summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libpng/png.c
diff options
context:
space:
mode:
authoraavit <qt_aavit@ovi.com>2012-04-16 13:34:47 +0200
committerQt by Nokia <qt-info@nokia.com>2012-04-17 10:15:48 +0200
commit1fa1ce36288e3e537e9e4db1cfa42b338b5b7e58 (patch)
tree4e5da0ca30844b42f3748413ea85095509c6fff1 /src/3rdparty/libpng/png.c
parent93055e81c83c02b88630ee6f5bb243ab42b2fad6 (diff)
Upgrading libpng: Adding clean copy of libpng 1.5.10
This commit removes the previous version of the bundled libpng (1.5.4), as well as all local modifications to it. It adds an unmodified copy of the official libpng source distribution, except that various extraneous files have been removed, as usual. The patches required to build it in Qt will follow in separate commit(s). Change-Id: I90149f87fc889c44a3b60b21cdf755020f3a8e39 Reviewed-by: Kim M. Kalland <kim.kalland@nokia.com>
Diffstat (limited to 'src/3rdparty/libpng/png.c')
-rw-r--r--src/3rdparty/libpng/png.c922
1 files changed, 717 insertions, 205 deletions
diff --git a/src/3rdparty/libpng/png.c b/src/3rdparty/libpng/png.c
index 764f47c20c..cba18ba915 100644
--- a/src/3rdparty/libpng/png.c
+++ b/src/3rdparty/libpng/png.c
@@ -1,8 +1,8 @@
/* png.c - location for general purpose libpng functions
*
- * Last changed in libpng 1.5.1 [February 3, 2011]
- * Copyright (c) 1998-2011 Glenn Randers-Pehrson
+ * Last changed in libpng 1.5.10 [March 8, 2012]
+ * Copyright (c) 1998-2012 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
@@ -14,7 +14,7 @@
#include "pngpriv.h"
/* Generate a compiler error if there is an old png.h in the search path. */
-typedef png_libpng_version_1_5_1 Your_png_h_is_not_version_1_5_1;
+typedef png_libpng_version_1_5_10 Your_png_h_is_not_version_1_5_10;
/* Tells libpng that we have already handled the first "num_bytes" bytes
* of the PNG file signature. If the PNG data is embedded into another
@@ -43,7 +43,7 @@ png_set_sig_bytes(png_structp png_ptr, int num_bytes)
* can simply check the remaining bytes for extra assurance. Returns
* an integer less than, equal to, or greater than zero if sig is found,
* respectively, to be less than, to match, or be greater than the correct
- * PNG signature (this is the same behaviour as strcmp, memcmp, etc).
+ * PNG signature (this is the same behavior as strcmp, memcmp, etc).
*/
int PNGAPI
png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
@@ -107,7 +107,8 @@ png_zfree(voidpf png_ptr, voidpf ptr)
void /* PRIVATE */
png_reset_crc(png_structp png_ptr)
{
- png_ptr->crc = crc32(0, Z_NULL, 0);
+ /* The cast is safe because the crc is a 32 bit value. */
+ png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
}
/* Calculate the CRC over a section of data. We can only pass as
@@ -120,21 +121,103 @@ png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
{
int need_crc = 1;
- if (png_ptr->chunk_name[0] & 0x20) /* ancillary */
+ if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name))
{
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
need_crc = 0;
}
- else /* critical */
+ else /* critical */
{
if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
need_crc = 0;
}
- if (need_crc)
- png_ptr->crc = crc32(png_ptr->crc, ptr, (uInt)length);
+ /* 'uLong' is defined as unsigned long, this means that on some systems it is
+ * a 64 bit value. crc32, however, returns 32 bits so the following cast is
+ * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a
+ * loop here.
+ */
+ if (need_crc && length > 0)
+ {
+ uLong crc = png_ptr->crc; /* Should never issue a warning */
+
+ do
+ {
+ uInt safeLength = (uInt)length;
+ if (safeLength == 0)
+ safeLength = (uInt)-1; /* evil, but safe */
+
+ crc = crc32(crc, ptr, safeLength);
+
+ /* The following should never issue compiler warnings, if they do the
+ * target system has characteristics that will probably violate other
+ * assumptions within the libpng code.
+ */
+ ptr += safeLength;
+ length -= safeLength;
+ }
+ while (length > 0);
+
+ /* And the following is always safe because the crc is only 32 bits. */
+ png_ptr->crc = (png_uint_32)crc;
+ }
+}
+
+/* Check a user supplied version number, called from both read and write
+ * functions that create a png_struct
+ */
+int
+png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
+{
+ if (user_png_ver)
+ {
+ int i = 0;
+
+ do
+ {
+ if (user_png_ver[i] != png_libpng_ver[i])
+ png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
+ } while (png_libpng_ver[i++]);
+ }
+
+ else
+ png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
+
+ if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
+ {
+ /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
+ * we must recompile any applications that use any older library version.
+ * For versions after libpng 1.0, we will be compatible, so we need
+ * only check the first digit.
+ */
+ if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
+ (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
+ (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
+ {
+#ifdef PNG_WARNINGS_SUPPORTED
+ size_t pos = 0;
+ char m[128];
+
+ pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
+ pos = png_safecat(m, sizeof m, pos, user_png_ver);
+ pos = png_safecat(m, sizeof m, pos, " but running with ");
+ pos = png_safecat(m, sizeof m, pos, png_libpng_ver);
+
+ png_warning(png_ptr, m);
+#endif
+
+#ifdef PNG_ERROR_NUMBERS_SUPPORTED
+ png_ptr->flags = 0;
+#endif
+
+ return 0;
+ }
+ }
+
+ /* Success return. */
+ return 1;
}
/* Allocate the memory for an info_struct for the application. We don't
@@ -291,12 +374,10 @@ png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
/* Free any sCAL entry */
if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
{
-#if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED)
png_free(png_ptr, info_ptr->scal_s_width);
png_free(png_ptr, info_ptr->scal_s_height);
info_ptr->scal_s_width = NULL;
info_ptr->scal_s_height = NULL;
-#endif
info_ptr->valid &= ~PNG_INFO_sCAL;
}
#endif
@@ -489,8 +570,8 @@ png_get_io_ptr(png_structp png_ptr)
/* Initialize the default input/output functions for the PNG file. If you
* use your own read or write routines, you can call either png_set_read_fn()
* or png_set_write_fn() instead of png_init_io(). If you have defined
- * PNG_NO_STDIO, you must use a function of your own because "FILE *" isn't
- * necessarily available.
+ * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
+ * function of your own because "FILE *" isn't necessarily available.
*/
void PNGAPI
png_init_io(png_structp png_ptr, png_FILE_p fp)
@@ -518,28 +599,47 @@ png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
if (png_ptr == NULL)
return (NULL);
- if (png_ptr->time_buffer == NULL)
+ if (ptime->year > 9999 /* RFC1123 limitation */ ||
+ ptime->month == 0 || ptime->month > 12 ||
+ ptime->day == 0 || ptime->day > 31 ||
+ ptime->hour > 23 || ptime->minute > 59 ||
+ ptime->second > 60)
{
- png_ptr->time_buffer = (png_charp)png_malloc(png_ptr, (png_uint_32)(29*
- png_sizeof(char)));
+ png_warning(png_ptr, "Ignoring invalid time value");
+ return (NULL);
}
-# ifdef USE_FAR_KEYWORD
{
- char near_time_buf[29];
- png_snprintf6(near_time_buf, 29, "%d %s %d %02d:%02d:%02d +0000",
- ptime->day % 32, short_months[(ptime->month - 1) % 12],
- ptime->year, ptime->hour % 24, ptime->minute % 60,
- ptime->second % 61);
- png_memcpy(png_ptr->time_buffer, near_time_buf,
- 29*png_sizeof(char));
+ size_t pos = 0;
+ char number_buf[5]; /* enough for a four-digit year */
+
+# define APPEND_STRING(string)\
+ pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
+ pos, (string))
+# define APPEND_NUMBER(format, value)\
+ APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
+# define APPEND(ch)\
+ if (pos < (sizeof png_ptr->time_buffer)-1)\
+ png_ptr->time_buffer[pos++] = (ch)
+
+ APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
+ APPEND(' ');
+ APPEND_STRING(short_months[(ptime->month - 1)]);
+ APPEND(' ');
+ APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
+ APPEND(' ');
+ APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
+ APPEND(':');
+ APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
+ APPEND(':');
+ APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
+ APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
+
+# undef APPEND
+# undef APPEND_NUMBER
+# undef APPEND_STRING
}
-# else
- png_snprintf6(png_ptr->time_buffer, 29, "%d %s %d %02d:%02d:%02d +0000",
- ptime->day % 32, short_months[(ptime->month - 1) % 12],
- ptime->year, ptime->hour % 24, ptime->minute % 60,
- ptime->second % 61);
-# endif
+
return png_ptr->time_buffer;
}
# endif /* PNG_TIME_RFC1123_SUPPORTED */
@@ -555,13 +655,13 @@ png_get_copyright(png_const_structp png_ptr)
#else
# ifdef __STDC__
return PNG_STRING_NEWLINE \
- "libpng version 1.5.1 - February 3, 2011" PNG_STRING_NEWLINE \
+ "libpng version 1.5.10 - March 29, 2012" PNG_STRING_NEWLINE \
"Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
"Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
"Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
PNG_STRING_NEWLINE;
# else
- return "libpng version 1.5.1 - February 3, 2011\
+ return "libpng version 1.5.10 - March 29, 2012\
Copyright (c) 1998-2011 Glenn Randers-Pehrson\
Copyright (c) 1996-1997 Andreas Dilger\
Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
@@ -608,25 +708,43 @@ png_get_header_version(png_const_structp png_ptr)
#endif
}
-#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
-# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
+#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int PNGAPI
png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
{
/* Check chunk_name and return "keep" value if it's on the list, else 0 */
- int i;
- png_bytep p;
- if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list<=0)
- return 0;
+ png_const_bytep p, p_end;
+
+ if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0)
+ return PNG_HANDLE_CHUNK_AS_DEFAULT;
- p = png_ptr->chunk_list + png_ptr->num_chunk_list*5 - 5;
- for (i = png_ptr->num_chunk_list; i; i--, p -= 5)
+ p_end = png_ptr->chunk_list;
+ p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
+
+ /* The code is the fifth byte after each four byte string. Historically this
+ * code was always searched from the end of the list, so it should continue
+ * to do so in case there are duplicated entries.
+ */
+ do /* num_chunk_list > 0, so at least one */
+ {
+ p -= 5;
if (!png_memcmp(chunk_name, p, 4))
- return ((int)*(p + 4));
- return 0;
+ return p[4];
+ }
+ while (p > p_end);
+
+ return PNG_HANDLE_CHUNK_AS_DEFAULT;
}
-# endif
-#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
+
+int /* PRIVATE */
+png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name)
+{
+ png_byte chunk_string[5];
+
+ PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
+ return png_handle_as_unknown(png_ptr, chunk_string);
+}
+#endif
#ifdef PNG_READ_SUPPORTED
/* This function, added to libpng-1.0.6g, is untested. */
@@ -651,18 +769,9 @@ png_access_version_number(void)
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
-# ifdef PNG_SIZE_T
-/* Added at libpng version 1.2.6 */
- PNG_EXTERN png_size_t PNGAPI png_convert_size PNGARG((size_t size));
-png_size_t PNGAPI
-png_convert_size(size_t size)
-{
- if (size > (png_size_t)-1)
- PNG_ABORT(); /* We haven't got access to png_ptr, so no png_error() */
-
- return ((png_size_t)size);
-}
-# endif /* PNG_SIZE_T */
+/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
+ * at libpng 1.5.5!
+ */
/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
# ifdef PNG_CHECK_cHRM_SUPPORTED
@@ -681,6 +790,13 @@ png_check_cHRM_fixed(png_structp png_ptr,
if (png_ptr == NULL)
return 0;
+ /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
+ * y must also be greater than 0. To test for the upper limit calculate
+ * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
+ * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is
+ * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it
+ * pointless (and it produces compiler warnings!)
