hasFormat())
+ dst.layoutFormat = src.layoutFormat;
+
+ if (src.hasXfbBuffer())
+ dst.layoutXfbBuffer = src.layoutXfbBuffer;
+
+ if (src.hasAlign())
+ dst.layoutAlign = src.layoutAlign;
+
+ if (! inheritOnly) {
+ if (src.hasLocation())
+ dst.layoutLocation = src.layoutLocation;
+ if (src.hasComponent())
+ dst.layoutComponent = src.layoutComponent;
+ if (src.hasIndex())
+ dst.layoutIndex = src.layoutIndex;
+
+ if (src.hasOffset())
+ dst.layoutOffset = src.layoutOffset;
+
+ if (src.hasSet())
+ dst.layoutSet = src.layoutSet;
+ if (src.layoutBinding != TQualifier::layoutBindingEnd)
+ dst.layoutBinding = src.layoutBinding;
+
+ if (src.hasXfbStride())
+ dst.layoutXfbStride = src.layoutXfbStride;
+ if (src.hasXfbOffset())
+ dst.layoutXfbOffset = src.layoutXfbOffset;
+ if (src.hasAttachment())
+ dst.layoutAttachment = src.layoutAttachment;
+ if (src.hasSpecConstantId())
+ dst.layoutSpecConstantId = src.layoutSpecConstantId;
+
+ if (src.layoutPushConstant)
+ dst.layoutPushConstant = true;
+ }
+}
+
+
+//
+// Look up a function name in the symbol table, and make sure it is a function.
+//
+// First, look for an exact match. If there is none, use the generic selector
+// TParseContextBase::selectFunction() to find one, parameterized by the
+// convertible() and better() predicates defined below.
+//
+// Return the function symbol if found, otherwise nullptr.
+//
+const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
+ TIntermTyped*& args)
+{
+ if (symbolTable.isFunctionNameVariable(call.getName())) {
+ error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
+ return nullptr;
+ }
+
+ // first, look for an exact match
+ bool dummyScope;
+ TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
+ if (symbol)
+ return symbol->getAsFunction();
+
+ // no exact match, use the generic selector, parameterized by the GLSL rules
+
+ // create list of candidates to send
+ TVector<const TFunction*> candidateList;
+ symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
+
+ // These built-in ops can accept any type, so we bypass the argument selection
+ if (candidateList.size() == 1 && builtIn &&
+ (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
+ candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
+ candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
+ candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
+ candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
+ candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
+ return candidateList[0];
+ }
+
+ bool allowOnlyUpConversions = true;
+
+ // can 'from' convert to 'to'?
+ const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
+ if (from == to)
+ return true;
+
+ // no aggregate conversions
+ if (from.isArray() || to.isArray() ||
+ from.isStruct() || to.isStruct())
+ return false;
+
+ switch (op) {
+ case EOpInterlockedAdd:
+ case EOpInterlockedAnd:
+ case EOpInterlockedCompareExchange:
+ case EOpInterlockedCompareStore:
+ case EOpInterlockedExchange:
+ case EOpInterlockedMax:
+ case EOpInterlockedMin:
+ case EOpInterlockedOr:
+ case EOpInterlockedXor:
+ // We do not promote the texture or image type for these ocodes. Normally that would not
+ // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
+ // stage it's merely e.g, a basic integer type.
+ //
+ // Instead, we want to promote other arguments, but stay within the same family. In other
+ // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
+ // but it is allowed to promote its other arguments.
+ if (arg == 0)
+ return false;
+ break;
+ case EOpMethodSample:
+ case EOpMethodSampleBias:
+ case EOpMethodSampleCmp:
+ case EOpMethodSampleCmpLevelZero:
+ case EOpMethodSampleGrad:
+ case EOpMethodSampleLevel:
+ case EOpMethodLoad:
+ case EOpMethodGetDimensions:
+ case EOpMethodGetSamplePosition:
+ case EOpMethodGather:
+ case EOpMethodCalculateLevelOfDetail:
+ case EOpMethodCalculateLevelOfDetailUnclamped:
+ case EOpMethodGatherRed:
+ case EOpMethodGatherGreen:
+ case EOpMethodGatherBlue:
+ case EOpMethodGatherAlpha:
+ case EOpMethodGatherCmp:
+ case EOpMethodGatherCmpRed:
+ case EOpMethodGatherCmpGreen:
+ case EOpMethodGatherCmpBlue:
+ case EOpMethodGatherCmpAlpha:
+ case EOpMethodAppend:
+ case EOpMethodRestartStrip:
+ // those are method calls, the object type can not be changed
+ // they are equal if the dim and type match (is dim sufficient?)
+ if (arg == 0)
+ return from.getSampler().type == to.getSampler().type &&
+ from.getSampler().arrayed == to.getSampler().arrayed &&
+ from.getSampler().shadow == to.getSampler().shadow &&
+ from.getSampler().ms == to.getSampler().ms &&
+ from.getSampler().dim == to.getSampler().dim;
+ break;
+ default:
+ break;
+ }
+
+ // basic types have to be convertible
+ if (allowOnlyUpConversions)
+ if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
+ return false;
+
+ // shapes have to be convertible
+ if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
+ (from.isScalarOrVec1() && to.isVector()) ||
+ (from.isScalarOrVec1() && to.isMatrix()) ||
+ (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
+ return true;
+
+ // TODO: what are the matrix rules? they go here
+
+ return false;
+ };
+
+ // Is 'to2' a better conversion than 'to1'?
+ // Ties should not be considered as better.
+ // Assumes 'convertible' already said true.
+ const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
+ // exact match is always better than mismatch
+ if (from == to2)
+ return from != to1;
+ if (from == to1)
+ return false;
+
+ // shape changes are always worse
+ if (from.isScalar() || from.isVector()) {
+ if (from.getVectorSize() == to2.getVectorSize() &&
+ from.getVectorSize() != to1.getVectorSize())
+ return true;
+ if (from.getVectorSize() == to1.getVectorSize() &&
+ from.getVectorSize() != to2.getVectorSize())
+ return false;
+ }
+
+ // Handle sampler betterness: An exact sampler match beats a non-exact match.
+ // (If we just looked at basic type, all EbtSamplers would look the same).
+ // If any type is not a sampler, just use the linearize function below.
+ if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
+ // We can ignore the vector size in the comparison.
+ TSampler to1Sampler = to1.getSampler();
+ TSampler to2Sampler = to2.getSampler();
+
+ to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
+
+ if (from.getSampler() == to2Sampler)
+ return from.getSampler() != to1Sampler;
+ if (from.getSampler() == to1Sampler)
+ return false;
+ }
+
+ // Might or might not be changing shape, which means basic type might
+ // or might not match, so within that, the question is how big a
+ // basic-type conversion is being done.
+ //
+ // Use a hierarchy of domains, translated to order of magnitude
+ // in a linearized view:
+ // - floating-point vs. integer
+ // - 32 vs. 64 bit (or width in general)
+ // - bool vs. non bool
+ // - signed vs. not signed
+ const auto linearize = [](const TBasicType& basicType) -> int {
+ switch (basicType) {
+ case EbtBool: return 1;
+ case EbtInt: return 10;
+ case EbtUint: return 11;
+ case EbtInt64: return 20;
+ case EbtUint64: return 21;
+ case EbtFloat: return 100;
+ case EbtDouble: return 110;
+ default: return 0;
+ }
+ };
+
+ return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
+ abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
+ };
+
+ // for ambiguity reporting
+ bool tie = false;
+
+ // send to the generic selector
+ const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
+
+ if (bestMatch == nullptr) {
+ // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
+ // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
+ // upconversions possible.
+ allowOnlyUpConversions = false;
+ bestMatch = selectFunction(candidateList, call, convertible, better, tie);
+ }
+
+ if (bestMatch == nullptr) {
+ error(loc, "no matching overloaded function found", call.getName().c_str(), "");
+ return nullptr;
+ }
+
+ // For built-ins, we can convert across the arguments. This will happen in several steps:
+ // Step 1: If there's an exact match, use it.
+ // Step 2a: Otherwise, get the operator from the best match and promote arguments:
+ // Step 2b: reconstruct the TFunction based on the new arg types
+ // Step 3: Re-select after type promotion is applied, to find proper candidate.
+ if (builtIn) {
+ // Step 1: If there's an exact match, use it.
+ if (call.getMangledName() == bestMatch->getMangledName())
+ return bestMatch;
+
+ // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
+ // are that kind of operator.
+ if (args != nullptr) {
+ // The arg list can be a unary node, or an aggregate. We have to handle both.
+ // We will use the normal promote() facilities, which require an interm node.
+ TIntermOperator* promote = nullptr;
+
+ if (call.getParamCount() == 1) {
+ promote = new TIntermUnary(bestMatch->getBuiltInOp());
+ promote->getAsUnaryNode()->setOperand(args->getAsTyped());
+ } else {
+ promote = new TIntermAggregate(bestMatch->getBuiltInOp());
+ promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
+ }
+
+ if (! intermediate.promote(promote))
+ return nullptr;
+
+ // Obtain the promoted arg list.
+ if (call.getParamCount() == 1) {
+ args = promote->getAsUnaryNode()->getOperand();
+ } else {
+ promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
+ }
+ }
+
+ // Step 2b: reconstruct the TFunction based on the new arg types
+ TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
+
+ if (args->getAsAggregate()) {
+ // Handle aggregates: put all args into the new function call
+ for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
+ // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
+ TParameter param = { 0, new TType, nullptr };
+ param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
+ convertedCall.addParameter(param);
+ }
+ } else if (args->getAsUnaryNode()) {
+ // Handle unaries: put all args into the new function call
+ TParameter param = { 0, new TType, nullptr };
+ param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
+ convertedCall.addParameter(param);
+ } else if (args->getAsTyped()) {
+ // Handle bare e.g, floats, not in an aggregate.
+ TParameter param = { 0, new TType, nullptr };
+ param.type->shallowCopy(args->getAsTyped()->getType());
+ convertedCall.addParameter(param);
+ } else {
+ assert(0); // unknown argument list.
+ return nullptr;
+ }
+
+ // Step 3: Re-select after type promotion, to find proper candidate
+ // send to the generic selector
+ bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
+
+ // At this point, there should be no tie.
