aboutsummaryrefslogtreecommitdiffstats
path: root/3rdParty/hmac_sha256/sha256.c
blob: 95def0b017bfac78c95362c4bfabeccf43baa9b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  WjCryptLib_Sha256
//  Copyright (C) Tom St Denis, WaterJuice
//
//  Implementation of SHA256 hash function.
//  Original author: Tom St Denis, tomstdenis@gmail.com, http://libtom.org
//  Modified by WaterJuice retaining Public Domain license.
//
//  Copyright (C) Tom St Denis, WaterJuice
//  This is free and unencumbered software released into the public domain -
//  June 2013 waterjuice.org
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  IMPORTS
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "sha256.h"
#include <memory.h>

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  MACROS
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#define ror(value, bits) (((value) >> (bits)) | ((value) << (32 - (bits))))

#define MIN(x, y) (((x) < (y)) ? (x) : (y))

#define STORE32H(x, y)                     \
  {                                        \
    (y)[0] = (uint8_t)(((x) >> 24) & 255); \
    (y)[1] = (uint8_t)(((x) >> 16) & 255); \
    (y)[2] = (uint8_t)(((x) >> 8) & 255);  \
    (y)[3] = (uint8_t)((x)&255);           \
  }

#define LOAD32H(x, y)                                                         \
  {                                                                           \
    x = ((uint32_t)((y)[0] & 255) << 24) | ((uint32_t)((y)[1] & 255) << 16) | \
        ((uint32_t)((y)[2] & 255) << 8) | ((uint32_t)((y)[3] & 255));         \
  }

#define STORE64H(x, y)                     \
  {                                        \
    (y)[0] = (uint8_t)(((x) >> 56) & 255); \
    (y)[1] = (uint8_t)(((x) >> 48) & 255); \
    (y)[2] = (uint8_t)(((x) >> 40) & 255); \
    (y)[3] = (uint8_t)(((x) >> 32) & 255); \
    (y)[4] = (uint8_t)(((x) >> 24) & 255); \
    (y)[5] = (uint8_t)(((x) >> 16) & 255); \
    (y)[6] = (uint8_t)(((x) >> 8) & 255);  \
    (y)[7] = (uint8_t)((x)&255);           \
  }

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  CONSTANTS
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// The K array
static const uint32_t K[64] = {
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
    0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
    0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
    0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
    0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
    0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
    0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
    0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
    0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
    0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};

#define BLOCK_SIZE 64

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  INTERNAL FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// Various logical functions
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Maj(x, y, z) (((x | y) & z) | (x & y))
#define S(x, n) ror((x), (n))
#define R(x, n) (((x)&0xFFFFFFFFUL) >> (n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))

#define Sha256Round(a, b, c, d, e, f, g, h, i)    \
  t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
  t1 = Sigma0(a) + Maj(a, b, c);                  \
  d += t0;                                        \
  h = t0 + t1;

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  TransformFunction
//
//  Compress 512-bits
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static void TransformFunction(Sha256Context* Context, uint8_t const* Buffer) {
  uint32_t S[8];
  uint32_t W[64];
  uint32_t t0;
  uint32_t t1;
  uint32_t t;
  int i;

  // Copy state into S
  for (i = 0; i < 8; i++) {
    S[i] = Context->state[i];
  }

  // Copy the state into 512-bits into W[0..15]
  for (i = 0; i < 16; i++) {
    LOAD32H(W[i], Buffer + (4 * i));
  }

  // Fill W[16..63]
  for (i = 16; i < 64; i++) {
    W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
  }

  // Compress
  for (i = 0; i < 64; i++) {
    Sha256Round(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
    t = S[7];
    S[7] = S[6];
    S[6] = S[5];
    S[5] = S[4];
    S[4] = S[3];
    S[3] = S[2];
    S[2] = S[1];
    S[1] = S[0];
    S[0] = t;
  }