+ */
if (white_x < 0 || white_y <= 0 ||
red_x < 0 || red_y < 0 ||
green_x < 0 || green_y < 0 ||
@@ -690,38 +806,26 @@ png_check_cHRM_fixed(png_structp png_ptr,
"Ignoring attempt to set negative chromaticity value");
ret = 0;
}
- if (white_x > (png_fixed_point)PNG_UINT_31_MAX ||
- white_y > (png_fixed_point)PNG_UINT_31_MAX ||
- red_x > (png_fixed_point)PNG_UINT_31_MAX ||
- red_y > (png_fixed_point)PNG_UINT_31_MAX ||
- green_x > (png_fixed_point)PNG_UINT_31_MAX ||
- green_y > (png_fixed_point)PNG_UINT_31_MAX ||
- blue_x > (png_fixed_point)PNG_UINT_31_MAX ||
- blue_y > (png_fixed_point)PNG_UINT_31_MAX )
- {
- png_warning(png_ptr,
- "Ignoring attempt to set chromaticity value exceeding 21474.83");
- ret = 0;
- }
- if (white_x > 100000L - white_y)
+ /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
+ if (white_x > PNG_FP_1 - white_y)
{
png_warning(png_ptr, "Invalid cHRM white point");
ret = 0;
}
- if (red_x > 100000L - red_y)
+ if (red_x > PNG_FP_1 - red_y)
{
png_warning(png_ptr, "Invalid cHRM red point");
ret = 0;
}
- if (green_x > 100000L - green_y)
+ if (green_x > PNG_FP_1 - green_y)
{
png_warning(png_ptr, "Invalid cHRM green point");
ret = 0;
}
- if (blue_x > 100000L - blue_y)
+ if (blue_x > PNG_FP_1 - blue_y)
{
png_warning(png_ptr, "Invalid cHRM blue point");
ret = 0;
@@ -741,6 +845,326 @@ png_check_cHRM_fixed(png_structp png_ptr,
}
# endif /* PNG_CHECK_cHRM_SUPPORTED */
+#ifdef PNG_cHRM_SUPPORTED
+/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
+ * cHRM, as opposed to using chromaticities. These internal APIs return
+ * non-zero on a parameter error. The X, Y and Z values are required to be
+ * positive and less than 1.0.
+ */
+int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
+{
+ png_int_32 d, dwhite, whiteX, whiteY;
+
+ d = XYZ.redX + XYZ.redY + XYZ.redZ;
+ if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
+ if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
+ dwhite = d;
+ whiteX = XYZ.redX;
+ whiteY = XYZ.redY;
+
+ d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
+ if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
+ if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
+ dwhite += d;
+ whiteX += XYZ.greenX;
+ whiteY += XYZ.greenY;
+
+ d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
+ if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
+ if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
+ dwhite += d;
+ whiteX += XYZ.blueX;
+ whiteY += XYZ.blueY;
+
+ /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
+ * thus:
+ */
+ if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
+ if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
+
+ return 0;
+}
+
+int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
+{
+ png_fixed_point red_inverse, green_inverse, blue_scale;
+ png_fixed_point left, right, denominator;
+
+ /* Check xy and, implicitly, z. Note that wide gamut color spaces typically
+ * have end points with 0 tristimulus values (these are impossible end
+ * points, but they are used to cover the possible colors.)
+ */
+ if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
+ if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
+ if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
+ if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
+ if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
+ if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
+ if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
+ if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;
+
+ /* The reverse calculation is more difficult because the original tristimulus
+ * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
+ * derived values were recorded in the cHRM chunk;
+ * (red,green,blue,white)x(x,y). This loses one degree of freedom and
+ * therefore an arbitrary ninth value has to be introduced to undo the
+ * original transformations.
+ *
+ * Think of the original end-points as points in (X,Y,Z) space. The
+ * chromaticity values (c) have the property:
+ *
+ * C
+ * c = ---------
+ * X + Y + Z
+ *
+ * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
+ * three chromaticity values (x,y,z) for each end-point obey the
+ * relationship:
+ *
+ * x + y + z = 1
+ *
+ * This describes the plane in (X,Y,Z) space that intersects each axis at the
+ * value 1.0; call this the chromaticity plane. Thus the chromaticity
+ * calculation has scaled each end-point so that it is on the x+y+z=1 plane
+ * and chromaticity is the intersection of the vector from the origin to the
+ * (X,Y,Z) value with the chromaticity plane.
+ *
+ * To fully invert the chromaticity calculation we would need the three
+ * end-point scale factors, (red-scale, green-scale, blue-scale), but these
+ * were not recorded. Instead we calculated the reference white (X,Y,Z) and
+ * recorded the chromaticity of this. The reference white (X,Y,Z) would have
+ * given all three of the scale factors since:
+ *
+ * color-C = color-c * color-scale
+ * white-C = red-C + green-C + blue-C
+ * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
+ *
+ * But cHRM records only white-x and white-y, so we have lost the white scale
+ * factor:
+ *
+ * white-C = white-c*white-scale
+ *
+ * To handle this the inverse transformation makes an arbitrary assumption
+ * about white-scale:
+ *
+ * Assume: white-Y = 1.0
+ * Hence: white-scale = 1/white-y
+ * Or: red-Y + green-Y + blue-Y = 1.0
+ *
+ * Notice the last statement of the assumption gives an equation in three of
+ * the nine values we want to calculate. 8 more equations come from the
+ * above routine as summarised at the top above (the chromaticity
+ * calculation):
+ *
+ * Given: color-x = color-X / (color-X + color-Y + color-Z)
+ * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
+ *
+ * This is 9 simultaneous equations in the 9 variables "color-C" and can be
+ * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
+ * determinants, however this is not as bad as it seems because only 28 of
+ * the total of 90 terms in the various matrices are non-zero. Nevertheless
+ * Cramer's rule is notoriously numerically unstable because the determinant
+ * calculation involves the difference of large, but similar, numbers. It is
+ * difficult to be sure that the calculation is stable for real world values
+ * and it is certain that it becomes unstable where the end points are close
+ * together.
+ *
+ * So this code uses the perhaps slighly less optimal but more understandable
+ * and totally obvious approach of calculating color-scale.
+ *
+ * This algorithm depends on the precision in white-scale and that is
+ * (1/white-y), so we can immediately see that as white-y approaches 0 the
+ * accuracy inherent in the cHRM chunk drops off substantially.
