summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/IFCUtil.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/IFCUtil.cpp')
-rw-r--r--src/3rdparty/assimp/code/IFCUtil.cpp903
1 files changed, 516 insertions, 387 deletions
diff --git a/src/3rdparty/assimp/code/IFCUtil.cpp b/src/3rdparty/assimp/code/IFCUtil.cpp
index d28f91a10..89a6c78c5 100644
--- a/src/3rdparty/assimp/code/IFCUtil.cpp
+++ b/src/3rdparty/assimp/code/IFCUtil.cpp
@@ -2,11 +2,11 @@
Open Asset Import Library (assimp)
----------------------------------------------------------------------
-Copyright (c) 2006-2012, assimp team
+Copyright (c) 2006-2016, assimp team
All rights reserved.
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
@@ -23,16 +23,16 @@ following conditions are met:
derived from this software without specific prior
written permission of the assimp team.
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
@@ -42,532 +42,661 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of conversion routines for some common Ifc helper entities.
*/
-#include "AssimpPCH.h"
+
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCUtil.h"
#include "PolyTools.h"
#include "ProcessHelper.h"
+#include "Defines.h"
namespace Assimp {
- namespace IFC {
+ namespace IFC {
// ------------------------------------------------------------------------------------------------
-void TempOpening::Transform(const IfcMatrix4& mat)
+void TempOpening::Transform(const IfcMatrix4& mat)
{
- if(profileMesh) {
- profileMesh->Transform(mat);
- }
- if(profileMesh2D) {
- profileMesh2D->Transform(mat);
- }
- extrusionDir *= IfcMatrix3(mat);
+ if(profileMesh) {
+ profileMesh->Transform(mat);
+ }
+ if(profileMesh2D) {
+ profileMesh2D->Transform(mat);
+ }
+ extrusionDir *= IfcMatrix3(mat);
}
// ------------------------------------------------------------------------------------------------
-aiMesh* TempMesh::ToMesh()
+aiMesh* TempMesh::ToMesh()
{
- ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),size_t(0)));
+ ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),size_t(0)));
- if (verts.empty()) {
- return NULL;
- }
+ if (verts.empty()) {
+ return NULL;
+ }
- std::auto_ptr<aiMesh> mesh(new aiMesh());
+ std::unique_ptr<aiMesh> mesh(new aiMesh());
- // copy vertices
- mesh->mNumVertices = static_cast<unsigned int>(verts.size());
- mesh->mVertices = new aiVector3D[mesh->mNumVertices];
- std::copy(verts.begin(),verts.end(),mesh->mVertices);
+ // copy vertices
+ mesh->mNumVertices = static_cast<unsigned int>(verts.size());
+ mesh->mVertices = new aiVector3D[mesh->mNumVertices];
+ std::copy(verts.begin(),verts.end(),mesh->mVertices);
- // and build up faces
- mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
- mesh->mFaces = new aiFace[mesh->mNumFaces];
+ // and build up faces
+ mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
+ mesh->mFaces = new aiFace[mesh->mNumFaces];
- for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
- aiFace& f = mesh->mFaces[i];
- if (!vertcnt[n]) {
- --mesh->mNumFaces;
- continue;
- }
+ for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
+ aiFace& f = mesh->mFaces[i];
+ if (!vertcnt[n]) {
+ --mesh->mNumFaces;
+ continue;
+ }
- f.mNumIndices = vertcnt[n];
- f.mIndices = new unsigned int[f.mNumIndices];
- for(unsigned int a = 0; a < f.mNumIndices; ++a) {
- f.mIndices[a] = acc++;
- }
+ f.mNumIndices = vertcnt[n];
+ f.mIndices = new unsigned int[f.mNumIndices];
+ for(unsigned int a = 0; a < f.mNumIndices; ++a) {
+ f.mIndices[a] = acc++;
+ }
- ++i;
- }
+ ++i;
+ }
- return mesh.release();
+ return mesh.release();
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Clear()
{
- verts.clear();
- vertcnt.clear();
+ verts.clear();
+ vertcnt.clear();
}
// ------------------------------------------------------------------------------------------------
-void TempMesh::Transform(const IfcMatrix4& mat)
+void TempMesh::Transform(const IfcMatrix4& mat)
{
- BOOST_FOREACH(IfcVector3& v, verts) {
- v *= mat;
- }
+ for(IfcVector3& v : verts) {
+ v *= mat;
+ }
}
// ------------------------------------------------------------------------------
IfcVector3 TempMesh::Center() const
{
- return std::accumulate(verts.begin(),verts.end(),IfcVector3()) / static_cast<IfcFloat>(verts.size());
+ return (verts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(verts.begin(),verts.end(),IfcVector3()) / static_cast<IfcFloat>(verts.size()));
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Append(const TempMesh& other)
{
- verts.insert(verts.end(),other.verts.begin(),other.verts.end());
- vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
+ verts.insert(verts.end(),other.verts.begin(),other.verts.end());
+ vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
}
// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveDegenerates()
{
- // The strategy is simple: walk the mesh and compute normals using
- // Newell's algorithm. The length of the normals gives the area
- // of the polygons, which is close to zero for lines.