+ }
+
+ if (tie)
+ error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
+
+ // Append default parameter values if needed
+ if (!tie && bestMatch != nullptr) {
+ for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
+ handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
+ }
+ }
+
+ return bestMatch;
+}
+
+//
+// Do everything necessary to handle a typedef declaration, for a single symbol.
+//
+// 'parseType' is the type part of the declaration (to the left)
+// 'arraySizes' is the arrayness tagged on the identifier (to the right)
+//
+void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
+{
+ TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
+ if (! symbolTable.insert(*typeSymbol))
+ error(loc, "name already defined", "typedef", identifier.c_str());
+}
+
+// Do everything necessary to handle a struct declaration, including
+// making IO aliases because HLSL allows mixed IO in a struct that specializes
+// based on the usage (input, output, uniform, none).
+void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
+{
+ // If it was named, which means the type can be reused later, add
+ // it to the symbol table. (Unless it's a block, in which
+ // case the name is not a type.)
+ if (type.getBasicType() == EbtBlock || structName.size() == 0)
+ return;
+
+ TVariable* userTypeDef = new TVariable(&structName, type, true);
+ if (! symbolTable.insert(*userTypeDef)) {
+ error(loc, "redefinition", structName.c_str(), "struct");
+ return;
+ }
+
+ // See if we need IO aliases for the structure typeList
+
+ const auto condAlloc = [](bool pred, TTypeList*& list) {
+ if (pred && list == nullptr)
+ list = new TTypeList;
+ };
+
+ tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
+ for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
+ condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
+ condAlloc( hasInput(member->type->getQualifier()), newLists.input);
+ condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
+
+ if (member->type->isStruct()) {
+ auto it = ioTypeMap.find(member->type->getStruct());
+ if (it != ioTypeMap.end()) {
+ condAlloc(it->second.uniform != nullptr, newLists.uniform);
+ condAlloc(it->second.input != nullptr, newLists.input);
+ condAlloc(it->second.output != nullptr, newLists.output);
+ }
+ }
+ }
+ if (newLists.uniform == nullptr &&
+ newLists.input == nullptr &&
+ newLists.output == nullptr) {
+ // Won't do any IO caching, clear up the type and get out now.
+ for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
+ clearUniformInputOutput(member->type->getQualifier());
+ return;
+ }
+
+ // We have IO involved.
+
+ // Make a pure typeList for the symbol table, and cache side copies of IO versions.
+ for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
+ const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
+ if (s != nullptr) {
+ ioMember.type = new TType;
+ ioMember.type->shallowCopy(*member->type);
+ ioMember.type->setStruct(s);
+ }
+ };
+ const auto newMember = [&](TTypeLoc& m) {
+ if (m.type == nullptr) {
+ m.type = new TType;
+ m.type->shallowCopy(*member->type);
+ }
+ };
+
+ TTypeLoc newUniformMember = { nullptr, member->loc };
+ TTypeLoc newInputMember = { nullptr, member->loc };
+ TTypeLoc newOutputMember = { nullptr, member->loc };
+ if (member->type->isStruct()) {
+ // swap in an IO child if there is one
+ auto it = ioTypeMap.find(member->type->getStruct());
+ if (it != ioTypeMap.end()) {
+ inheritStruct(it->second.uniform, newUniformMember);
+ inheritStruct(it->second.input, newInputMember);
+ inheritStruct(it->second.output, newOutputMember);
+ }
+ }
+ if (newLists.uniform) {
+ newMember(newUniformMember);
+
+ // inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
+ if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
+ newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
+
+ correctUniform(newUniformMember.type->getQualifier());
+ newLists.uniform->push_back(newUniformMember);
+ }
+ if (newLists.input) {
+ newMember(newInputMember);
+ correctInput(newInputMember.type->getQualifier());
+ newLists.input->push_back(newInputMember);
+ }
+ if (newLists.output) {
+ newMember(newOutputMember);
+ correctOutput(newOutputMember.type->getQualifier());
+ newLists.output->push_back(newOutputMember);
+ }
+
+ // make original pure
+ clearUniformInputOutput(member->type->getQualifier());
+ }
+ ioTypeMap[type.getStruct()] = newLists;
+}
+
+// Lookup a user-type by name.
+// If found, fill in the type and return the defining symbol.
+// If not found, return nullptr.
+TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
+{
+ TSymbol* symbol = symbolTable.find(typeName);
+ if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
+ type.shallowCopy(symbol->getType());
+ return symbol;
+ } else
+ return nullptr;
+}
+
+//
+// Do everything necessary to handle a variable (non-block) declaration.
+// Either redeclaring a variable, or making a new one, updating the symbol
+// table, and all error checking.
+//
+// Returns a subtree node that computes an initializer, if needed.
+// Returns nullptr if there is no code to execute for initialization.
+//
+// 'parseType' is the type part of the declaration (to the left)
+// 'arraySizes' is the arrayness tagged on the identifier (to the right)
+//
+TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
+ TIntermTyped* initializer)
+{
+ if (voidErrorCheck(loc, identifier, type.getBasicType()))
+ return nullptr;
+
+ // Global consts with initializers that are non-const act like EvqGlobal in HLSL.
+ // This test is implicitly recursive, because initializers propagate constness
+ // up the aggregate node tree during creation. E.g, for:
+ // { { 1, 2 }, { 3, 4 } }
+ // the initializer list is marked EvqConst at the top node, and remains so here. However:
+ // { 1, { myvar, 2 }, 3 }
+ // is not a const intializer, and still becomes EvqGlobal here.
+
+ const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
+
+ if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
+ // Force to global
+ type.getQualifier().storage = EvqGlobal;
+ }
+
+ // make const and initialization consistent
+ fixConstInit(loc, identifier, type, initializer);
+
+ // Check for redeclaration of built-ins and/or attempting to declare a reserved name
+ TSymbol* symbol = nullptr;
+
+ inheritGlobalDefaults(type.getQualifier());
+
+ const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
+
+ // correct IO in the type
+ switch (type.getQualifier().storage) {
+ case EvqGlobal:
+ case EvqTemporary:
+ clearUniformInputOutput(type.getQualifier());
+ break;
+ case EvqUniform:
+ case EvqBuffer:
+ correctUniform(type.getQualifier());
+ if (type.isStruct()) {
+ auto it = ioTypeMap.find(type.getStruct());
+ if (it != ioTypeMap.end())
+ type.setStruct(it->second.uniform);
+ }
+
+ break;
+ default:
+ break;
+ }
+
+ // Declare the variable
+ if (type.isArray()) {
+ // array case
+ declareArray(loc, identifier, type, symbol, !flattenVar);
+ } else {
+ // non-array case
+ if (symbol == nullptr)
+ symbol = declareNonArray(loc, identifier, type, !flattenVar);
+ else if (type != symbol->getType())
+ error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
+ }
+
+ if (symbol == nullptr)
+ return nullptr;
+
+ if (flattenVar)
+ flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
+
+ if (initializer == nullptr)
+ return nullptr;
+
+ // Deal with initializer
+ TVariable* variable = symbol->getAsVariable();
+ if (variable == nullptr) {
+ error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
+ return nullptr;
+ }
+ return executeInitializer(loc, initializer, variable);
+}
+
+// Pick up global defaults from the provide global defaults into dst.
+void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
+{
+ if (dst.storage == EvqVaryingOut) {
+ if (! dst.hasStream() && language == EShLangGeometry)
+ dst.layoutStream = globalOutputDefaults.layoutStream;
+ if (! dst.hasXfbBuffer())
+ dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
+ }
+}
+
+//
+// Make an internal-only variable whose name is for debug purposes only
+// and won't be searched for. Callers will only use the return value to use
+// the variable, not the name to look it up. It is okay if the name
+// is the same as other names; there won't be any conflict.
+//
+TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
+{
+ TString* nameString = NewPoolTString(name);
+ TVariable* variable = new TVariable(nameString, type);
+ symbolTable.makeInternalVariable(*variable);
+
+ return variable;
+}
+
+// Make a symbol node holding a new internal temporary variable.
+TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
+ const TType& type) const
+{
+ TVariable* tmpVar = makeInternalVariable(name, type);
+ tmpVar->getWritableType().getQualifier().makeTemporary();
+
+ return intermediate.addSymbol(*tmpVar, loc);
+}
+
+//
+// Declare a non-array variable, the main point being there is no redeclaration
+// for resizing allowed.
+//
+// Return the successfully declared variable.
+//
+TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
+ bool track)
+{
+ // make a new variable
+ TVariable* variable = new TVariable(&identifier, type);
+
+ // add variable to symbol table
+ if (symbolTable.insert(*variable)) {
+ if (track && symbolTable.atGlobalLevel())
+ trackLinkage(*variable);
+ return variable;
+ }
+
+ error(loc, "redefinition", variable->getName().c_str(), "");
+ return nullptr;
+}
+
+//
+// Handle all types of initializers from the grammar.
+//
+// Returning nullptr just means there is no code to execute to handle the
+// initializer, which will, for example, be the case for constant initializers.
+//
+// Returns a subtree that accomplished the initialization.
+//
+TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
+{
+ //
+ // Identifier must be of type constant, a global, or a temporary, and
+ // starting at version 120, desktop allows uniforms to have initializers.
+ //
+ TStorageQualifier qualifier = variable->getType().getQualifier().storage;
+
+ //
+ // If the initializer was from braces { ... }, we convert the whole subtree to a
+ // constructor-style subtree, allowing the rest of the code to operate
+ // identically for both kinds of initializers.
+ //
+ //
+ // Type can't be deduced from the initializer list, so a skeletal type to
+ // follow has to be passed in. Constness and specialization-constness
+ // should be deduced bottom up, not dictated by the skeletal type.
+ //
+ TType skeletalType;
+ skeletalType.shallowCopy(variable->getType());
+ skeletalType.getQualifier().makeTemporary();
+ if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
+ initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
+ if (initializer == nullptr) {
+ // error recovery; don't leave const without constant values
+ if (qualifier == EvqConst)
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+
+ // Fix outer arrayness if variable is unsized, getting size from the initializer
+ if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
+ variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
+
+ // Inner arrayness can also get set by an initializer
+ if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
+ initializer->getType().getArraySizes()->getNumDims() ==
+ variable->getType().getArraySizes()->getNumDims()) {
+ // adopt unsized sizes from the initializer's sizes
+ for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
+ if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
+ variable->getWritableType().getArraySizes()->setDimSize(d,
+ initializer->getType().getArraySizes()->getDimSize(d));
+ }
+ }
+ }
+
+ // Uniform and global consts require a constant initializer
+ if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
+ error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+
+ // Const variables require a constant initializer
+ if (qualifier == EvqConst) {
+ if (initializer->getType().getQualifier().storage != EvqConst) {
+ variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
+ qualifier = EvqConstReadOnly;
+ }
+ }
+
+ if (qualifier == EvqConst || qualifier == EvqUniform) {
+ // Compile-time tagging of the variable with its constant value...