+ *
+ * libpng arithmetic: a simple invertion of the above equations
+ * ------------------------------------------------------------
+ *
+ * white_scale = 1/white-y
+ * white-X = white-x * white-scale
+ * white-Y = 1.0
+ * white-Z = (1 - white-x - white-y) * white_scale
+ *
+ * white-C = red-C + green-C + blue-C
+ * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
+ *
+ * This gives us three equations in (red-scale,green-scale,blue-scale) where
+ * all the coefficients are now known:
+ *
+ * red-x*red-scale + green-x*green-scale + blue-x*blue-scale
+ * = white-x/white-y
+ * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
+ * red-z*red-scale + green-z*green-scale + blue-z*blue-scale
+ * = (1 - white-x - white-y)/white-y
+ *
+ * In the last equation color-z is (1 - color-x - color-y) so we can add all
+ * three equations together to get an alternative third:
+ *
+ * red-scale + green-scale + blue-scale = 1/white-y = white-scale
+ *
+ * So now we have a Cramer's rule solution where the determinants are just
+ * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
+ * multiplication of three coefficients so we can't guarantee to avoid
+ * overflow in the libpng fixed point representation. Using Cramer's rule in
+ * floating point is probably a good choice here, but it's not an option for
+ * fixed point. Instead proceed to simplify the first two equations by
+ * eliminating what is likely to be the largest value, blue-scale:
+ *
+ * blue-scale = white-scale - red-scale - green-scale
+ *
+ * Hence:
+ *
+ * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
+ * (white-x - blue-x)*white-scale
+ *
+ * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
+ * 1 - blue-y*white-scale
+ *
+ * And now we can trivially solve for (red-scale,green-scale):
+ *
+ * green-scale =
+ * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
+ * -----------------------------------------------------------
+ * green-x - blue-x
+ *
+ * red-scale =
+ * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
+ * ---------------------------------------------------------
+ * red-y - blue-y
+ *
+ * Hence:
+ *
+ * red-scale =
+ * ( (green-x - blue-x) * (white-y - blue-y) -
+ * (green-y - blue-y) * (white-x - blue-x) ) / white-y
+ * -------------------------------------------------------------------------
+ * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
+ *
+ * green-scale =
+ * ( (red-y - blue-y) * (white-x - blue-x) -
+ * (red-x - blue-x) * (white-y - blue-y) ) / white-y
+ * -------------------------------------------------------------------------
+ * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
+ *
+ * Accuracy:
+ * The input values have 5 decimal digits of accuracy. The values are all in
+ * the range 0 < value < 1, so simple products are in the same range but may
+ * need up to 10 decimal digits to preserve the original precision and avoid
+ * underflow. Because we are using a 32-bit signed representation we cannot
+ * match this; the best is a little over 9 decimal digits, less than 10.
+ *
+ * The approach used here is to preserve the maximum precision within the
+ * signed representation. Because the red-scale calculation above uses the
+ * difference between two products of values that must be in the range -1..+1
+ * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The
+ * factor is irrelevant in the calculation because it is applied to both
+ * numerator and denominator.
+ *
+ * Note that the values of the differences of the products of the
+ * chromaticities in the above equations tend to be small, for example for
+ * the sRGB chromaticities they are:
+ *
+ * red numerator: -0.04751
+ * green numerator: -0.08788
+ * denominator: -0.2241 (without white-y multiplication)
+ *
+ * The resultant Y coefficients from the chromaticities of some widely used
+ * color space definitions are (to 15 decimal places):
+ *
+ * sRGB
+ * 0.212639005871510 0.715168678767756 0.072192315360734
+ * Kodak ProPhoto
+ * 0.288071128229293 0.711843217810102 0.000085653960605
+ * Adobe RGB
+ * 0.297344975250536 0.627363566255466 0.075291458493998
+ * Adobe Wide Gamut RGB
+ * 0.258728243040113 0.724682314948566 0.016589442011321
+ */
+ /* By the argument, above overflow should be impossible here. The return
+ * value of 2 indicates an internal error to the caller.
+ */
+ if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
+ if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
+ denominator = left - right;
+
+ /* Now find the red numerator. */
+ if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
+ if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
+
+ /* Overflow is possible here and it indicates an extreme set of PNG cHRM
+ * chunk values. This calculation actually returns the reciprocal of the
+ * scale value because this allows us to delay the multiplication of white-y
+ * into the denominator, which tends to produce a small number.
+ */
+ if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
+ red_inverse <= xy.whitey /* r+g+b scales = white scale */)
+ return 1;
+
+ /* Similarly for green_inverse: */
+ if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
+ if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
+ if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
+ green_inverse <= xy.whitey)
+ return 1;
+
+ /* And the blue scale, the checks above guarantee this can't overflow but it
+ * can still produce 0 for extreme cHRM values.
+ */
+ blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
+ png_reciprocal(green_inverse);
+ if (blue_scale <= 0) return 1;
+
+
+ /* And fill in the png_XYZ: */
+ if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
+ if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
+ if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
+ red_inverse))
+ return 1;
+
+ if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
+ if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
+ if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
+ green_inverse))
+ return 1;
+
+ if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
+ if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
+ if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
+ PNG_FP_1))
+ return 1;
+
+ return 0; /*success*/
+}
+
+int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
+{
+ switch (png_XYZ_from_xy(XYZ, xy))
+ {
+ case 0: /* success */
+ return 1;
+
+ case 1:
+ /* The chunk may be technically valid, but we got png_fixed_point
+ * overflow while trying to get XYZ values out of it. This is
+ * entirely benign - the cHRM chunk is pretty extreme.
+ */
+ png_warning(png_ptr,
+ "extreme cHRM chunk cannot be converted to tristimulus values");
+ break;
+
+ default:
+ /* libpng is broken; this should be a warning but if it happens we
+ * want error reports so for the moment it is an error.