-
- std::vector<IfcVector3> normals;
- ComputePolygonNormals(normals, false);
-
- bool drop = false;
- size_t inor = 0;
-
- std::vector<IfcVector3>::iterator vit = verts.begin();
- for (std::vector<unsigned int>::iterator it = vertcnt.begin(); it != vertcnt.end(); ++inor) {
- const unsigned int pcount = *it;
-
- if (normals[inor].SquareLength() < 1e-5f) {
- it = vertcnt.erase(it);
- vit = verts.erase(vit, vit + pcount);
-
- drop = true;
- continue;
- }
-
- vit += pcount;
- ++it;
- }
-
- if(drop) {
- IFCImporter::LogDebug("removing degenerate faces");
- }
+ // The strategy is simple: walk the mesh and compute normals using
+ // Newell's algorithm. The length of the normals gives the area
+ // of the polygons, which is close to zero for lines.
+
+ std::vector<IfcVector3> normals;
+ ComputePolygonNormals(normals, false);
+
+ bool drop = false;
+ size_t inor = 0;
+
+ std::vector<IfcVector3>::iterator vit = verts.begin();
+ for (std::vector<unsigned int>::iterator it = vertcnt.begin(); it != vertcnt.end(); ++inor) {
+ const unsigned int pcount = *it;
+
+ if (normals[inor].SquareLength() < 1e-10f) {
+ it = vertcnt.erase(it);
+ vit = verts.erase(vit, vit + pcount);
+
+ drop = true;
+ continue;
+ }
+
+ vit += pcount;
+ ++it;
+ }
+
+ if(drop) {
+ IFCImporter::LogDebug("removing degenerate faces");
+ }
}
// ------------------------------------------------------------------------------------------------
-void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
- bool normalize,
- size_t ofs) const
+IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize)
{
- size_t max_vcount = 0;
- std::vector<unsigned int>::const_iterator begin = vertcnt.begin()+ofs, end = vertcnt.end(), iit;
- for(iit = begin; iit != end; ++iit) {
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
- }
-
- std::vector<IfcFloat> temp((max_vcount+2)*4);
- normals.reserve( normals.size() + vertcnt.size()-ofs );
-
- // `NewellNormal()` currently has a relatively strange interface and need to
- // re-structure things a bit to meet them.
- size_t vidx = std::accumulate(vertcnt.begin(),begin,0);
- for(iit = begin; iit != end; vidx += *iit++) {
- if (!*iit) {
- normals.push_back(IfcVector3());
- continue;
- }
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
- const IfcVector3& v = verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
+ std::vector<IfcFloat> temp((cnt+2)*3);
+ for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs )
+ {
+ const IfcVector3& v = vtcs[vofs];
+ temp[i++] = v.x;
+ temp[i++] = v.y;
+ temp[i++] = v.z;
+ }
+
+ IfcVector3 nor;
+ NewellNormal<3, 3, 3>(nor, cnt, &temp[0], &temp[1], &temp[2]);
+ return normalize ? nor.Normalize() : nor;
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
+ bool normalize,
+ size_t ofs) const
+{
+ size_t max_vcount = 0;
+ std::vector<unsigned int>::const_iterator begin = vertcnt.begin()+ofs, end = vertcnt.end(), iit;
+ for(iit = begin; iit != end; ++iit) {
+ max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
+ }
+
+ std::vector<IfcFloat> temp((max_vcount+2)*4);
+ normals.reserve( normals.size() + vertcnt.size()-ofs );
+
+ // `NewellNormal()` currently has a relatively strange interface and need to
+ // re-structure things a bit to meet them.