+
+ initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
+ if (initializer != nullptr && variable->getType() != initializer->getType())
+ initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
+ if (initializer == nullptr || !initializer->getAsConstantUnion() ||
+ variable->getType() != initializer->getType()) {
+ error(loc, "non-matching or non-convertible constant type for const initializer",
+ variable->getType().getStorageQualifierString(), "");
+ variable->getWritableType().getQualifier().storage = EvqTemporary;
+ return nullptr;
+ }
+
+ variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
+ } else {
+ // normal assigning of a value to a variable...
+ specializationCheck(loc, initializer->getType(), "initializer");
+ TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
+ TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
+ if (initNode == nullptr)
+ assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+ return initNode;
+ }
+
+ return nullptr;
+}
+
+//
+// Reprocess any initializer-list { ... } parts of the initializer.
+// Need to hierarchically assign correct types and implicit
+// conversions. Will do this mimicking the same process used for
+// creating a constructor-style initializer, ensuring we get the
+// same form.
+//
+// Returns a node representing an expression for the initializer list expressed
+// as the correct type.
+//
+// Returns nullptr if there is an error.
+//
+TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
+ TIntermTyped* initializer, TIntermTyped* scalarInit)
+{
+ // Will operate recursively. Once a subtree is found that is constructor style,
+ // everything below it is already good: Only the "top part" of the initializer
+ // can be an initializer list, where "top part" can extend for several (or all) levels.
+
+ // see if we have bottomed out in the tree within the initializer-list part
+ TIntermAggregate* initList = initializer->getAsAggregate();
+ if (initList == nullptr || initList->getOp() != EOpNull) {
+ // We don't have a list, but if it's a scalar and the 'type' is a
+ // composite, we need to lengthen below to make it useful.
+ // Otherwise, this is an already formed object to initialize with.
+ if (type.isScalar() || !initializer->getType().isScalar())
+ return initializer;
+ else
+ initList = intermediate.makeAggregate(initializer);
+ }
+
+ // Of the initializer-list set of nodes, need to process bottom up,
+ // so recurse deep, then process on the way up.
+
+ // Go down the tree here...
+ if (type.isArray()) {
+ // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
+ // Later on, initializer execution code will deal with array size logic.
+ TType arrayType;
+ arrayType.shallowCopy(type); // sharing struct stuff is fine
+ arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
+
+ // edit array sizes to fill in unsized dimensions
+ if (type.isUnsizedArray())
+ arrayType.changeOuterArraySize((int)initList->getSequence().size());
+
+ // set unsized array dimensions that can be derived from the initializer's first element
+ if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
+ TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
+ if (firstInit->getType().isArray() &&
+ arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
+ for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
+ if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
+ arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
+ }
+ }
+ }
+
+ // lengthen list to be long enough
+ lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
+
+ // recursively process each element
+ TType elementType(arrayType, 0); // dereferenced type
+ for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
+ initList->getSequence()[i] = convertInitializerList(loc, elementType,
+ initList->getSequence()[i]->getAsTyped(), scalarInit);
+ if (initList->getSequence()[i] == nullptr)
+ return nullptr;
+ }
+
+ return addConstructor(loc, initList, arrayType);
+ } else if (type.isStruct()) {
+ // do we have implicit assignments to opaques?
+ for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
+ if ((*type.getStruct())[i].type->containsOpaque()) {
+ error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
+ return nullptr;
+ }
+ }
+
+ // lengthen list to be long enough
+ lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
+
+ if (type.getStruct()->size() != initList->getSequence().size()) {
+ error(loc, "wrong number of structure members", "initializer list", "");
+ return nullptr;
+ }
+ for (size_t i = 0; i < type.getStruct()->size(); ++i) {
+ initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
+ initList->getSequence()[i]->getAsTyped(), scalarInit);
+ if (initList->getSequence()[i] == nullptr)
+ return nullptr;
+ }
+ } else if (type.isMatrix()) {
+ if (type.computeNumComponents() == (int)initList->getSequence().size()) {
+ // This means the matrix is initialized component-wise, rather than as
+ // a series of rows and columns. We can just use the list directly as
+ // a constructor; no further processing needed.
+ } else {
+ // lengthen list to be long enough
+ lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
+
+ if (type.getMatrixCols() != (int)initList->getSequence().size()) {
+ error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
+ return nullptr;
+ }
+ TType vectorType(type, 0); // dereferenced type
+ for (int i = 0; i < type.getMatrixCols(); ++i) {
+ initList->getSequence()[i] = convertInitializerList(loc, vectorType,
+ initList->getSequence()[i]->getAsTyped(), scalarInit);
+ if (initList->getSequence()[i] == nullptr)
+ return nullptr;
+ }
+ }
+ } else if (type.isVector()) {
+ // lengthen list to be long enough
+ lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
+
+ // error check; we're at bottom, so work is finished below
+ if (type.getVectorSize() != (int)initList->getSequence().size()) {
+ error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
+ type.getCompleteString().c_str());
+ return nullptr;
+ }
+ } else if (type.isScalar()) {
+ // lengthen list to be long enough
+ lengthenList(loc, initList->getSequence(), 1, scalarInit);
+
+ if ((int)initList->getSequence().size() != 1) {
+ error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
+ return nullptr;
+ }
+ } else {
+ error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
+ return nullptr;
+ }
+
+ // Now that the subtree is processed, process this node as if the
+ // initializer list is a set of arguments to a constructor.
+ TIntermTyped* emulatedConstructorArguments;
+ if (initList->getSequence().size() == 1)
+ emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
+ else
+ emulatedConstructorArguments = initList;
+
+ return addConstructor(loc, emulatedConstructorArguments, type);
+}
+
+// Lengthen list to be long enough to cover any gap from the current list size
+// to 'size'. If the list is longer, do nothing.
+// The value to lengthen with is the default for short lists.
+//
+// By default, lists that are too short due to lack of initializers initialize to zero.
+// Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
+// based on whether something is passed in as 'scalarInit'.
+//
+// 'scalarInit' must be safe to use each time this is called (no side effects replication).
+//
+void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
+{
+ for (int c = (int)list.size(); c < size; ++c) {
+ if (scalarInit == nullptr)
+ list.push_back(intermediate.addConstantUnion(0, loc));
+ else
+ list.push_back(scalarInit);
+ }
+}
+
+//
+// Test for the correctness of the parameters passed to various constructor functions
+// and also convert them to the right data type, if allowed and required.
+//
+// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
+//
+TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
+{
+ if (node == nullptr)
+ return nullptr;
+
+ // Construct identical type
+ if (type == node->getType())
+ return node;
+
+ // Handle the idiom "(struct type)<scalar value>"
+ if (type.isStruct() && isScalarConstructor(node)) {
+ // 'node' will almost always get used multiple times, so should not be used directly,
+ // it would create a DAG instead of a tree, which might be okay (would
+ // like to formalize that for constants and symbols), but if it has
+ // side effects, they would get executed multiple times, which is not okay.
+ if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
+ TIntermAggregate* seq = intermediate.makeAggregate(loc);
+ TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
+ seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
+ seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
+ seq->setOp(EOpComma);
+ seq->setType(type);
+ return seq;
+ } else
+ return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
+ }
+
+ return addConstructor(loc, node, type);
+}
+
+// Add a constructor, either from the grammar, or other programmatic reasons.
+//
+// 'node' is what to construct from.
+// 'type' is what type to construct.
+//
+// Returns the constructed object.
+// Return nullptr if it can't be done.
+//
+TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
+{
+ TIntermAggregate* aggrNode = node->getAsAggregate();
+ TOperator op = intermediate.mapTypeToConstructorOp(type);
+
+ if (op == EOpConstructTextureSampler)
+ return intermediate.setAggregateOperator(aggrNode, op, type, loc);
+
+ TTypeList::const_iterator memberTypes;
+ if (op == EOpConstructStruct)
+ memberTypes = type.getStruct()->begin();
+
+ TType elementType;
+ if (type.isArray()) {
+ TType dereferenced(type, 0);
+ elementType.shallowCopy(dereferenced);
+ } else
+ elementType.shallowCopy(type);
+
+ bool singleArg;
+ if (aggrNode != nullptr) {
+ if (aggrNode->getOp() != EOpNull)
+ singleArg = true;
+ else
+ singleArg = false;
+ } else
+ singleArg = true;
+
+ TIntermTyped *newNode;
+ if (singleArg) {
+ // Handle array -> array conversion
+ // Constructing an array of one type from an array of another type is allowed,
+ // assuming there are enough components available (semantic-checked earlier).
+ if (type.isArray() && node->isArray())
+ newNode = convertArray(node, type);
+
+ // If structure constructor or array constructor is being called
+ // for only one parameter inside the aggregate, we need to call constructAggregate function once.
+ else if (type.isArray())
+ newNode = constructAggregate(node, elementType, 1, node->getLoc());
+ else if (op == EOpConstructStruct)
+ newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
+ else {
+ // shape conversion for matrix constructor from scalar. HLSL semantics are: scalar
+ // is replicated into every element of the matrix (not just the diagnonal), so
+ // that is handled specially here.
+ if (type.isMatrix() && node->getType().isScalarOrVec1())
+ node = intermediate.addShapeConversion(type, node);
+
+ newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
+ }
+
+ if (newNode && (type.isArray() || op == EOpConstructStruct))
+ newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
+
+ return newNode;
+ }
+
+ //
+ // Handle list of arguments.
+ //
+ TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
+ // if the structure constructor contains more than one parameter, then construct
+ // each parameter
+
+ int paramCount = 0; // keeps a track of the constructor parameter number being checked
+
+ // for each parameter to the constructor call, check to see if the right type is passed or convert them
+ // to the right type if possible (and allowed).