+ */
+ png_error(png_ptr, "internal error in png_XYZ_from_xy");
+ break;
+ }
+
+ /* ERROR RETURN */
+ return 0;
+}
+#endif
+
void /* PRIVATE */
png_check_IHDR(png_structp png_ptr,
png_uint_32 width, png_uint_32 height, int bit_depth,
@@ -763,7 +1187,7 @@ png_check_IHDR(png_structp png_ptr,
}
# ifdef PNG_SET_USER_LIMITS_SUPPORTED
- if (width > png_ptr->user_width_max || width > PNG_USER_WIDTH_MAX)
+ if (width > png_ptr->user_width_max)
# else
if (width > PNG_USER_WIDTH_MAX)
@@ -774,7 +1198,7 @@ png_check_IHDR(png_structp png_ptr,
}
# ifdef PNG_SET_USER_LIMITS_SUPPORTED
- if (height > png_ptr->user_height_max || height > PNG_USER_HEIGHT_MAX)
+ if (height > png_ptr->user_height_max)
# else
if (height > PNG_USER_HEIGHT_MAX)
# endif
@@ -889,16 +1313,9 @@ png_check_IHDR(png_structp png_ptr,
/* Check an ASCII formated floating point value, see the more detailed
* comments in pngpriv.h
*/
-/* The following is used internally to preserve the 'valid' flag */
+/* The following is used internally to preserve the sticky flags */
#define png_fp_add(state, flags) ((state) |= (flags))
-#define png_fp_set(state, value)\
- ((state) = (value) | ((state) & PNG_FP_WAS_VALID))
-
-/* Internal type codes: bits above the base state! */
-#define PNG_FP_SIGN 0 /* [+-] */
-#define PNG_FP_DOT 4 /* . */
-#define PNG_FP_DIGIT 8 /* [0123456789] */
-#define PNG_FP_E 12 /* [Ee] */
+#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
int /* PRIVATE */
png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
@@ -911,55 +1328,55 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
{
int type;
/* First find the type of the next character */
+ switch (string[i])
{
- char ch = string[i];
-
- if (ch >= 48 && ch <= 57)
- type = PNG_FP_DIGIT;
-
- else switch (ch)
- {
- case 43: case 45: type = PNG_FP_SIGN; break;
- case 46: type = PNG_FP_DOT; break;
- case 69: case 101: type = PNG_FP_E; break;
- default: goto PNG_FP_End;
- }
+ case 43: type = PNG_FP_SAW_SIGN; break;
+ case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
+ case 46: type = PNG_FP_SAW_DOT; break;
+ case 48: type = PNG_FP_SAW_DIGIT; break;
+ case 49: case 50: case 51: case 52:
+ case 53: case 54: case 55: case 56:
+ case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
+ case 69:
+ case 101: type = PNG_FP_SAW_E; break;
+ default: goto PNG_FP_End;
}
/* Now deal with this type according to the current
* state, the type is arranged to not overlap the
* bits of the PNG_FP_STATE.
*/
- switch ((state & PNG_FP_STATE) + type)
+ switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
{
- case PNG_FP_INTEGER + PNG_FP_SIGN:
+ case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
if (state & PNG_FP_SAW_ANY)
goto PNG_FP_End; /* not a part of the number */
- png_fp_add(state, PNG_FP_SAW_SIGN);
+ png_fp_add(state, type);
break;
- case PNG_FP_INTEGER + PNG_FP_DOT:
+ case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
/* Ok as trailer, ok as lead of fraction. */
if (state & PNG_FP_SAW_DOT) /* two dots */
goto PNG_FP_End;
else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
- png_fp_add(state, PNG_FP_SAW_DOT);
+ png_fp_add(state, type);
else
- png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
+ png_fp_set(state, PNG_FP_FRACTION | type);
break;
- case PNG_FP_INTEGER + PNG_FP_DIGIT:
+ case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
if (state & PNG_FP_SAW_DOT) /* delayed fraction */
png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
- png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
+ png_fp_add(state, type | PNG_FP_WAS_VALID);
break;
- case PNG_FP_INTEGER + PNG_FP_E:
+
+ case PNG_FP_INTEGER + PNG_FP_SAW_E:
if ((state & PNG_FP_SAW_DIGIT) == 0)
goto PNG_FP_End;
@@ -967,17 +1384,17 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
break;
- /* case PNG_FP_FRACTION + PNG_FP_SIGN:
- goto PNG_FP_End; ** no sign in exponent */
+ /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
+ goto PNG_FP_End; ** no sign in fraction */
- /* case PNG_FP_FRACTION + PNG_FP_DOT:
+ /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
goto PNG_FP_End; ** Because SAW_DOT is always set */
- case PNG_FP_FRACTION + PNG_FP_DIGIT:
- png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
+ case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
+ png_fp_add(state, type | PNG_FP_WAS_VALID);
break;
- case PNG_FP_FRACTION + PNG_FP_E:
+ case PNG_FP_FRACTION + PNG_FP_SAW_E:
/* This is correct because the trailing '.' on an
* integer is handled above - so we can only get here
* with the sequence ".E" (with no preceding digits).
@@ -989,7 +1406,7 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
break;
- case PNG_FP_EXPONENT + PNG_FP_SIGN:
+ case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
if (state & PNG_FP_SAW_ANY)
goto PNG_FP_End; /* not a part of the number */
@@ -997,15 +1414,15 @@ png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
break;
- /* case PNG_FP_EXPONENT + PNG_FP_DOT:
+ /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
goto PNG_FP_End; */
- case PNG_FP_EXPONENT + PNG_FP_DIGIT:
- png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
+ case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
+ png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
break;
- /* case PNG_FP_EXPONEXT + PNG_FP_E:
+ /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
goto PNG_FP_End; */
default: goto PNG_FP_End; /* I.e. break 2 */
@@ -1033,8 +1450,11 @@ png_check_fp_string(png_const_charp string, png_size_t size)
int state=0;
png_size_t char_index=0;
- return png_check_fp_number(string, size, &state, &char_index) &&
- (char_index == size || string[char_index] == 0);
+ if (png_check_fp_number(string, size, &state, &char_index) &&
+ (char_index == size || string[char_index] == 0))
+ return state /* must be non-zero - see above */;
+
+ return 0; /* i.e. fail */
}
#endif /* pCAL or sCAL */
@@ -1047,7 +1467,7 @@ static double
png_pow10(int power)
{
int recip = 0;
- double d = 1;
+ double d = 1.0;
/* Handle negative exponent with a reciprocal at the end because
* 10 is exact whereas .1 is inexact in base 2
@@ -1061,7 +1481,7 @@ png_pow10(int power)
if (power > 0)
{
/* Decompose power bitwise. */
- double mult = 10;
+ double mult = 10.0;
do
{
if (power & 1) d *= mult;
@@ -1102,7 +1522,7 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
if (fp < 0)
{
fp = -fp;
- *ascii++ = 45; /* '-' PLUS 1 TOTAL 1*/
+ *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
--size;
}
@@ -1180,7 +1600,8 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
{
double d;
- fp *= 10;
+ fp *= 10.0;
+
/* Use modf here, not floor and subtract, so that
* the separation is done in one step. At the end
* of the loop don't break the number into parts so
@@ -1193,7 +1614,7 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
{
d = floor(fp + .5);
- if (d > 9)
+ if (d > 9.0)
{
/* Rounding up to 10, handle that here. */
if (czero > 0)
@@ -1201,9 +1622,10 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
--czero, d = 1;
if (cdigits == 0) --clead;
}
+
else
{
- while (cdigits > 0 && d > 9)
+ while (cdigits > 0 && d > 9.0)
{
int ch = *--ascii;
@@ -1228,7 +1650,7 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
* exponent but take into account the leading
* decimal point.