+ size_t vidx = std::accumulate(vertcnt.begin(),begin,0);
+ for(iit = begin; iit != end; vidx += *iit++) {
+ if (!*iit) {
+ normals.push_back(IfcVector3());
+ continue;
+ }
+ for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
+ const IfcVector3& v = verts[vidx+vofs];
+ temp[cnt++] = v.x;
+ temp[cnt++] = v.y;
+ temp[cnt++] = v.z;
#ifdef ASSIMP_BUILD_DEBUG
- temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
+ temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
#endif
- ++cnt;
- }
-
- normals.push_back(IfcVector3());
- NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
- }
-
- if(normalize) {
- BOOST_FOREACH(IfcVector3& n, normals) {
- n.Normalize();
- }
- }
+ ++cnt;
+ }
+
+ normals.push_back(IfcVector3());
+ NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
+ }
+
+ if(normalize) {
+ for(IfcVector3& n : normals) {
+ n.Normalize();
+ }
+ }
}
// ------------------------------------------------------------------------------------------------
// Compute the normal of the last polygon in the given mesh
IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const
{
- size_t total = vertcnt.back(), vidx = verts.size() - total;
- std::vector<IfcFloat> temp((total+2)*3);
- for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
- const IfcVector3& v = verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- }
- IfcVector3 nor;
- NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
- return normalize ? nor.Normalize() : nor;
+ return ComputePolygonNormal(&verts[verts.size() - vertcnt.back()], vertcnt.back(), normalize);
}
+struct CompareVector
+{
+ bool operator () (const IfcVector3& a, const IfcVector3& b) const
+ {
+ IfcVector3 d = a - b;
+ IfcFloat eps = 1e-6;
+ return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
+ }
+};
+struct FindVector
+{
+ IfcVector3 v;
+ FindVector(const IfcVector3& p) : v(p) { }
+ bool operator () (const IfcVector3& p) { return FuzzyVectorCompare(1e-6)(p, v); }
+};
+
// ------------------------------------------------------------------------------------------------
void TempMesh::FixupFaceOrientation()
{
- const IfcVector3 vavg = Center();
-
- std::vector<IfcVector3> normals;
- ComputePolygonNormals(normals);
-
- size_t c = 0, ofs = 0;
- BOOST_FOREACH(unsigned int cnt, vertcnt) {
- if (cnt>2){
- const IfcVector3& thisvert = verts[c];
- if (normals[ofs]*(thisvert-vavg) < 0) {
- std::reverse(verts.begin()+c,verts.begin()+cnt+c);
- }
- }
- c += cnt;
- ++ofs;
- }
+ const IfcVector3 vavg = Center();
+
+ // create a list of start indices for all faces to allow random access to faces
+ std::vector<size_t> faceStartIndices(vertcnt.size());
+ for( size_t i = 0, a = 0; a < vertcnt.size(); i += vertcnt[a], ++a )
+ faceStartIndices[a] = i;
+
+ // list all faces on a vertex
+ std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex;
+ for( size_t a = 0; a < vertcnt.size(); ++a )
+ {
+ for( size_t b = 0; b < vertcnt[a]; ++b )
+ facesByVertex[verts[faceStartIndices[a] + b]].push_back(a);
+ }
+ // determine neighbourhood for all polys
+ std::vector<size_t> neighbour(verts.size(), SIZE_MAX);
+ std::vector<size_t> tempIntersect(10);
+ for( size_t a = 0; a < vertcnt.size(); ++a )
+ {
+ for( size_t b = 0; b < vertcnt[a]; ++b )
+ {
+ size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % vertcnt[a];
+ const std::vector<size_t>& facesOnB = facesByVertex[verts[ib]];
+ const std::vector<size_t>& facesOnNB = facesByVertex[verts[nib]];
+ // there should be exactly one or two faces which appear in both lists. Our face and the other side
+ std::vector<size_t>::iterator sectstart = tempIntersect.begin();
+ std::vector<size_t>::iterator sectend = std::set_intersection(
+ facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart);
+
+ if( std::distance(sectstart, sectend) != 2 )
+ continue;
+ if( *sectstart == a )
+ ++sectstart;
+ neighbour[ib] = *sectstart;
+ }
+ }
+
+ // now we're getting started. We take the face which is the farthest away from the center. This face is most probably
+ // facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring
+ // faces to have the same winding until all faces have been tested.