+ // for structure constructors, just check if the right type is passed, no conversion is allowed.
+
+ for (TIntermSequence::iterator p = sequenceVector.begin();
+ p != sequenceVector.end(); p++, paramCount++) {
+ if (type.isArray())
+ newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
+ else if (op == EOpConstructStruct)
+ newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
+ else
+ newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
+
+ if (newNode)
+ *p = newNode;
+ else
+ return nullptr;
+ }
+
+ TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
+
+ return constructor;
+}
+
+// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
+// for the parameter to the constructor (passed to this function). Essentially, it converts
+// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
+// float, then float is converted to int.
+//
+// Returns nullptr for an error or the constructed node.
+//
+TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
+ const TSourceLoc& loc, bool subset)
+{
+ TIntermTyped* newNode;
+ TOperator basicOp;
+
+ //
+ // First, convert types as needed.
+ //
+ switch (op) {
+ case EOpConstructF16Vec2:
+ case EOpConstructF16Vec3:
+ case EOpConstructF16Vec4:
+ case EOpConstructF16Mat2x2:
+ case EOpConstructF16Mat2x3:
+ case EOpConstructF16Mat2x4:
+ case EOpConstructF16Mat3x2:
+ case EOpConstructF16Mat3x3:
+ case EOpConstructF16Mat3x4:
+ case EOpConstructF16Mat4x2:
+ case EOpConstructF16Mat4x3:
+ case EOpConstructF16Mat4x4:
+ case EOpConstructFloat16:
+ basicOp = EOpConstructFloat16;
+ break;
+
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2x2:
+ case EOpConstructMat2x3:
+ case EOpConstructMat2x4:
+ case EOpConstructMat3x2:
+ case EOpConstructMat3x3:
+ case EOpConstructMat3x4:
+ case EOpConstructMat4x2:
+ case EOpConstructMat4x3:
+ case EOpConstructMat4x4:
+ case EOpConstructFloat:
+ basicOp = EOpConstructFloat;
+ break;
+
+ case EOpConstructDVec2:
+ case EOpConstructDVec3:
+ case EOpConstructDVec4:
+ case EOpConstructDMat2x2:
+ case EOpConstructDMat2x3:
+ case EOpConstructDMat2x4:
+ case EOpConstructDMat3x2:
+ case EOpConstructDMat3x3:
+ case EOpConstructDMat3x4:
+ case EOpConstructDMat4x2:
+ case EOpConstructDMat4x3:
+ case EOpConstructDMat4x4:
+ case EOpConstructDouble:
+ basicOp = EOpConstructDouble;
+ break;
+
+ case EOpConstructI16Vec2:
+ case EOpConstructI16Vec3:
+ case EOpConstructI16Vec4:
+ case EOpConstructInt16:
+ basicOp = EOpConstructInt16;
+ break;
+
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructIMat2x2:
+ case EOpConstructIMat2x3:
+ case EOpConstructIMat2x4:
+ case EOpConstructIMat3x2:
+ case EOpConstructIMat3x3:
+ case EOpConstructIMat3x4:
+ case EOpConstructIMat4x2:
+ case EOpConstructIMat4x3:
+ case EOpConstructIMat4x4:
+ case EOpConstructInt:
+ basicOp = EOpConstructInt;
+ break;
+
+ case EOpConstructU16Vec2:
+ case EOpConstructU16Vec3:
+ case EOpConstructU16Vec4:
+ case EOpConstructUint16:
+ basicOp = EOpConstructUint16;
+ break;
+
+ case EOpConstructUVec2:
+ case EOpConstructUVec3:
+ case EOpConstructUVec4:
+ case EOpConstructUMat2x2:
+ case EOpConstructUMat2x3:
+ case EOpConstructUMat2x4:
+ case EOpConstructUMat3x2:
+ case EOpConstructUMat3x3:
+ case EOpConstructUMat3x4:
+ case EOpConstructUMat4x2:
+ case EOpConstructUMat4x3:
+ case EOpConstructUMat4x4:
+ case EOpConstructUint:
+ basicOp = EOpConstructUint;
+ break;
+
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBMat2x2:
+ case EOpConstructBMat2x3:
+ case EOpConstructBMat2x4:
+ case EOpConstructBMat3x2:
+ case EOpConstructBMat3x3:
+ case EOpConstructBMat3x4:
+ case EOpConstructBMat4x2:
+ case EOpConstructBMat4x3:
+ case EOpConstructBMat4x4:
+ case EOpConstructBool:
+ basicOp = EOpConstructBool;
+ break;
+
+ default:
+ error(loc, "unsupported construction", "", "");
+
+ return nullptr;
+ }
+ newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
+ if (newNode == nullptr) {
+ error(loc, "can't convert", "constructor", "");
+ return nullptr;
+ }
+
+ //
+ // Now, if there still isn't an operation to do the construction, and we need one, add one.
+ //
+
+ // Otherwise, skip out early.
+ if (subset || (newNode != node && newNode->getType() == type))
+ return newNode;
+
+ // setAggregateOperator will insert a new node for the constructor, as needed.
+ return intermediate.setAggregateOperator(newNode, op, type, loc);
+}
+
+// Convert the array in node to the requested type, which is also an array.
+// Returns nullptr on failure, otherwise returns aggregate holding the list of
+// elements needed to construct the array.
+TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
+{
+ assert(node->isArray() && type.isArray());
+ if (node->getType().computeNumComponents() < type.computeNumComponents())
+ return nullptr;
+
+ // TODO: write an argument replicator, for the case the argument should not be
+ // executed multiple times, yet multiple copies are needed.
+
+ TIntermTyped* constructee = node->getAsTyped();
+ // track where we are in consuming the argument
+ int constructeeElement = 0;
+ int constructeeComponent = 0;
+
+ // bump up to the next component to consume
+ const auto getNextComponent = [&]() {
+ TIntermTyped* component;
+ component = handleBracketDereference(node->getLoc(), constructee,
+ intermediate.addConstantUnion(constructeeElement, node->getLoc()));
+ if (component->isVector())
+ component = handleBracketDereference(node->getLoc(), component,
+ intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
+ // bump component pointer up
+ ++constructeeComponent;
+ if (constructeeComponent == constructee->getVectorSize()) {
+ constructeeComponent = 0;
+ ++constructeeElement;
+ }
+ return component;
+ };
+
+ // make one subnode per constructed array element
+ TIntermAggregate* constructor = nullptr;
+ TType derefType(type, 0);
+ TType speculativeComponentType(derefType, 0);
+ TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
+ TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
+ TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
+ for (int e = 0; e < type.getOuterArraySize(); ++e) {
+ // construct an element
+ TIntermTyped* elementArg;
+ if (type.getVectorSize() == constructee->getVectorSize()) {
+ // same element shape
+ elementArg = handleBracketDereference(node->getLoc(), constructee,
+ intermediate.addConstantUnion(e, node->getLoc()));
+ } else {
+ // mismatched element shapes
+ if (type.getVectorSize() == 1)
+ elementArg = getNextComponent();
+ else {
+ // make a vector
+ TIntermAggregate* elementConstructee = nullptr;
+ for (int c = 0; c < type.getVectorSize(); ++c)
+ elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
+ elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
+ }
+ }
+ // convert basic types
+ elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
+ if (elementArg == nullptr)
+ return nullptr;
+ // combine with top-level constructor
+ constructor = intermediate.growAggregate(constructor, elementArg);
+ }
+
+ return constructor;
+}
+
+// This function tests for the type of the parameters to the structure or array constructor. Raises
+// an error message if the expected type does not match the parameter passed to the constructor.
+//
+// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
+//
+TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
+ const TSourceLoc& loc)
+{
+ // Handle cases that map more 1:1 between constructor arguments and constructed.
+ TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
+ if (converted == nullptr || converted->getType() != type) {
+ error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
+ node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
+
+ return nullptr;
+ }
+
+ return converted;
+}
+
+//
+// Do everything needed to add an interface block.
+//
+void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
+{
+ assert(type.getWritableStruct() != nullptr);
+
+ // Clean up top-level decorations that don't belong.
+ switch (type.getQualifier().storage) {
+ case EvqUniform:
+ case EvqBuffer:
+ correctUniform(type.getQualifier());
+ break;
+ case EvqVaryingIn:
+ correctInput(type.getQualifier());
+ break;
+ case EvqVaryingOut:
+ correctOutput(type.getQualifier());
+ break;
+ default:
+ break;
+ }
+
+ TTypeList& typeList = *type.getWritableStruct();
+ // fix and check for member storage qualifiers and types that don't belong within a block
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TType& memberType = *typeList[member].type;
+ TQualifier& memberQualifier = memberType.getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+ globalQualifierFix(memberLoc, memberQualifier);
+ memberQualifier.storage = type.getQualifier().storage;
+
+ if (memberType.isStruct()) {
+ // clean up and pick up the right set of decorations
+ auto it = ioTypeMap.find(memberType.getStruct());
+ switch (type.getQualifier().storage) {
+ case EvqUniform:
+ case EvqBuffer:
+ correctUniform(type.getQualifier());
+ if (it != ioTypeMap.end() && it->second.uniform)
+ memberType.setStruct(it->second.uniform);
+ break;
+ case EvqVaryingIn:
+ correctInput(type.getQualifier());
+ if (it != ioTypeMap.end() && it->second.input)
+ memberType.setStruct(it->second.input);
+ break;
+ case EvqVaryingOut:
+ correctOutput(type.getQualifier());
+ if (it != ioTypeMap.end() && it->second.output)
+ memberType.setStruct(it->second.output);
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ // Make default block qualification, and adjust the member qualifications
+
+ TQualifier defaultQualification;
+ switch (type.getQualifier().storage) {
+ case EvqUniform: defaultQualification = globalUniformDefaults; break;
+ case EvqBuffer: defaultQualification = globalBufferDefaults; break;
+ case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
+ case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
+ default: defaultQualification.clear(); break;
+ }
+
+ // Special case for "push_constant uniform", which has a default of std430,
+ // contrary to normal uniform defaults, and can't have a default tracked for it.