*/
- if (d > 9) /* cdigits == 0 */
+ if (d > 9.0) /* cdigits == 0 */
{
if (exp_b10 == (-1))
{
@@ -1249,18 +1671,19 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
++exp_b10;
/* In all cases we output a '1' */
- d = 1;
+ d = 1.0;
}
}
}
fp = 0; /* Guarantees termination below. */
}
- if (d == 0)
+ if (d == 0.0)
{
++czero;
if (cdigits == 0) ++clead;
}
+
else
{
/* Included embedded zeros in the digit count. */
@@ -1288,6 +1711,7 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
above */
--exp_b10;
}
+
*ascii++ = (char)(48 + (int)d), ++cdigits;
}
}
@@ -1329,19 +1753,31 @@ png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
*/
size -= cdigits;
- *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision*/
- if (exp_b10 < 0)
+ *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */
+
+ /* The following use of an unsigned temporary avoids ambiguities in
+ * the signed arithmetic on exp_b10 and permits GCC at least to do
+ * better optimization.
+ */
{
- *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
- exp_b10 = -exp_b10;
- }
+ unsigned int uexp_b10;
- cdigits = 0;
+ if (exp_b10 < 0)
+ {
+ *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
+ uexp_b10 = -exp_b10;
+ }
- while (exp_b10 > 0)
- {
- exponent[cdigits++] = (char)(48 + exp_b10 % 10);
- exp_b10 /= 10;
+ else
+ uexp_b10 = exp_b10;
+
+ cdigits = 0;
+
+ while (uexp_b10 > 0)
+ {
+ exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
+ uexp_b10 /= 10;
+ }
}
/* Need another size check here for the exponent digits, so
@@ -1399,9 +1835,9 @@ png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
else
num = fp;
- if (num <= 0x80000000U) /* else overflowed */
+ if (num <= 0x80000000) /* else overflowed */
{
- unsigned int ndigits = 0, first = 16/*flag value*/;
+ unsigned int ndigits = 0, first = 16 /* flag value */;
char digits[10];
while (num)
@@ -1495,7 +1931,7 @@ png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
r /= divisor;
r = floor(r+.5);
- /* A png_fixed_point is a 32 bit integer. */
+ /* A png_fixed_point is a 32-bit integer. */
if (r <= 2147483647. && r >= -2147483648.)
{
*res = (png_fixed_point)r;
@@ -1540,7 +1976,7 @@ png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
if (s32 < D) /* else overflow */
{
- /* s32.s00 is now the 64 bit product, do a standard
+ /* s32.s00 is now the 64-bit product, do a standard
* division, we know that s32 < D, so the maximum
* required shift is 31.
*/
@@ -1683,7 +2119,7 @@ png_reciprocal2(png_fixed_point a, png_fixed_point b)
* 2010: moved from pngset.c) */
/*
* Multiply two 32-bit numbers, V1 and V2, using 32-bit
- * arithmetic, to produce a 64 bit result in the HI/LO words.
+ * arithmetic, to produce a 64-bit result in the HI/LO words.
*
* A B
* x C D
@@ -1727,24 +2163,24 @@ png_64bit_product (long v1, long v2, unsigned long *hi_product,
/* Fixed point gamma.
*
* To calculate gamma this code implements fast log() and exp() calls using only
- * fixed point arithmetic. This code has sufficient precision for either 8 or
- * 16 bit sample values.
+ * fixed point arithmetic. This code has sufficient precision for either 8-bit
+ * or 16-bit sample values.
*
* The tables used here were calculated using simple 'bc' programs, but C double
* precision floating point arithmetic would work fine. The programs are given
* at the head of each table.
*
- * 8 bit log table
+ * 8-bit log table
* This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
- * 255, so it's the base 2 logarithm of a normalized 8 bit floating point
- * mantissa. The numbers are 32 bit fractions.
+ * 255, so it's the base 2 logarithm of a normalized 8-bit floating point
+ * mantissa. The numbers are 32-bit fractions.
*/
static png_uint_32
png_8bit_l2[128] =
{
-# if PNG_DO_BC
+# ifdef PNG_DO_BC
for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
-# endif
+# else
4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
@@ -1767,11 +2203,13 @@ png_8bit_l2[128] =
324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
24347096U, 0U
+# endif
+
#if 0
- /* The following are the values for 16 bit tables - these work fine for the 8
- * bit conversions but produce very slightly larger errors in the 16 bit log
- * (about 1.2 as opposed to 0.7 absolute error in the final value). To use
- * these all the shifts below must be adjusted appropriately.
+ /* The following are the values for 16-bit tables - these work fine for the
+ * 8-bit conversions but produce very slightly larger errors in the 16-bit
+ * log (about 1.2 as opposed to 0.7 absolute error in the final value). To
+ * use these all the shifts below must be adjusted appropriately.