+ std::vector<bool> faceDone(vertcnt.size(), false);
+ while( std::count(faceDone.begin(), faceDone.end(), false) != 0 )
+ {
+ // find the farthest of the remaining faces
+ size_t farthestIndex = SIZE_MAX;
+ IfcFloat farthestDistance = -1.0;
+ for( size_t a = 0; a < vertcnt.size(); ++a )
+ {
+ if( faceDone[a] )
+ continue;
+ IfcVector3 faceCenter = std::accumulate(verts.begin() + faceStartIndices[a],
+ verts.begin() + faceStartIndices[a] + vertcnt[a], IfcVector3(0.0)) / IfcFloat(vertcnt[a]);
+ IfcFloat dst = (faceCenter - vavg).SquareLength();
+ if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; }
+ }
+
+ // calculate its normal and reverse the poly if its facing towards the mesh center
+ IfcVector3 farthestNormal = ComputePolygonNormal(verts.data() + faceStartIndices[farthestIndex], vertcnt[farthestIndex]);
+ IfcVector3 farthestCenter = std::accumulate(verts.begin() + faceStartIndices[farthestIndex],
+ verts.begin() + faceStartIndices[farthestIndex] + vertcnt[farthestIndex], IfcVector3(0.0))
+ / IfcFloat(vertcnt[farthestIndex]);
+ // We accapt a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in
+ // the file.
+ if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 )
+ {
+ size_t fsi = faceStartIndices[farthestIndex], fvc = vertcnt[farthestIndex];
+ std::reverse(verts.begin() + fsi, verts.begin() + fsi + fvc);
+ std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc);
+ // because of the neighbour index belonging to the edge starting with the point at the same index, we need to
+ // cycle the neighbours through to match the edges again.
+ // Before: points A - B - C - D with edge neighbour p - q - r - s
+ // After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be
+ // r q p s
+ for( size_t a = 0; a < fvc - 1; ++a )
+ std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]);
+ }
+ faceDone[farthestIndex] = true;
+ std::vector<size_t> todo;
+ todo.push_back(farthestIndex);
+
+ // go over its neighbour faces recursively and adapt their winding order to match the farthest face
+ while( !todo.empty() )
+ {
+ size_t tdf = todo.back();
+ size_t vsi = faceStartIndices[tdf], vc = vertcnt[tdf];
+ todo.pop_back();
+
+ // check its neighbours
+ for( size_t a = 0; a < vc; ++a )
+ {
+ // ignore neighbours if we already checked them
+ size_t nbi = neighbour[vsi + a];
+ if( nbi == SIZE_MAX || faceDone[nbi] )
+ continue;
+
+ const IfcVector3& vp = verts[vsi + a];
+ size_t nbvsi = faceStartIndices[nbi], nbvc = vertcnt[nbi];
+ std::vector<IfcVector3>::iterator it = std::find_if(verts.begin() + nbvsi, verts.begin() + nbvsi + nbvc, FindVector(vp));
+ ai_assert(it != verts.begin() + nbvsi + nbvc);
+ size_t nb_vidx = std::distance(verts.begin() + nbvsi, it);
+ // two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other
+ // has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need
+ // to reverse the neighbour
+ nb_vidx = (nb_vidx + 1) % nbvc;
+ size_t oursideidx = (a + 1) % vc;
+ if( FuzzyVectorCompare(1e-6)(verts[vsi + oursideidx], verts[nbvsi + nb_vidx]) )
+ {
+ std::reverse(verts.begin() + nbvsi, verts.begin() + nbvsi + nbvc);
+ std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
+ for( size_t a = 0; a < nbvc - 1; ++a )