+ if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
+ type.getQualifier().layoutPacking = ElpStd430;
+
+ // fix and check for member layout qualifiers
+
+ mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
+
+ bool memberWithLocation = false;
+ bool memberWithoutLocation = false;
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+ if (memberQualifier.hasStream()) {
+ if (defaultQualification.layoutStream != memberQualifier.layoutStream)
+ error(memberLoc, "member cannot contradict block", "stream", "");
+ }
+
+ // "This includes a block's inheritance of the
+ // current global default buffer, a block member's inheritance of the block's
+ // buffer, and the requirement that any *xfb_buffer* declared on a block
+ // member must match the buffer inherited from the block."
+ if (memberQualifier.hasXfbBuffer()) {
+ if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
+ error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
+ }
+
+ if (memberQualifier.hasLocation()) {
+ switch (type.getQualifier().storage) {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ memberWithLocation = true;
+ break;
+ default:
+ break;
+ }
+ } else
+ memberWithoutLocation = true;
+
+ TQualifier newMemberQualification = defaultQualification;
+ mergeQualifiers(newMemberQualification, memberQualifier);
+ memberQualifier = newMemberQualification;
+ }
+
+ // Process the members
+ fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
+ fixXfbOffsets(type.getQualifier(), typeList);
+ fixBlockUniformOffsets(type.getQualifier(), typeList);
+
+ // reverse merge, so that currentBlockQualifier now has all layout information
+ // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
+ mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
+
+ //
+ // Build and add the interface block as a new type named 'blockName'
+ //
+
+ // Use the instance name as the interface name if one exists, else the block name.
+ const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
+
+ TType blockType(&typeList, interfaceName, type.getQualifier());
+ if (type.isArray())
+ blockType.transferArraySizes(type.getArraySizes());
+
+ // Add the variable, as anonymous or named instanceName.
+ // Make an anonymous variable if no name was provided.
+ if (instanceName == nullptr)
+ instanceName = NewPoolTString("");
+
+ TVariable& variable = *new TVariable(instanceName, blockType);
+ if (! symbolTable.insert(variable)) {
+ if (*instanceName == "")
+ error(loc, "nameless block contains a member that already has a name at global scope",
+ "" /* blockName->c_str() */, "");
+ else
+ error(loc, "block instance name redefinition", variable.getName().c_str(), "");
+
+ return;
+ }
+
+ // Save it in the AST for linker use.
+ if (symbolTable.atGlobalLevel())
+ trackLinkage(variable);
+}
+
+//
+// "For a block, this process applies to the entire block, or until the first member
+// is reached that has a location layout qualifier. When a block member is declared with a location
+// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
+// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
+// until the next member declared with a location qualifier. The values used for locations do not have to be
+// declared in increasing order."
+void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
+{
+ // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
+ // have a location layout qualifier, or a compile-time error results."
+ if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
+ error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
+ else {
+ if (memberWithLocation) {
+ // remove any block-level location and make it per *every* member
+ int nextLocation = 0; // by the rule above, initial value is not relevant
+ if (qualifier.hasAnyLocation()) {
+ nextLocation = qualifier.layoutLocation;
+ qualifier.layoutLocation = TQualifier::layoutLocationEnd;
+ if (qualifier.hasComponent()) {
+ // "It is a compile-time error to apply the *component* qualifier to a ... block"
+ error(loc, "cannot apply to a block", "component", "");
+ }
+ if (qualifier.hasIndex()) {
+ error(loc, "cannot apply to a block", "index", "");
+ }
+ }
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+ if (! memberQualifier.hasLocation()) {
+ if (nextLocation >= (int)TQualifier::layoutLocationEnd)
+ error(memberLoc, "location is too large", "location", "");
+ memberQualifier.layoutLocation = nextLocation;
+ memberQualifier.layoutComponent = 0;
+ }
+ nextLocation = memberQualifier.layoutLocation +
+ intermediate.computeTypeLocationSize(*typeList[member].type, language);
+ }
+ }
+ }
+}
+
+void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
+{
+ // "If a block is qualified with xfb_offset, all its
+ // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
+ // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
+ // offsets."
+
+ if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
+ return;
+
+ int nextOffset = qualifier.layoutXfbOffset;
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ bool contains64BitType = false;
+#ifdef AMD_EXTENSIONS
+ bool contains32BitType = false;
+ bool contains16BitType = false;
+ int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
+#else
+ int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType);
+#endif
+ // see if we need to auto-assign an offset to this member
+ if (! memberQualifier.hasXfbOffset()) {
+ // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
+ if (contains64BitType)
+ RoundToPow2(nextOffset, 8);
+#ifdef AMD_EXTENSIONS
+ else if (contains32BitType)
+ RoundToPow2(nextOffset, 4);
+ // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
+ else if (contains16BitType)
+ RoundToPow2(nextOffset, 2);
+#endif
+ memberQualifier.layoutXfbOffset = nextOffset;
+ } else
+ nextOffset = memberQualifier.layoutXfbOffset;
+ nextOffset += memberSize;
+ }
+
+ // The above gave all block members an offset, so we can take it off the block now,
+ // which will avoid double counting the offset usage.
+ qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
+}
+
+// Calculate and save the offset of each block member, using the recursively
+// defined block offset rules and the user-provided offset and align.
+//
+// Also, compute and save the total size of the block. For the block's size, arrayness
+// is not taken into account, as each element is backed by a separate buffer.
+//
+void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
+{
+ if (! qualifier.isUniformOrBuffer())
+ return;
+ if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
+ return;
+
+ int offset = 0;
+ int memberSize;
+ for (unsigned int member = 0; member < typeList.size(); ++member) {
+ TQualifier& memberQualifier = typeList[member].type->getQualifier();
+ const TSourceLoc& memberLoc = typeList[member].loc;
+
+ // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
+
+ // modify just the children's view of matrix layout, if there is one for this member
+ TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
+ int dummyStride;
+ int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
+ qualifier.layoutPacking,
+ subMatrixLayout != ElmNone
+ ? subMatrixLayout == ElmRowMajor
+ : qualifier.layoutMatrix == ElmRowMajor);
+ if (memberQualifier.hasOffset()) {
+ // "The specified offset must be a multiple
+ // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
+ if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
+ error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
+
+ // "The offset qualifier forces the qualified member to start at or after the specified
+ // integral-constant expression, which will be its byte offset from the beginning of the buffer.
+ // "The actual offset of a member is computed as
+ // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
+ offset = std::max(offset, memberQualifier.layoutOffset);
+ }
+
+ // "The actual alignment of a member will be the greater of the specified align alignment and the standard
+ // (e.g., std140) base alignment for the member's type."
+ if (memberQualifier.hasAlign())
+ memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
+
+ // "If the resulting offset is not a multiple of the actual alignment,
+ // increase it to the first offset that is a multiple of
+ // the actual alignment."
+ RoundToPow2(offset, memberAlignment);
+ typeList[member].type->getQualifier().layoutOffset = offset;
+ offset += memberSize;
+ }
+}
+
+// For an identifier that is already declared, add more qualification to it.
+void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
+{
+ TSymbol* symbol = symbolTable.find(identifier);
+ if (symbol == nullptr) {
+ error(loc, "identifier not previously declared", identifier.c_str(), "");
+ return;
+ }
+ if (symbol->getAsFunction()) {
+ error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
+ return;
+ }
+
+ if (qualifier.isAuxiliary() ||
+ qualifier.isMemory() ||
+ qualifier.isInterpolation() ||
+ qualifier.hasLayout() ||
+ qualifier.storage != EvqTemporary ||
+ qualifier.precision != EpqNone) {
+ error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
+ return;
+ }
+
+ // For read-only built-ins, add a new symbol for holding the modified qualifier.
+ // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
+ if (symbol->isReadOnly())
+ symbol = symbolTable.copyUp(symbol);
+
+ if (qualifier.invariant) {
+ if (intermediate.inIoAccessed(identifier))
+ error(loc, "cannot change qualification after use", "invariant", "");
+ symbol->getWritableType().getQualifier().invariant = true;
+ } else if (qualifier.noContraction) {
+ if (intermediate.inIoAccessed(identifier))
+ error(loc, "cannot change qualification after use", "precise", "");
+ symbol->getWritableType().getQualifier().noContraction = true;
+ } else if (qualifier.specConstant) {
+ symbol->getWritableType().getQualifier().makeSpecConstant();
+ if (qualifier.hasSpecConstantId())
+ symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
+ } else
+ warn(loc, "unknown requalification", "", "");
+}
+
+void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
+{
+ for (unsigned int i = 0; i < identifiers.size(); ++i)
+ addQualifierToExisting(loc, qualifier, *identifiers[i]);
+}
+
+//
+// Update the intermediate for the given input geometry
+//
+bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
+{
+ switch (geometry) {
+ case ElgPoints: // fall through
+ case ElgLines: // ...
+ case ElgTriangles: // ...
+ case ElgLinesAdjacency: // ...
+ case ElgTrianglesAdjacency: // ...
+ if (! intermediate.setInputPrimitive(geometry)) {
+ error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
+ return false;
+ }
+ break;
+
+ default:
+ error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
+ return false;
+ }
+
+ return true;
+}
+
+//
+// Update the intermediate for the given output geometry
+//
+bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
+{
+ // If this is not a geometry shader, ignore. It might be a mixed shader including several stages.
+ // Since that's an OK situation, return true for success.
+ if (language != EShLangGeometry)
+ return true;
+
+ switch (geometry) {
+ case ElgPoints:
+ case ElgLineStrip:
+ case ElgTriangleStrip:
+ if (! intermediate.setOutputPrimitive(geometry)) {
+ error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
+ return false;
+ }
+ break;
+ default:
+ error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
+ return false;
+ }
+
+ return true;
+}
+
+//
+// Selection attributes
+//
+void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
+ const TAttributes& attributes)
+{
+ if (selection == nullptr)
+ return;
+
+ for (auto it = attributes.begin(); it != attributes.end(); ++it) {
+ switch (it->name) {
+ case EatFlatten:
+ selection->setFlatten();
+ break;
+ case EatBranch:
+ selection->setDontFlatten();
+ break;
+ default:
+ warn(loc, "attribute does not apply to a selection", "", "");
+ break;
+ }
+ }
+}
+
+//
+// Switch attributes
+//
+void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
+ const TAttributes& attributes)
+{
+ if (selection == nullptr)
+ return;
+
+ for (auto it = attributes.begin(); it != attributes.end(); ++it) {
+ switch (it->name) {
+ case EatFlatten:
+ selection->setFlatten();
+ break;
+ case EatBranch:
+ selection->setDontFlatten();
+ break;
+ default:
+ warn(loc, "attribute does not apply to a switch", "", "");
+ break;
+ }
+ }
+}
+
+//
+// Loop attributes
+//
+void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
+ const TAttributes& attributes)
+{
+ if (loop == nullptr)
+ return;
+
+ for (auto it = attributes.begin(); it != attributes.end(); ++it) {
+ switch (it->name) {
+ case EatUnroll:
+ loop->setUnroll();
+ break;
+ case EatLoop:
+ loop->setDontUnroll();
+ break;
+ default:
+ warn(loc, "attribute does not apply to a loop", "", "");
+ break;
+ }
+ }
+}
+
+//
+// Updating default qualifier for the case of a declaration with just a qualifier,
+// no type, block, or identifier.
