summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/SpatialSort.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/SpatialSort.h')
-rw-r--r--src/3rdparty/assimp/code/SpatialSort.h216
1 files changed, 108 insertions, 108 deletions
diff --git a/src/3rdparty/assimp/code/SpatialSort.h b/src/3rdparty/assimp/code/SpatialSort.h
index 04a1a69ba..b594fc6d1 100644
--- a/src/3rdparty/assimp/code/SpatialSort.h
+++ b/src/3rdparty/assimp/code/SpatialSort.h
@@ -2,11 +2,11 @@
Open Asset Import Library (assimp)
----------------------------------------------------------------------
-Copyright (c) 2006-2012, assimp team
+Copyright (c) 2006-2016, assimp team
All rights reserved.
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
@@ -23,16 +23,16 @@ following conditions are met:
derived from this software without specific prior
written permission of the assimp team.
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
@@ -43,7 +43,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_SPATIALSORT_H_INC
#include <vector>
-#include "../include/assimp/types.h"
+#include <assimp/types.h>
namespace Assimp
{
@@ -52,7 +52,7 @@ namespace Assimp
/** A little helper class to quickly find all vertices in the epsilon environment of a given
* position. Construct an instance with an array of positions. The class stores the given positions
* by their indices and sorts them by their distance to an arbitrary chosen plane.
- * You can then query the instance for all vertices close to a given position in an average O(log n)
+ * You can then query the instance for all vertices close to a given position in an average O(log n)
* time, with O(n) worst case complexity when all vertices lay on the plane. The plane is chosen
* so that it avoids common planes in usual data sets. */
// ------------------------------------------------------------------------------------------------
@@ -60,109 +60,109 @@ class SpatialSort
{
public:
- SpatialSort();
+ SpatialSort();
- // ------------------------------------------------------------------------------------
- /** Constructs a spatially sorted representation from the given position array.
- * Supply the positions in its layout in memory, the class will only refer to them
- * by index.
- * @param pPositions Pointer to the first position vector of the array.
- * @param pNumPositions Number of vectors to expect in that array.
- * @param pElementOffset Offset in bytes from the beginning of one vector in memory
- * to the beginning of the next vector. */
- SpatialSort( const aiVector3D* pPositions, unsigned int pNumPositions,
- unsigned int pElementOffset);
+ // ------------------------------------------------------------------------------------
+ /** Constructs a spatially sorted representation from the given position array.
+ * Supply the positions in its layout in memory, the class will only refer to them
+ * by index.
+ * @param pPositions Pointer to the first position vector of the array.
+ * @param pNumPositions Number of vectors to expect in that array.
+ * @param pElementOffset Offset in bytes from the beginning of one vector in memory
+ * to the beginning of the next vector. */
+ SpatialSort( const aiVector3D* pPositions, unsigned int pNumPositions,
+ unsigned int pElementOffset);
- /** Destructor */
- ~SpatialSort();
+ /** Destructor */
+ ~SpatialSort();
public:
- // ------------------------------------------------------------------------------------
- /** Sets the input data for the SpatialSort. This replaces existing data, if any.
- * The new data receives new indices in ascending order.
- *
- * @param pPositions Pointer to the first position vector of the array.
- * @param pNumPositions Number of vectors to expect in that array.
- * @param pElementOffset Offset in bytes from the beginning of one vector in memory
- * to the beginning of the next vector.
- * @param pFinalize Specifies whether the SpatialSort's internal representation
- * is finalized after the new data has been added. Finalization is
- * required in order to use #FindPosition() or #GenerateMappingTable().
- * If you don't finalize yet, you can use #Append() to add data from
- * other sources.*/
- void Fill( const aiVector3D* pPositions, unsigned int pNumPositions,
- unsigned int pElementOffset,
- bool pFinalize = true);
-
-
- // ------------------------------------------------------------------------------------
- /** Same as #Fill(), except the method appends to existing data in the #SpatialSort. */
- void Append( const aiVector3D* pPositions, unsigned int pNumPositions,
- unsigned int pElementOffset,
- bool pFinalize = true);
-
-
- // ------------------------------------------------------------------------------------
- /** Finalize the spatial hash data structure. This can be useful after
- * multiple calls to #Append() with the pFinalize parameter set to false.
- * This is finally required before one of #FindPositions() and #GenerateMappingTable()
- * can be called to query the spatial sort.*/
- void Finalize();
-
- // ------------------------------------------------------------------------------------
- /** Returns an iterator for all positions close to the given position.
- * @param pPosition The position to look for vertices.
- * @param pRadius Maximal distance from the position a vertex may have to be counted in.
- * @param poResults The container to store the indices of the found positions.
- * Will be emptied by the call so it may contain anything.
- * @return An iterator to iterate over all vertices in the given area.*/
- void FindPositions( const aiVector3D& pPosition, float pRadius,
- std::vector<unsigned int>& poResults) const;
-
- // ------------------------------------------------------------------------------------
- /** Fills an array with indices of all positions indentical to the given position. In
- * opposite to FindPositions(), not an epsilon is used but a (very low) tolerance of
- * four floating-point units.
- * @param pPosition The position to look for vertices.
- * @param poResults The container to store the indices of the found positions.