+ std::swap(neighbour[nbvsi + a], neighbour[nbvsi + a + 1]);
+ }
+
+ // either way we're done with the neighbour. Mark it as done and continue checking from there recursively
+ faceDone[nbi] = true;
+ todo.push_back(nbi);
+ }
+ }
+
+ // no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face
+ }
}
// ------------------------------------------------------------------------------------------------
-void TempMesh::RemoveAdjacentDuplicates()
+void TempMesh::RemoveAdjacentDuplicates()
{
- bool drop = false;
- std::vector<IfcVector3>::iterator base = verts.begin();
- BOOST_FOREACH(unsigned int& cnt, vertcnt) {
- if (cnt < 2){
- base += cnt;
- continue;
- }
-
- IfcVector3 vmin,vmax;
- ArrayBounds(&*base, cnt ,vmin,vmax);
-
-
- const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
- //const IfcFloat dotepsilon = 1e-9;
-
- //// look for vertices that lie directly on the line between their predecessor and their
- //// successor and replace them with either of them.
-
- //for(size_t i = 0; i < cnt; ++i) {
- // IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
- // const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
- // const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
- // if (!l0 || !l1) {
- // continue;
- // }
-
- // const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1));
-
- // if ( d >= 1.f-dotepsilon ) {
- // v1 = v0;
- // }
- // else if ( d < -1.f+dotepsilon ) {
- // v2 = v1;
- // continue;
- // }
- //}
-
- // drop any identical, adjacent vertices. this pass will collect the dropouts
- // of the previous pass as a side-effect.
- FuzzyVectorCompare fz(epsilon);
- std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
- if (e != end) {
- cnt -= static_cast<unsigned int>(std::distance(e, end));
- verts.erase(e,end);
- drop = true;
- }
-
- // check front and back vertices for this polygon
- if (cnt > 1 && fz(*base,*(base+cnt-1))) {
- verts.erase(base+ --cnt);
- drop = true;
- }
-
- // removing adjacent duplicates shouldn't erase everything :-)
- ai_assert(cnt>0);
- base += cnt;
- }
- if(drop) {
- IFCImporter::LogDebug("removing duplicate vertices");
- }
+ bool drop = false;
+ std::vector<IfcVector3>::iterator base = verts.begin();
+ for(unsigned int& cnt : vertcnt) {
+ if (cnt < 2){
+ base += cnt;
+ continue;
+ }
+
+ IfcVector3 vmin,vmax;
+ ArrayBounds(&*base, cnt ,vmin,vmax);
+
+
+ const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
+ //const IfcFloat dotepsilon = 1e-9;
+
+ //// look for vertices that lie directly on the line between their predecessor and their
+ //// successor and replace them with either of them.
+
+ //for(size_t i = 0; i < cnt; ++i) {
+ // IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
+ // const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
+ // const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
+ // if (!l0 || !l1) {
+ // continue;
+ // }
+
+ // const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1));
+
+ // if ( d >= 1.f-dotepsilon ) {
+ // v1 = v0;
+ // }
+ // else if ( d < -1.f+dotepsilon ) {
+ // v2 = v1;
+ // continue;
+ // }
+ //}
+
+ // drop any identical, adjacent vertices. this pass will collect the dropouts
+ // of the previous pass as a side-effect.