+//
+void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
+{
+ if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
+ assert(language == EShLangTessControl || language == EShLangGeometry);
+ // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
+ }
+ if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
+ if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
+ error(loc, "cannot change previously set layout value", "invocations", "");
+ }
+ if (publicType.shaderQualifiers.geometry != ElgNone) {
+ if (publicType.qualifier.storage == EvqVaryingIn) {
+ switch (publicType.shaderQualifiers.geometry) {
+ case ElgPoints:
+ case ElgLines:
+ case ElgLinesAdjacency:
+ case ElgTriangles:
+ case ElgTrianglesAdjacency:
+ case ElgQuads:
+ case ElgIsolines:
+ break;
+ default:
+ error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
+ "");
+ }
+ } else if (publicType.qualifier.storage == EvqVaryingOut) {
+ handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
+ } else
+ error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
+ GetStorageQualifierString(publicType.qualifier.storage));
+ }
+ if (publicType.shaderQualifiers.spacing != EvsNone)
+ intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
+ if (publicType.shaderQualifiers.order != EvoNone)
+ intermediate.setVertexOrder(publicType.shaderQualifiers.order);
+ if (publicType.shaderQualifiers.pointMode)
+ intermediate.setPointMode();
+ for (int i = 0; i < 3; ++i) {
+ if (publicType.shaderQualifiers.localSize[i] > 1) {
+ int max = 0;
+ switch (i) {
+ case 0: max = resources.maxComputeWorkGroupSizeX; break;
+ case 1: max = resources.maxComputeWorkGroupSizeY; break;
+ case 2: max = resources.maxComputeWorkGroupSizeZ; break;
+ default: break;
+ }
+ if (intermediate.getLocalSize(i) > (unsigned int)max)
+ error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
+
+ // Fix the existing constant gl_WorkGroupSize with this new information.
+ TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
+ workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
+ }
+ if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
+ intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
+ // Set the workgroup built-in variable as a specialization constant
+ TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
+ workGroupSize->getWritableType().getQualifier().specConstant = true;
+ }
+ }
+ if (publicType.shaderQualifiers.earlyFragmentTests)
+ intermediate.setEarlyFragmentTests();
+
+ const TQualifier& qualifier = publicType.qualifier;
+
+ switch (qualifier.storage) {
+ case EvqUniform:
+ if (qualifier.hasMatrix())
+ globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
+ if (qualifier.hasPacking())
+ globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
+ break;
+ case EvqBuffer:
+ if (qualifier.hasMatrix())
+ globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
+ if (qualifier.hasPacking())
+ globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
+ break;
+ case EvqVaryingIn:
+ break;
+ case EvqVaryingOut:
+ if (qualifier.hasStream())
+ globalOutputDefaults.layoutStream = qualifier.layoutStream;
+ if (qualifier.hasXfbBuffer())
+ globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
+ if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
+ if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
+ error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
+ qualifier.layoutXfbBuffer);
+ }
+ break;
+ default:
+ error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
+ return;
+ }
+}
+
+//
+// Take the sequence of statements that has been built up since the last case/default,
+// put it on the list of top-level nodes for the current (inner-most) switch statement,
+// and follow that by the case/default we are on now. (See switch topology comment on
+// TIntermSwitch.)
+//
+void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
+{
+ TIntermSequence* switchSequence = switchSequenceStack.back();
+
+ if (statements) {
+ statements->setOperator(EOpSequence);
+ switchSequence->push_back(statements);
+ }
+ if (branchNode) {
+ // check all previous cases for the same label (or both are 'default')
+ for (unsigned int s = 0; s < switchSequence->size(); ++s) {
+ TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
+ if (prevBranch) {
+ TIntermTyped* prevExpression = prevBranch->getExpression();
+ TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
+ if (prevExpression == nullptr && newExpression == nullptr)
+ error(branchNode->getLoc(), "duplicate label", "default", "");
+ else if (prevExpression != nullptr &&
+ newExpression != nullptr &&
+ prevExpression->getAsConstantUnion() &&
+ newExpression->getAsConstantUnion() &&
+ prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
+ newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
+ error(branchNode->getLoc(), "duplicated value", "case", "");
+ }
+ }
+ switchSequence->push_back(branchNode);
+ }
+}
+
+//
+// Turn the top-level node sequence built up of wrapupSwitchSubsequence
+// into a switch node.
+//
+TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
+ TIntermAggregate* lastStatements, const TAttributes& attributes)
+{
+ wrapupSwitchSubsequence(lastStatements, nullptr);
+
+ if (expression == nullptr ||
+ (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
+ expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
+ error(loc, "condition must be a scalar integer expression", "switch", "");
+
+ // If there is nothing to do, drop the switch but still execute the expression
+ TIntermSequence* switchSequence = switchSequenceStack.back();
+ if (switchSequence->size() == 0)
+ return expression;
+
+ if (lastStatements == nullptr) {
+ // emulate a break for error recovery
+ lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
+ lastStatements->setOperator(EOpSequence);
+ switchSequence->push_back(lastStatements);
+ }
+
+ TIntermAggregate* body = new TIntermAggregate(EOpSequence);
+ body->getSequence() = *switchSequenceStack.back();
+ body->setLoc(loc);
+
+ TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
+ switchNode->setLoc(loc);
+ handleSwitchAttributes(loc, switchNode, attributes);
+
+ return switchNode;
+}
+
+// Make a new symbol-table level that is made out of the members of a structure.
+// This should be done as an anonymous struct (name is "") so that the symbol table
+// finds the members with no explicit reference to a 'this' variable.
+void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
+{
+ // member variables
+ TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
+ symbolTable.pushThis(thisVariable);
+
+ // member functions
+ for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
+ // member should have a prefix matching currentTypePrefix.back()
+ // but, symbol lookup within the class scope will just use the
+ // unprefixed name. Hence, there are two: one fully prefixed and
+ // one with no prefix.
+ TFunction& member = *it->function->clone();
+ member.removePrefix(currentTypePrefix.back());
+ symbolTable.insert(member);
+ }
+}
+
+// Track levels of class/struct/namespace nesting with a prefix string using
+// the type names separated by the scoping operator. E.g., two levels
+// would look like:
+//
+// outer::inner
+//
+// The string is empty when at normal global level.
+//
+void HlslParseContext::pushNamespace(const TString& typeName)
+{
+ // make new type prefix
+ TString newPrefix;
+ if (currentTypePrefix.size() > 0)
+ newPrefix = currentTypePrefix.back();
+ newPrefix.append(typeName);
+ newPrefix.append(scopeMangler);
+ currentTypePrefix.push_back(newPrefix);
+}
+
+// Opposite of pushNamespace(), see above
+void HlslParseContext::popNamespace()
+{
+ currentTypePrefix.pop_back();
+}
+
+// Use the class/struct nesting string to create a global name for
+// a member of a class/struct.
+void HlslParseContext::getFullNamespaceName(TString*& name) const
+{
+ if (currentTypePrefix.size() == 0)
+ return;
+
+ TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
+ fullName->append(*name);
+ name = fullName;
+}
+
+// Helper function to add the namespace scope mangling syntax to a string.
+void HlslParseContext::addScopeMangler(TString& name)
+{
+ name.append(scopeMangler);
+}
+
+// Return true if this has uniform-interface like decorations.
+bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
+{
+ return qualifier.hasUniformLayout() ||
+ qualifier.layoutPushConstant;
+}
+
+// Potentially not the opposite of hasUniform(), as if some characteristic is
+// ever used for more than one thing (e.g., uniform or input), hasUniform() should
+// say it exists, but clearUniform() should leave it in place.
+void HlslParseContext::clearUniform(TQualifier& qualifier)
+{
+ qualifier.clearUniformLayout();
+ qualifier.layoutPushConstant = false;
+}
+
+// Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
+bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
+{
+ switch (qualifier.builtIn) {
+ case EbvPosition:
+ case EbvPointSize:
+ return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
+ case EbvClipDistance:
+ case EbvCullDistance:
+ return language != EShLangVertex && language != EShLangCompute;
+ case EbvFragCoord:
+ case EbvFace:
+ case EbvHelperInvocation:
+ case EbvLayer:
+ case EbvPointCoord:
+ case EbvSampleId:
+ case EbvSampleMask:
+ case EbvSamplePosition:
+ case EbvViewportIndex:
+ return language == EShLangFragment;
+ case EbvGlobalInvocationId:
+ case EbvLocalInvocationIndex:
+ case EbvLocalInvocationId:
+ case EbvNumWorkGroups:
+ case EbvWorkGroupId:
+ case EbvWorkGroupSize:
+ return language == EShLangCompute;
+ case EbvInvocationId:
+ return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
+ case EbvPatchVertices:
+ return language == EShLangTessControl || language == EShLangTessEvaluation;
+ case EbvInstanceId:
+ case EbvInstanceIndex:
+ case EbvVertexId:
+ case EbvVertexIndex:
+ return language == EShLangVertex;
+ case EbvPrimitiveId:
+ return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
+ case EbvTessLevelInner:
+ case EbvTessLevelOuter:
+ return language == EShLangTessEvaluation;
+ case EbvTessCoord:
+ return language == EShLangTessEvaluation;
+ default:
+ return false;
+ }
+}
+
+// Return true if there are decorations to preserve for input-like storage.