*/
65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
@@ -1788,7 +2226,7 @@ png_8bit_l2[128] =
#endif
};
-static png_int_32
+PNG_STATIC png_int_32
png_log8bit(unsigned int x)
{
unsigned int lg2 = 0;
@@ -1814,11 +2252,11 @@ png_log8bit(unsigned int x)
return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
}
-/* The above gives exact (to 16 binary places) log2 values for 8 bit images,
- * for 16 bit images we use the most significant 8 bits of the 16 bit value to
+/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
+ * for 16-bit images we use the most significant 8 bits of the 16-bit value to
* get an approximation then multiply the approximation by a correction factor
* determined by the remaining up to 8 bits. This requires an additional step
- * in the 16 bit case.
+ * in the 16-bit case.
*
* We want log2(value/65535), we have log2(v'/255), where:
*
@@ -1827,8 +2265,8 @@ png_log8bit(unsigned int x)
*
* So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
* to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
- * than 258. The final factor also needs to correct for the fact that our 8 bit
- * value is scaled by 255, whereas the 16 bit values must be scaled by 65535.
+ * than 258. The final factor also needs to correct for the fact that our 8-bit
+ * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
*
* This gives a final formula using a calculated value 'x' which is value/v' and
* scaling by 65536 to match the above table:
@@ -1838,13 +2276,13 @@ png_log8bit(unsigned int x)
* Since these numbers are so close to '1' we can use simple linear
* interpolation between the two end values 256/257 (result -368.61) and 258/257
* (result 367.179). The values used below are scaled by a further 64 to give
- * 16 bit precision in the interpolation:
+ * 16-bit precision in the interpolation:
*
* Start (256): -23591
* Zero (257): 0
* End (258): 23499
*/
-static png_int_32
+PNG_STATIC png_int_32
png_log16bit(png_uint_32 x)
{
unsigned int lg2 = 0;
@@ -1865,7 +2303,7 @@ png_log16bit(png_uint_32 x)
if ((x & 0x8000) == 0)
lg2 += 1, x <<= 1;
- /* Calculate the base logarithm from the top 8 bits as a 28 bit fractional
+ /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
* value.
*/
lg2 <<= 28;
@@ -1895,34 +2333,35 @@ png_log16bit(png_uint_32 x)
return (png_int_32)((lg2 + 2048) >> 12);
}
-/* The 'exp()' case must invert the above, taking a 20 bit fixed point
- * logarithmic value and returning a 16 or 8 bit number as appropriate. In
+/* The 'exp()' case must invert the above, taking a 20-bit fixed point
+ * logarithmic value and returning a 16 or 8-bit number as appropriate. In
* each case only the low 16 bits are relevant - the fraction - since the
* integer bits (the top 4) simply determine a shift.
*
- * The worst case is the 16 bit distinction between 65535 and 65534, this
- * requires perhaps spurious accuracty in the decoding of the logarithm to
+ * The worst case is the 16-bit distinction between 65535 and 65534, this
+ * requires perhaps spurious accuracy in the decoding of the logarithm to
* distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
* of getting this accuracy in practice.
*
* To deal with this the following exp() function works out the exponent of the
- * frational part of the logarithm by using an accurate 32 bit value from the
+ * frational part of the logarithm by using an accurate 32-bit value from the
* top four fractional bits then multiplying in the remaining bits.
*/
static png_uint_32
png_32bit_exp[16] =
{
-# if PNG_DO_BC
+# ifdef PNG_DO_BC
for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
-# endif
- /* NOTE: the first entry is deliberately set to the maximum 32 bit value. */
+# else
+ /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
2553802834U, 2445529972U, 2341847524U, 2242560872U
+# endif
};
/* Adjustment table; provided to explain the numbers in the code below. */
-#if PNG_DO_BC
+#ifdef PNG_DO_BC
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
11 44937.64284865548751208448
10 45180.98734845585101160448
@@ -1938,12 +2377,12 @@ for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
0 45425.85339951654943850496
#endif
-static png_uint_32
+PNG_STATIC png_uint_32
png_exp(png_fixed_point x)
{
if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
{
- /* Obtain a 4 bit approximation */
+ /* Obtain a 4-bit approximation */
png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
/* Incorporate the low 12 bits - these decrease the returned value by
@@ -1986,13 +2425,13 @@ png_exp(png_fixed_point x)
return 0;
}
-static png_byte
+PNG_STATIC png_byte
png_exp8bit(png_fixed_point lg2)
{
- /* Get a 32 bit value: */
+ /* Get a 32-bit value: */
png_uint_32 x = png_exp(lg2);
- /* Convert the 32 bit value to 0..255 by multiplying by 256-1, note that the
+ /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
* second, rounding, step can't overflow because of the first, subtraction,
* step.
*/
@@ -2000,13 +2439,13 @@ png_exp8bit(png_fixed_point lg2)
return (png_byte)((x + 0x7fffffU) >> 24);
}
-static png_uint_16
+PNG_STATIC png_uint_16
png_exp16bit(png_fixed_point lg2)
{
- /* Get a 32 bit value: */
+ /* Get a 32-bit value: */
png_uint_32 x = png_exp(lg2);
- /* Convert the 32 bit value to 0..65535 by multiplying by 65536-1: */
+ /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
x -= x >> 16;
return (png_uint_16)((x + 32767U) >> 16);
}
@@ -2059,9 +2498,9 @@ png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
}
/* This does the right thing based on the bit_depth field of the
- * png_struct, interpreting values as 8 or 16 bit. While the result
- * is nominally a 16 bit value if bit depth is 8 then the result is
- * 8 bit (as are the arguments.)
+ * png_struct, interpreting values as 8-bit or 16-bit. While the result
+ * is nominally a 16-bit value if bit depth is 8 then the result is
+ * 8-bit (as are the arguments.)
*/
png_uint_16 /* PRIVATE */
png_gamma_correct(png_structp png_ptr, unsigned int value,
@@ -2084,8 +2523,8 @@ png_gamma_significant(png_fixed_point gamma_val)
gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
}
-/* Internal function to build a single 16 bit table - the table consists of
- * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
+/* Internal function to build a single 16-bit table - the table consists of
+ * 'num' 256-entry subtables, where 'num' is determined by 'shift' - the amount
* to shift the input values right (or 16-number_of_signifiant_bits).
*
* The caller is responsible for ensuring that the table gets cleaned up on
@@ -2111,7 +2550,7 @@ png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
(png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
/* The 'threshold' test is repeated here because it can arise for one of
- * the 16 bit tables even if the others don't hit it.