+ FuzzyVectorCompare fz(epsilon);
+ std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
+ if (e != end) {
+ cnt -= static_cast<unsigned int>(std::distance(e, end));
+ verts.erase(e,end);
+ drop = true;
+ }
+
+ // check front and back vertices for this polygon
+ if (cnt > 1 && fz(*base,*(base+cnt-1))) {
+ verts.erase(base+ --cnt);
+ drop = true;
+ }
+
+ // removing adjacent duplicates shouldn't erase everything :-)
+ ai_assert(cnt>0);
+ base += cnt;
+ }
+ if(drop) {
+ IFCImporter::LogDebug("removing duplicate vertices");
+ }
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Swap(TempMesh& other)
{
- vertcnt.swap(other.vertcnt);
- verts.swap(other.verts);
+ vertcnt.swap(other.vertcnt);
+ verts.swap(other.verts);
}
// ------------------------------------------------------------------------------------------------
bool IsTrue(const EXPRESS::BOOLEAN& in)
{
- return (std::string)in == "TRUE" || (std::string)in == "T";
+ return (std::string)in == "TRUE" || (std::string)in == "T";
}
// ------------------------------------------------------------------------------------------------
IfcFloat ConvertSIPrefix(const std::string& prefix)
{
- if (prefix == "EXA") {
- return 1e18f;
- }
- else if (prefix == "PETA") {
- return 1e15f;
- }
- else if (prefix == "TERA") {
- return 1e12f;
- }
- else if (prefix == "GIGA") {
- return 1e9f;
- }
- else if (prefix == "MEGA") {
- return 1e6f;
- }
- else if (prefix == "KILO") {
- return 1e3f;
- }
- else if (prefix == "HECTO") {
- return 1e2f;
- }
- else if (prefix == "DECA") {
- return 1e-0f;
- }
- else if (prefix == "DECI") {
- return 1e-1f;
- }
- else if (prefix == "CENTI") {
- return 1e-2f;
- }
- else if (prefix == "MILLI") {
- return 1e-3f;
- }
- else if (prefix == "MICRO") {
- return 1e-6f;
- }
- else if (prefix == "NANO") {
- return 1e-9f;
- }
- else if (prefix == "PICO") {
- return 1e-12f;
- }
- else if (prefix == "FEMTO") {
- return 1e-15f;
- }
- else if (prefix == "ATTO") {
- return 1e-18f;
- }
- else {
- IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
- return 1;
- }
+ if (prefix == "EXA") {
+ return 1e18f;
+ }
+ else if (prefix == "PETA") {
+ return 1e15f;
+ }
+ else if (prefix == "TERA") {
+ return 1e12f;
+ }
+ else if (prefix == "GIGA") {
+ return 1e9f;
+ }
+ else if (prefix == "MEGA") {
+ return 1e6f;
+ }
+ else if (prefix == "KILO") {
+ return 1e3f;
+ }
+ else if (prefix == "HECTO") {
+ return 1e2f;
+ }
+ else if (prefix == "DECA") {
+ return 1e-0f;
+ }
+ else if (prefix == "DECI") {
+ return 1e-1f;
+ }
+ else if (prefix == "CENTI") {
+ return 1e-2f;
+ }
+ else if (prefix == "MILLI") {
+ return 1e-3f;
+ }
+ else if (prefix == "MICRO") {
+ return 1e-6f;
+ }
+ else if (prefix == "NANO") {
+ return 1e-9f;
+ }
+ else if (prefix == "PICO") {
+ return 1e-12f;
+ }
+ else if (prefix == "FEMTO") {
+ return 1e-15f;
+ }
+ else if (prefix == "ATTO") {
+ return 1e-18f;
+ }
+ else {
+ IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
+ return 1;
+ }
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IfcColourRgb& in)
{
- out.r = static_cast<float>( in.Red );
- out.g = static_cast<float>( in.Green );
- out.b = static_cast<float>( in.Blue );
- out.a = static_cast<float>( 1.f );
+ out.r = static_cast<float>( in.Red );
+ out.g = static_cast<float>( in.Green );
+ out.b = static_cast<float>( in.Blue );
+ out.a = static_cast<float>( 1.f );
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
{
- if (const EXPRESS::REAL* const r = in.ToPtr<EXPRESS::REAL>()) {
- out.r = out.g = out.b = static_cast<float>(*r);
- if(base) {
- out.r *= static_cast<float>( base->r );
- out.g *= static_cast<float>( base->g );
- out.b *= static_cast<float>( base->b );
- out.a = static_cast<float>( base->a );
- }
- else out.a = 1.0;