+bool HlslParseContext::hasInput(const TQualifier& qualifier) const
+{
+ if (qualifier.hasAnyLocation())
+ return true;
+
+ if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
+ return true;
+
+ if (language == EShLangTessEvaluation && qualifier.patch)
+ return true;
+
+ if (isInputBuiltIn(qualifier))
+ return true;
+
+ return false;
+}
+
+// Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
+bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
+{
+ switch (qualifier.builtIn) {
+ case EbvPosition:
+ case EbvPointSize:
+ case EbvClipVertex:
+ case EbvClipDistance:
+ case EbvCullDistance:
+ return language != EShLangFragment && language != EShLangCompute;
+ case EbvFragDepth:
+ case EbvFragDepthGreater:
+ case EbvFragDepthLesser:
+ case EbvSampleMask:
+ return language == EShLangFragment;
+ case EbvLayer:
+ case EbvViewportIndex:
+ return language == EShLangGeometry || language == EShLangVertex;
+ case EbvPrimitiveId:
+ return language == EShLangGeometry;
+ case EbvTessLevelInner:
+ case EbvTessLevelOuter:
+ return language == EShLangTessControl;
+ default:
+ return false;
+ }
+}
+
+// Return true if there are decorations to preserve for output-like storage.
+bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
+{
+ if (qualifier.hasAnyLocation())
+ return true;
+
+ if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
+ return true;
+
+ if (language == EShLangTessControl && qualifier.patch)
+ return true;
+
+ if (language == EShLangGeometry && qualifier.hasStream())
+ return true;
+
+ if (isOutputBuiltIn(qualifier))
+ return true;
+
+ return false;
+}
+
+// Make the IO decorations etc. be appropriate only for an input interface.
+void HlslParseContext::correctInput(TQualifier& qualifier)
+{
+ clearUniform(qualifier);
+ if (language == EShLangVertex)
+ qualifier.clearInterstage();
+ if (language != EShLangTessEvaluation)
+ qualifier.patch = false;
+ if (language != EShLangFragment) {
+ qualifier.clearInterpolation();
+ qualifier.sample = false;
+ }
+
+ qualifier.clearStreamLayout();
+ qualifier.clearXfbLayout();
+
+ if (! isInputBuiltIn(qualifier))
+ qualifier.builtIn = EbvNone;
+}
+
+// Make the IO decorations etc. be appropriate only for an output interface.
+void HlslParseContext::correctOutput(TQualifier& qualifier)
+{
+ clearUniform(qualifier);
+ if (language == EShLangFragment)
+ qualifier.clearInterstage();
+ if (language != EShLangGeometry)
+ qualifier.clearStreamLayout();
+ if (language == EShLangFragment)
+ qualifier.clearXfbLayout();
+ if (language != EShLangTessControl)
+ qualifier.patch = false;
+
+ switch (qualifier.builtIn) {
+ case EbvFragDepth:
+ intermediate.setDepthReplacing();
+ intermediate.setDepth(EldAny);
+ break;
+ case EbvFragDepthGreater:
+ intermediate.setDepthReplacing();
+ intermediate.setDepth(EldGreater);
+ qualifier.builtIn = EbvFragDepth;
+ break;
+ case EbvFragDepthLesser:
+ intermediate.setDepthReplacing();
+ intermediate.setDepth(EldLess);
+ qualifier.builtIn = EbvFragDepth;
+ break;
+ default:
+ break;
+ }
+
+ if (! isOutputBuiltIn(qualifier))
+ qualifier.builtIn = EbvNone;
+}
+
+// Make the IO decorations etc. be appropriate only for uniform type interfaces.
+void HlslParseContext::correctUniform(TQualifier& qualifier)
+{
+ if (qualifier.declaredBuiltIn == EbvNone)
+ qualifier.declaredBuiltIn = qualifier.builtIn;
+
+ qualifier.builtIn = EbvNone;
+ qualifier.clearInterstage();
+ qualifier.clearInterstageLayout();
+}
+
+// Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
+void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
+{
+ clearUniform(qualifier);
+ correctUniform(qualifier);
+}
+
+
+// Set texture return type. Returns success (not all types are valid).
+bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
+{
+ // Seed the output with an invalid index. We will set it to a valid one if we can.
+ sampler.structReturnIndex = TSampler::noReturnStruct;
+
+ // Arrays aren't supported.
+ if (retType.isArray()) {
+ error(loc, "Arrays not supported in texture template types", "", "");
+ return false;
+ }
+
+ // If return type is a vector, remember the vector size in the sampler, and return.
+ if (retType.isVector() || retType.isScalar()) {
+ sampler.vectorSize = retType.getVectorSize();
+ return true;
+ }
+
+ // If it wasn't a vector, it must be a struct meeting certain requirements. The requirements
+ // are checked below: just check for struct-ness here.
+ if (!retType.isStruct()) {
+ error(loc, "Invalid texture template type", "", "");
+ return false;
+ }
+
+ // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
+ if (sampler.isSubpass()) {
+ error(loc, "Unimplemented: structure template type in subpass input", "", "");
+ return false;
+ }
+
+ TTypeList* members = retType.getWritableStruct();
+
+ // Check for too many or not enough structure members.
+ if (members->size() > 4 || members->size() == 0) {
+ error(loc, "Invalid member count in texture template structure", "", "");
+ return false;
+ }
+
+ // Error checking: We must have <= 4 total components, all of the same basic type.
+ unsigned totalComponents = 0;
+ for (unsigned m = 0; m < members->size(); ++m) {
+ // Check for bad member types
+ if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
+ error(loc, "Invalid texture template struct member type", "", "");
+ return false;
+ }
+
+ const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
+ totalComponents += memberVectorSize;
+
+ // too many total member components
+ if (totalComponents > 4) {
+ error(loc, "Too many components in texture template structure type", "", "");
+ return false;
+ }
+
+ // All members must be of a common basic type
+ if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
+ error(loc, "Texture template structure members must same basic type", "", "");
+ return false;
+ }
+ }
+
+ // If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make
+ // a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large.
+ for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
+ if (textureReturnStruct[idx] == members) {
+ sampler.structReturnIndex = idx;
+ return true;
+ }
+ }
+
+ // It wasn't found as an existing entry. See if we have room for a new one.
+ if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
+ error(loc, "Texture template struct return slots exceeded", "", "");
+ return false;
+ }
+
+ // Insert it in the vector that tracks struct return types.
+ sampler.structReturnIndex = unsigned(textureReturnStruct.size());
+ textureReturnStruct.push_back(members);
+
+ // Success!
+ return true;
+}
+
+// Return the sampler return type in retType.
+void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
+{
+ if (sampler.hasReturnStruct()) {
+ assert(textureReturnStruct.size() >= sampler.structReturnIndex);
+
+ // We land here if the texture return is a structure.
+ TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
+
+ const TType resultType(blockStruct, "");
+ retType.shallowCopy(resultType);
+ } else {
+ // We land here if the texture return is a vector or scalar.
+ const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
+ retType.shallowCopy(resultType);
+ }
+}
+
+
+// Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
+TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
+{
+ const auto it = builtInTessLinkageSymbols.find(biType);
+ if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr
+ return nullptr;
+
+ return intermediate.addSymbol(*it->second->getAsVariable());
+}
+
+// Find the patch constant function (issues error, returns nullptr if not found)
+const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
+{
+ if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
+ error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
+ return nullptr;
+ }
+
+ const TString mangledName = patchConstantFunctionName + "(";
+
+ // create list of PCF candidates
+ TVector<const TFunction*> candidateList;
+ bool builtIn;
+ symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
+
+ // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
+ // allow any disambiguation of overloads.
+ if (candidateList.empty()) {
+ error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
+ return nullptr;
+ }
+
+ // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
+ // HLSL picks the last one in shader source order. Since that isn't yet implemented here, error
+ // out if there is more than one candidate.
+ if (candidateList.size() > 1) {
+ error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
+ return nullptr;
+ }
+
+ return candidateList[0];
+}
+
+// Finalization step: Add patch constant function invocation
+void HlslParseContext::addPatchConstantInvocation()
+{
+ TSourceLoc loc;
+ loc.init();
+
+ // If there's no patch constant function, or we're not a HS, do nothing.
+ if (patchConstantFunctionName.empty() || language != EShLangTessControl)
+ return;
+
+ // Look for built-in variables in a function's parameter list.
+ const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
+ for (int p=0; p<function.getParamCount(); ++p) {
+ TStorageQualifier storage = function[p].type->getQualifier().storage;
+
+ if (storage == EvqConstReadOnly) // treated identically to input
+ storage = EvqIn;
+
+ if (function[p].getDeclaredBuiltIn() != EbvNone)
+ builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
+ else
+ builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
+ }
+ };
+
+ // If we synthesize a built-in interface variable, we must add it to the linkage.
+ const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
+ if (name == nullptr) {
+ error(loc, "unable to locate patch function parameter name", "", "");
+ return;
+ } else {
+ TVariable& variable = *new TVariable(name, type);
+ if (! symbolTable.insert(variable)) {
+ error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
+ return;
+ }
+
+ globalQualifierFix(loc, variable.getWritableType().getQualifier());
+
+ if (symbolNode != nullptr)
+ *symbolNode = intermediate.addSymbol(variable);
+
+ trackLinkage(variable);
+ }
+ };
+
+ const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
+ const TType& type = *patchConstantFunction[param].type;
+ const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
+
+ return type.isSizedArray() && biType == EbvOutputPatch;
+ };
+
+ // We will perform these steps. Each is in a scoped block for separation: they could
+ // become separate functions to make addPatchConstantInvocation shorter.
+ //
+ // 1. Union the interfaces, and create built-ins for anything present in the PCF and
+ // declared as a built-in variable that isn't present in the entry point's signature.
+ //
+ // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
+ // or the ones we created. Matching is based on built-in type. We may use synthesized
+ // variables from (1) above.
+ //
+ // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
+ //
+ // 3. Create a return sequence: copy the return value (if any) from the PCF to a
+ // (non-sanitized) output variable. In case this may involve multiple copies, such as for
+ // an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
+ // indirections into a complex R-value coming from the call to the PCF.
+ //
+ // 4. Create a barrier.
+ //
+ // 5/5B. Call the PCF inside an if test for (invocation id == 0).
+
+ TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
+
+ if (patchConstantFunctionPtr == nullptr)
+ return;
+
+ TFunction& patchConstantFunction = *patchConstantFunctionPtr;
+
+ const int pcfParamCount = patchConstantFunction.getParamCount();
+ TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
+ TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
+
+ int outPatchParam = -1; // -1 means there isn't one.