- * Will be emptied by the call so it may contain anything.*/
- void FindIdenticalPositions( const aiVector3D& pPosition,
- std::vector<unsigned int>& poResults) const;
-
- // ------------------------------------------------------------------------------------
- /** Compute a table that maps each vertex ID referring to a spatially close
- * enough position to the same output ID. Output IDs are assigned in ascending order
- * from 0...n.
- * @param fill Will be filled with numPositions entries.
- * @param pRadius Maximal distance from the position a vertex may have to
- * be counted in.
- * @return Number of unique vertices (n). */
- unsigned int GenerateMappingTable(std::vector<unsigned int>& fill,
- float pRadius) const;
+ // ------------------------------------------------------------------------------------
+ /** Sets the input data for the SpatialSort. This replaces existing data, if any.
+ * The new data receives new indices in ascending order.
+ *
+ * @param pPositions Pointer to the first position vector of the array.
+ * @param pNumPositions Number of vectors to expect in that array.
+ * @param pElementOffset Offset in bytes from the beginning of one vector in memory
+ * to the beginning of the next vector.
+ * @param pFinalize Specifies whether the SpatialSort's internal representation
+ * is finalized after the new data has been added. Finalization is
+ * required in order to use #FindPosition() or #GenerateMappingTable().
+ * If you don't finalize yet, you can use #Append() to add data from
+ * other sources.*/
+ void Fill( const aiVector3D* pPositions, unsigned int pNumPositions,
+ unsigned int pElementOffset,
+ bool pFinalize = true);
+
+
+ // ------------------------------------------------------------------------------------
+ /** Same as #Fill(), except the method appends to existing data in the #SpatialSort. */
+ void Append( const aiVector3D* pPositions, unsigned int pNumPositions,
+ unsigned int pElementOffset,
+ bool pFinalize = true);
+
+
+ // ------------------------------------------------------------------------------------
+ /** Finalize the spatial hash data structure. This can be useful after
+ * multiple calls to #Append() with the pFinalize parameter set to false.
+ * This is finally required before one of #FindPositions() and #GenerateMappingTable()
+ * can be called to query the spatial sort.*/
+ void Finalize();
+
+ // ------------------------------------------------------------------------------------
+ /** Returns an iterator for all positions close to the given position.
+ * @param pPosition The position to look for vertices.
+ * @param pRadius Maximal distance from the position a vertex may have to be counted in.
+ * @param poResults The container to store the indices of the found positions.
+ * Will be emptied by the call so it may contain anything.
+ * @return An iterator to iterate over all vertices in the given area.*/
+ void FindPositions( const aiVector3D& pPosition, float pRadius,
+ std::vector<unsigned int>& poResults) const;
+
+ // ------------------------------------------------------------------------------------
+ /** Fills an array with indices of all positions identical to the given position. In
+ * opposite to FindPositions(), not an epsilon is used but a (very low) tolerance of
+ * four floating-point units.
+ * @param pPosition The position to look for vertices.
+ * @param poResults The container to store the indices of the found positions.
+ * Will be emptied by the call so it may contain anything.*/
+ void FindIdenticalPositions( const aiVector3D& pPosition,
+ std::vector<unsigned int>& poResults) const;
+
+ // ------------------------------------------------------------------------------------
+ /** Compute a table that maps each vertex ID referring to a spatially close
+ * enough position to the same output ID. Output IDs are assigned in ascending order
+ * from 0...n.
+ * @param fill Will be filled with numPositions entries.
+ * @param pRadius Maximal distance from the position a vertex may have to
+ * be counted in.
+ * @return Number of unique vertices (n). */
+ unsigned int GenerateMappingTable(std::vector<unsigned int>& fill,
+ float pRadius) const;
protected:
- /** Normal of the sorting plane, normalized. The center is always at (0, 0, 0) */
- aiVector3D mPlaneNormal;
-
- /** An entry in a spatially sorted position array. Consists of a vertex index,
- * its position and its precalculated distance from the reference plane */
- struct Entry
- {
- unsigned int mIndex; ///< The vertex referred by this entry
- aiVector3D mPosition; ///< Position
- float mDistance; ///< Distance of this vertex to the sorting plane
-
- Entry() { /** intentionally not initialized.*/ }
- Entry( unsigned int pIndex, const aiVector3D& pPosition, float pDistance)
- : mIndex( pIndex), mPosition( pPosition), mDistance( pDistance)
- { }
-
- bool operator < (const Entry& e) const { return mDistance < e.mDistance; }
- };
-
- // all positions, sorted by distance to the sorting plane
- std::vector<Entry> mPositions;
+ /** Normal of the sorting plane, normalized. The center is always at (0, 0, 0) */
+ aiVector3D mPlaneNormal;
+
+ /** An entry in a spatially sorted position array. Consists of a vertex index,
+ * its position and its precalculated distance from the reference plane */
+ struct Entry
+ {
+ unsigned int mIndex; ///< The vertex referred by this entry
+ aiVector3D mPosition; ///< Position
+ float mDistance; ///< Distance of this vertex to the sorting plane
+
+ Entry() { /** intentionally not initialized.*/ }
+ Entry( unsigned int pIndex, const aiVector3D& pPosition, float pDistance)
+ : mIndex( pIndex), mPosition( pPosition), mDistance( pDistance)
+ { }
+
+ bool operator < (const Entry& e) const { return mDistance < e.mDistance; }
+ };
+
+ // all positions, sorted by distance to the sorting plane
+ std::vector<Entry> mPositions;
};
} // end of namespace Assimp