- }
- else if (const IfcColourRgb* const rgb = in.ResolveSelectPtr<IfcColourRgb>(conv.db)) {
- ConvertColor(out,*rgb);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
- }
+ if (const EXPRESS::REAL* const r = in.ToPtr<EXPRESS::REAL>()) {
+ out.r = out.g = out.b = static_cast<float>(*r);
+ if(base) {
+ out.r *= static_cast<float>( base->r );
+ out.g *= static_cast<float>( base->g );
+ out.b *= static_cast<float>( base->b );
+ out.a = static_cast<float>( base->a );
+ }
+ else out.a = 1.0;
+ }
+ else if (const IfcColourRgb* const rgb = in.ResolveSelectPtr<IfcColourRgb>(conv.db)) {
+ ConvertColor(out,*rgb);
+ }
+ else {
+ IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
+ }
}
// ------------------------------------------------------------------------------------------------
void ConvertCartesianPoint(IfcVector3& out, const IfcCartesianPoint& in)
{
- out = IfcVector3();
- for(size_t i = 0; i < in.Coordinates.size(); ++i) {
- out[i] = in.Coordinates[i];
- }
+ out = IfcVector3();
+ for(size_t i = 0; i < in.Coordinates.size(); ++i) {
+ out[i] = in.Coordinates[i];
+ }
}
// ------------------------------------------------------------------------------------------------
void ConvertVector(IfcVector3& out, const IfcVector& in)
{
- ConvertDirection(out,in.Orientation);
- out *= in.Magnitude;
+ ConvertDirection(out,in.Orientation);
+ out *= in.Magnitude;
}
// ------------------------------------------------------------------------------------------------
void ConvertDirection(IfcVector3& out, const IfcDirection& in)
{
- out = IfcVector3();
- for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
- out[i] = in.DirectionRatios[i];
- }
- const IfcFloat len = out.Length();
- if (len<1e-6) {
- IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
- return;
- }
- out /= len;
+ out = IfcVector3();
+ for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
+ out[i] = in.DirectionRatios[i];
+ }
+ const IfcFloat len = out.Length();
+ if (len<1e-6) {
+ IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
+ return;
+ }
+ out /= len;
}
// ------------------------------------------------------------------------------------------------
void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
{
- out.a1 = x.x;
- out.b1 = x.y;
- out.c1 = x.z;
+ out.a1 = x.x;
+ out.b1 = x.y;
+ out.c1 = x.z;
- out.a2 = y.x;
- out.b2 = y.y;
- out.c2 = y.z;
+ out.a2 = y.x;
+ out.b2 = y.y;
+ out.c2 = y.z;
- out.a3 = z.x;
- out.b3 = z.y;
- out.c3 = z.z;
+ out.a3 = z.x;
+ out.b3 = z.y;
+ out.c3 = z.z;
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement3D& in)
{
- IfcVector3 loc;
- ConvertCartesianPoint(loc,in.Location);
+ IfcVector3 loc;
+ ConvertCartesianPoint(loc,in.Location);
- IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
+ IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
- if (in.Axis) {
- ConvertDirection(z,*in.Axis.Get());
- }
- if (in.RefDirection) {
- ConvertDirection(r,*in.RefDirection.Get());
- }
+ if (in.Axis) {
+ ConvertDirection(z,*in.Axis.Get());
+ }
+ if (in.RefDirection) {
+ ConvertDirection(r,*in.RefDirection.Get());
+ }
- IfcVector3 v = r.Normalize();
- IfcVector3 tmpx = z * (v*z);
+ IfcVector3 v = r.Normalize();
+ IfcVector3 tmpx = z * (v*z);
- x = (v-tmpx).Normalize();
- IfcVector3 y = (z^x);
+ x = (v-tmpx).Normalize();
+ IfcVector3 y = (z^x);
- IfcMatrix4::Translation(loc,out);
- AssignMatrixAxes(out,x,y,z);
+ IfcMatrix4::Translation(loc,out);
+ AssignMatrixAxes(out,x,y,z);
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement2D& in)
{
- IfcVector3 loc;
- ConvertCartesianPoint(loc,in.Location);
+ IfcVector3 loc;
+ ConvertCartesianPoint(loc,in.Location);
- IfcVector3 x(1.f,0.f,0.f);
- if (in.RefDirection) {
- ConvertDirection(x,*in.RefDirection.Get());