+
+ // ================ Step 1A: Union Interfaces ================
+ // Our patch constant function.
+ {
+ std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins
+ std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins
+
+ assert(entryPointFunction);
+ assert(entryPointFunctionBody);
+
+ findBuiltIns(patchConstantFunction, pcfBuiltIns);
+ findBuiltIns(*entryPointFunction, epfBuiltIns);
+
+ // Find the set of built-ins in the PCF that are not present in the entry point.
+ std::set<tInterstageIoData> notInEntryPoint;
+
+ notInEntryPoint = pcfBuiltIns;
+
+ // std::set_difference not usable on unordered containers
+ for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
+ notInEntryPoint.erase(*bi);
+
+ // Now we'll add those to the entry and to the linkage.
+ for (int p=0; p<pcfParamCount; ++p) {
+ const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
+ TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
+
+ // Track whether there is an output patch param
+ if (isOutputPatch(patchConstantFunction, p)) {
+ if (outPatchParam >= 0) {
+ // Presently we only support one per ctrl pt input.
+ error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
+ return;
+ }
+ outPatchParam = p;
+ }
+
+ if (biType != EbvNone) {
+ TType* paramType = patchConstantFunction[p].type->clone();
+
+ if (storage == EvqConstReadOnly) // treated identically to input
+ storage = EvqIn;
+
+ // Presently, the only non-built-in we support is InputPatch, which is treated as
+ // a pseudo-built-in.
+ if (biType == EbvInputPatch) {
+ builtInTessLinkageSymbols[biType] = inputPatch;
+ } else if (biType == EbvOutputPatch) {
+ // Nothing...
+ } else {
+ // Use the original declaration type for the linkage
+ paramType->getQualifier().builtIn = biType;
+
+ if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
+ addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
+ }
+ }
+ }
+
+ // If we didn't find it because the shader made one, add our own.
+ if (invocationIdSym == nullptr) {
+ TType invocationIdType(EbtUint, EvqIn, 1);
+ TString* invocationIdName = NewPoolTString("InvocationId");
+ invocationIdType.getQualifier().builtIn = EbvInvocationId;
+ addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
+ }
+
+ assert(invocationIdSym);
+ }
+
+ TIntermTyped* pcfArguments = nullptr;
+ TVariable* perCtrlPtVar = nullptr;
+
+ // ================ Step 1B: Argument synthesis ================
+ // Create pcfArguments for synthesis of patchconstantfunction invocation
+ {
+ for (int p=0; p<pcfParamCount; ++p) {
+ TIntermTyped* inputArg = nullptr;
+
+ if (p == outPatchParam) {
+ if (perCtrlPtVar == nullptr) {
+ perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
+ *patchConstantFunction[outPatchParam].type);
+
+ perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
+ }
+ inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
+ } else {
+ // find which built-in it is
+ const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
+
+ if (biType == EbvInputPatch && inputPatch == nullptr) {
+ error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
+ return;
+ }
+
+ inputArg = findTessLinkageSymbol(biType);
+
+ if (inputArg == nullptr) {
+ error(loc, "unable to find patch constant function built-in variable", "", "");
+ return;
+ }
+ }
+
+ if (pcfParamCount == 1)
+ pcfArguments = inputArg;
+ else
+ pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
+ }
+ }
+
+ // ================ Step 2: Synthesize call to PCF ================
+ TIntermAggregate* pcfCallSequence = nullptr;
+ TIntermTyped* pcfCall = nullptr;
+
+ {
+ // Create a function call to the patchconstantfunction
+ if (pcfArguments)
+ addInputArgumentConversions(patchConstantFunction, pcfArguments);
+
+ // Synthetic call.
+ pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
+ pcfCall->getAsAggregate()->setUserDefined();
+ pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
+ intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
+ patchConstantFunction.getMangledName());
+
+ if (pcfCall->getAsAggregate()) {
+ TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
+ for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
+ TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
+ qualifierList.push_back(qual);
+ }
+ pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
+ }
+ }
+
+ // ================ Step 2B: Per Control Point synthesis ================
+ // If there is per control point data, we must either emulate that with multiple
+ // invocations of the entry point to build up an array, or (TODO:) use a yet
+ // unavailable extension to look across the SIMD lanes. This is the former
+ // as a placeholder for the latter.
+ if (outPatchParam >= 0) {
+ // We must introduce a local temp variable of the type wanted by the PCF input.
+ const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
+
+ if (entryPointFunction->getType().getBasicType() == EbtVoid) {
+ error(loc, "entry point must return a value for use with patch constant function", "", "");
+ return;
+ }
+
+ // Create calls to wrapped main to fill in the array. We will substitute fixed values
+ // of invocation ID when calling the wrapped main.
+
+ // This is the type of the each member of the per ctrl point array.
+ const TType derefType(perCtrlPtVar->getType(), 0);
+
+ for (int cpt = 0; cpt < arraySize; ++cpt) {
+ // TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
+ // for this function.
+ const TString origName = entryPointFunction->getName().substr(1);
+ TFunction callee(&origName, TType(EbtVoid));
+ TIntermTyped* callingArgs = nullptr;
+
+ for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
+ TParameter& param = (*entryPointFunction)[i];
+ TType& paramType = *param.type;
+
+ if (paramType.getQualifier().isParamOutput()) {
+ error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
+ return;
+ }
+
+ if (paramType.getQualifier().isParamInput()) {
+ TIntermTyped* arg = nullptr;
+ if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
+ // substitute invocation ID with the array element ID
+ arg = intermediate.addConstantUnion(cpt, loc);
+ } else {
+ TVariable* argVar = makeInternalVariable(*param.name, *param.type);
+ argVar->getWritableType().getQualifier().makeTemporary();
+ arg = intermediate.addSymbol(*argVar);
+ }
+
+ handleFunctionArgument(&callee, callingArgs, arg);
+ }
+ }
+
+ // Call and assign to per ctrl point variable
+ currentCaller = intermediate.getEntryPointMangledName().c_str();
+ TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
+ TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
+ TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
+ TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
+ element->setType(derefType);
+ element->setLoc(loc);
+
+ pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
+ handleAssign(loc, EOpAssign, element, callReturn));
+ }
+ }
+
+ // ================ Step 3: Create return Sequence ================
+ // Return sequence: copy PCF result to a temporary, then to shader output variable.
+ if (pcfCall->getBasicType() != EbtVoid) {
+ const TType* retType = &patchConstantFunction.getType(); // return type from the PCF
+ TType outType; // output type that goes with the return type.
+ outType.shallowCopy(*retType);
+
+ // substitute the output type
+ const auto newLists = ioTypeMap.find(retType->getStruct());
+ if (newLists != ioTypeMap.end())
+ outType.setStruct(newLists->second.output);
+
+ // Substitute the top level type's built-in type
+ if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
+ outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
+
+ outType.getQualifier().patch = true; // make it a per-patch variable
+
+ TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
+ pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
+
+ if (pcfOutput->getType().containsBuiltIn())
+ split(*pcfOutput);
+
+ assignToInterface(*pcfOutput);
+
+ TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
+
+ // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
+ // repeated calls to the PCF:
+ TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
+ pcfCallResult->getWritableType().getQualifier().makeTemporary();
+
+ TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
+ TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
+ TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
+ intermediate.addSymbol(*pcfCallResult, loc));
+
+ pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
+ pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
+ } else {
+ pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
+ }
+
+ // ================ Step 4: Barrier ================
+ TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
+ barrier->setLoc(loc);
+ barrier->setType(TType(EbtVoid));
+ epBodySeq.insert(epBodySeq.end(), barrier);
+
+ // ================ Step 5: Test on invocation ID ================
+ TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
+ TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
+
+
+ // ================ Step 5B: Create if statement on Invocation ID == 0 ================
+ intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
+ TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
+ invocationIdTest->setLoc(loc);
+
+ // add our test sequence before the return.
+ epBodySeq.insert(epBodySeq.end(), invocationIdTest);
+}
+
+// Finalization step: remove unused buffer blocks from linkage (we don't know until the
+// shader is entirely compiled).
+// Preserve order of remaining symbols.
+void HlslParseContext::removeUnusedStructBufferCounters()
+{
+ const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
+ [this](const TSymbol* sym) {
+ const auto sbcIt = structBufferCounter.find(sym->getName());
+ return sbcIt != structBufferCounter.end() && !sbcIt->second;
+ });
+
+ linkageSymbols.erase(endIt, linkageSymbols.end());
+}
+
+// Finalization step: patch texture shadow modes to match samplers they were combined with
+void HlslParseContext::fixTextureShadowModes()
+{
+ for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
+ TSampler& sampler = (*symbol)->getWritableType().getSampler();
+
+ if (sampler.isTexture()) {
+ const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
+ if (shadowMode != textureShadowVariant.end()) {
+
+ if (shadowMode->second->overloaded())
+ // Texture needs legalization if it's been seen with both shadow and non-shadow modes.
+ intermediate.setNeedsLegalization();
+
+ sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
+ }
+ }
+ }
+}
+
+// Finalization step: patch append methods to use proper stream output, which isn't known until
+// main is parsed, which could happen after the append method is parsed.
+void HlslParseContext::finalizeAppendMethods()
+{
+ TSourceLoc loc;
+ loc.init();
+
+ // Nothing to do: bypass test for valid stream output.
+ if (gsAppends.empty())
+ return;
+
+ if (gsStreamOutput == nullptr) {
+ error(loc, "unable to find output symbol for Append()", "", "");
+ return;
+ }
+
+ // Patch append sequences, now that we know the stream output symbol.
+ for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
+ append->node->getSequence()[0] =
+ handleAssign(append->loc, EOpAssign,
+ intermediate.addSymbol(*gsStreamOutput, append->loc),
+ append->node->getSequence()[0]->getAsTyped());
+ }
+}
+
+// post-processing
+void HlslParseContext::finish()
+{
+ // Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so
+ // cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful.
+ if (! mipsOperatorMipArg.empty()) {
+ error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
+ }
+
+ removeUnusedStructBufferCounters();
+ addPatchConstantInvocation();
+ fixTextureShadowModes();
+ finalizeAppendMethods();
+
+ // Communicate out (esp. for command line) that we formed AST that will make
+ // illegal AST SPIR-V and it needs transforms to legalize it.
+ if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
+ infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
+
+ TParseContextBase::finish();
+}
+
+} // end namespace glslang