  // Feedback
  for (i = 0; i < 8; i++) {
    Context->state[i] = Context->state[i] + S[i];
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  PUBLIC FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha256Initialise
//
//  Initializes a SHA256 Context. Use this to initialize/reset a context.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void Sha256Initialise(Sha256Context* Context  // [out]
) {
  Context->curlen = 0;
  Context->length = 0;
  Context->state[0] = 0x6A09E667UL;
  Context->state[1] = 0xBB67AE85UL;
  Context->state[2] = 0x3C6EF372UL;
  Context->state[3] = 0xA54FF53AUL;
  Context->state[4] = 0x510E527FUL;
  Context->state[5] = 0x9B05688CUL;
  Context->state[6] = 0x1F83D9ABUL;
  Context->state[7] = 0x5BE0CD19UL;
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha256Update
//
//  Adds data to the SHA256 context. This will process the data and update the
//  internal state of the context. Keep on calling this function until all the
//  data has been added. Then call Sha256Finalise to calculate the hash.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void Sha256Update(Sha256Context* Context,  // [in out]
                  void const* Buffer,      // [in]
                  uint32_t BufferSize      // [in]
) {
  uint32_t n;

  if (Context->curlen > sizeof(Context->buf)) {
    return;
  }

  while (BufferSize > 0) {
    if (Context->curlen == 0 && BufferSize >= BLOCK_SIZE) {
      TransformFunction(Context, (uint8_t*)Buffer);
      Context->length += BLOCK_SIZE * 8;
      Buffer = (uint8_t*)Buffer + BLOCK_SIZE;
      BufferSize -= BLOCK_SIZE;
    } else {
      n = MIN(BufferSize, (BLOCK_SIZE - Context->curlen));
      memcpy(Context->buf + Context->curlen, Buffer, (size_t)n);
      Context->curlen += n;
      Buffer = (uint8_t*)Buffer + n;
      BufferSize -= n;
      if (Context->curlen == BLOCK_SIZE) {
        TransformFunction(Context, Context->buf);
        Context->length += 8 * BLOCK_SIZE;
        Context->curlen = 0;
      }
    }
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha256Finalise
//
//  Performs the final calculation of the hash and returns the digest (32 byte
//  buffer containing 256bit hash). After calling this, Sha256Initialised must
//  be used to reuse the context.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void Sha256Finalise(Sha256Context* Context,  // [in out]
                    SHA256_HASH* Digest      // [out]
) {
  int i;

  if (Context->curlen >= sizeof(Context->buf)) {
    return;
  }

  // Increase the length of the message
  Context->length += Context->curlen * 8;

  // Append the '1' bit
  Context->buf[Context->curlen++] = (uint8_t)0x80;

  // if the length is currently above 56 bytes we append zeros
  // then compress.  Then we can fall back to padding zeros and length
  // encoding like normal.
  if (Context->curlen > 56) {
    while (Context->curlen < 64) {
      Context->buf[Context->curlen++] = (uint8_t)0;
    }
    TransformFunction(Context, Context->buf);
    Context->curlen = 0;
  }

  // Pad up to 56 bytes of zeroes
  while (Context->curlen < 56) {
    Context->buf[Context->curlen++] = (uint8_t)0;
  }

  // Store length
  STORE64H(Context->length, Context->buf + 56);
  TransformFunction(Context, Context->buf);

  // Copy output
  for (i = 0; i < 8; i++) {
    STORE32H(Context->state[i], Digest->bytes + (4 * i));
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  Sha256Calculate
//
//  Combines Sha256Initialise, Sha256Update, and Sha256Finalise into one
//  function. Calculates the SHA256 hash of the buffer.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void Sha256Calculate(void const* Buffer,   // [in]
                     uint32_t BufferSize,  // [in]
                     SHA256_HASH* Digest   // [in]
) {
  Sha256Context context;

  Sha256Initialise(&context);
  Sha256Update(&context, Buffer, BufferSize);
  Sha256Finalise(&context, Digest);
}