- }
+ IfcVector3 x(1.f,0.f,0.f);
+ if (in.RefDirection) {
+ ConvertDirection(x,*in.RefDirection.Get());
+ }
- const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
+ const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
- IfcMatrix4::Translation(loc,out);
- AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
+ IfcMatrix4::Translation(loc,out);
+ AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const IfcAxis1Placement& in)
{
- ConvertCartesianPoint(pos,in.Location);
- if (in.Axis) {
- ConvertDirection(axis,in.Axis.Get());
- }
- else {
- axis = IfcVector3(0.f,0.f,1.f);
- }
+ ConvertCartesianPoint(pos,in.Location);
+ if (in.Axis) {
+ ConvertDirection(axis,in.Axis.Get());
+ }
+ else {
+ axis = IfcVector3(0.f,0.f,1.f);
+ }
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement& in, ConversionData& conv)
{
- if(const IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IfcAxis2Placement3D>(conv.db)) {
- ConvertAxisPlacement(out,*pl3);
- }
- else if(const IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IfcAxis2Placement2D>(conv.db)) {
- ConvertAxisPlacement(out,*pl2);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
- }
+ if(const IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IfcAxis2Placement3D>(conv.db)) {
+ ConvertAxisPlacement(out,*pl3);
+ }
+ else if(const IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IfcAxis2Placement2D>(conv.db)) {
+ ConvertAxisPlacement(out,*pl2);
+ }
+ else {
+ IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
+ }
}
// ------------------------------------------------------------------------------------------------
void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationOperator& op)
{
- IfcVector3 loc;
- ConvertCartesianPoint(loc,op.LocalOrigin);
-
- IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
- if (op.Axis1) {
- ConvertDirection(x,*op.Axis1.Get());
- }
- if (op.Axis2) {
- ConvertDirection(y,*op.Axis2.Get());
- }
- if (const IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IfcCartesianTransformationOperator3D>()) {
- if(op2->Axis3) {
- ConvertDirection(z,*op2->Axis3.Get());
- }
- }
-
- IfcMatrix4 locm;
- IfcMatrix4::Translation(loc,locm);
- AssignMatrixAxes(out,x,y,z);
-
-
- IfcVector3 vscale;
- if (const IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IfcCartesianTransformationOperator3DnonUniform>()) {
- vscale.x = nuni->Scale?op.Scale.Get():1.f;
- vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
- vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
- }
- else {
- const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
- vscale = IfcVector3(sc,sc,sc);
- }
-
- IfcMatrix4 s;
- IfcMatrix4::Scaling(vscale,s);
-
- out = locm * out * s;
+ IfcVector3 loc;
+ ConvertCartesianPoint(loc,op.LocalOrigin);
+
+ IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
+ if (op.Axis1) {
+ ConvertDirection(x,*op.Axis1.Get());
+ }
+ if (op.Axis2) {
+ ConvertDirection(y,*op.Axis2.Get());
+ }
+ if (const IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IfcCartesianTransformationOperator3D>()) {
+ if(op2->Axis3) {
+ ConvertDirection(z,*op2->Axis3.Get());
+ }
+ }
+
+ IfcMatrix4 locm;
+ IfcMatrix4::Translation(loc,locm);
+ AssignMatrixAxes(out,x,y,z);
+
+
+ IfcVector3 vscale;
+ if (const IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IfcCartesianTransformationOperator3DnonUniform>()) {
+ vscale.x = nuni->Scale?op.Scale.Get():1.f;
+ vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
+ vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
+ }
+ else {
+ const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
+ vscale = IfcVector3(sc,sc,sc);
+ }
+
+ IfcMatrix4 s;
+ IfcMatrix4::Scaling(vscale,s);
+
+ out = locm * out * s;
}