+ * the 16-bit tables even if the others don't hit it.
*/
if (png_gamma_significant(gamma_val))
{
@@ -2172,9 +2611,9 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
png_uint_16pp table = *ptable =
(png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
- /* 'num' is the number of tables and also the number of low bits of low
- * bits of the input 16 bit value used to select a table. Each table is
- * itself index by the high 8 bits of the value.
+ /* 'num' is the number of tables and also the number of low bits of the
+ * input 16-bit value used to select a table. Each table is itself indexed
+ * by the high 8 bits of the value.
*/
for (i = 0; i < num; i++)
table[i] = (png_uint_16p)png_malloc(png_ptr,
@@ -2183,24 +2622,24 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
/* 'gamma_val' is set to the reciprocal of the value calculated above, so
* pow(out,g) is an *input* value. 'last' is the last input value set.
*
- * In the loop 'i' is used to find output values. Since the output is 8
- * bit there are only 256 possible values. The tables are set up to
+ * In the loop 'i' is used to find output values. Since the output is
+ * 8-bit there are only 256 possible values. The tables are set up to
* select the closest possible output value for each input by finding
* the input value at the boundary between each pair of output values
* and filling the table up to that boundary with the lower output
* value.
*
- * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9 bit
- * values the code below uses a 16 bit value in i; the values start at
+ * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
+ * values the code below uses a 16-bit value in i; the values start at
* 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
* entries are filled with 255). Start i at 128 and fill all 'last'
* table entries <= 'max'
*/
last = 0;
- for (i = 0; i < 255; ++i) /* 8 bit output value */
+ for (i = 0; i < 255; ++i) /* 8-bit output value */
{
/* Find the corresponding maximum input value */
- png_uint_16 out = (png_uint_16)(i * 257U); /* 16 bit output value */
+ png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
/* Find the boundary value in 16 bits: */
png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
@@ -2223,9 +2662,9 @@ png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
}
}
-/* Build a single 8 bit table: same as the 16 bit case but much simpler (and
+/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
* typically much faster). Note that libpng currently does no sBIT processing
- * (apparently contrary to the spec) so a 256 entry table is always generated.
+ * (apparently contrary to the spec) so a 256-entry table is always generated.
*/
static void
png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
@@ -2241,6 +2680,60 @@ png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
table[i] = (png_byte)i;
}
+/* Used from png_read_destroy and below to release the memory used by the gamma
+ * tables.
+ */
+void /* PRIVATE */
+png_destroy_gamma_table(png_structp png_ptr)
+{
+ png_free(png_ptr, png_ptr->gamma_table);
+ png_ptr->gamma_table = NULL;
+
+ if (png_ptr->gamma_16_table != NULL)
+ {
+ int i;
+ int istop = (1 << (8 - png_ptr->gamma_shift));
+ for (i = 0; i < istop; i++)
+ {
+ png_free(png_ptr, png_ptr->gamma_16_table[i]);
+ }
+ png_free(png_ptr, png_ptr->gamma_16_table);
+ png_ptr->gamma_16_table = NULL;
+ }
+
+#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
+ defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
+ defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
+ png_free(png_ptr, png_ptr->gamma_from_1);
+ png_ptr->gamma_from_1 = NULL;
+ png_free(png_ptr, png_ptr->gamma_to_1);
+ png_ptr->gamma_to_1 = NULL;
+
+ if (png_ptr->gamma_16_from_1 != NULL)
+ {
+ int i;
+ int istop = (1 << (8 - png_ptr->gamma_shift));
+ for (i = 0; i < istop; i++)
+ {
+ png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
+ }
+ png_free(png_ptr, png_ptr->gamma_16_from_1);
+ png_ptr->gamma_16_from_1 = NULL;
+ }
+ if (png_ptr->gamma_16_to_1 != NULL)
+ {
+ int i;
+ int istop = (1 << (8 - png_ptr->gamma_shift));
+ for (i = 0; i < istop; i++)
+ {
+ png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
+ }
+ png_free(png_ptr, png_ptr->gamma_16_to_1);
+ png_ptr->gamma_16_to_1 = NULL;
+ }
+#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
+}
+
/* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
* tables, we don't make a full table if we are reducing to 8-bit in
* the future. Note also how the gamma_16 tables are segmented so that
@@ -2251,6 +2744,18 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
{
png_debug(1, "in png_build_gamma_table");
+ /* Remove any existing table; this copes with multiple calls to
+ * png_read_update_info. The warning is because building the gamma tables
+ * multiple times is a performance hit - it's harmless but the ability to call
+ * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
+ * to warn if the app introduces such a hit.
+ */
+ if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
+ {
+ png_warning(png_ptr, "gamma table being rebuilt");
+ png_destroy_gamma_table(png_ptr);
+ }
+
if (bit_depth <= 8)
{
png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
@@ -2258,8 +2763,9 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
png_ptr->screen_gamma) : PNG_FP_1);
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
+ defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
- if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY))
+ if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
{
png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
png_reciprocal(png_ptr->gamma));
@@ -2268,7 +2774,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
png_ptr->gamma/* Probably doing rgb_to_gray */);
}
-#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
+#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
}
else
{
@@ -2287,14 +2793,14 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
else
sig_bit = png_ptr->sig_bit.gray;
- /* 16 bit gamma code uses this equation:
+ /* 16-bit gamma code uses this equation:
*
* ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
*
* Where 'iv' is the input color value and 'ov' is the output value -
* pow(iv, gamma).
*
- * Thus the gamma table consists of up to 256 256 entry tables. The table
+ * Thus the gamma table consists of up to 256 256-entry tables. The table
* is selected by the (8-gamma_shift) most significant of the low 8 bits of
* the color value then indexed by the upper 8 bits:
*
@@ -2302,7 +2808,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
*
* So the table 'n' corresponds to all those 'iv' of:
*
- * <all high 8 bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
+ * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
*
*/
if (sig_bit > 0 && sig_bit < 16U)
@@ -2311,7 +2817,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
else
shift = 0; /* keep all 16 bits */
- if (png_ptr->transformations & PNG_16_TO_8)
+ if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
{
/* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
* the significant bits in the *input* when the output will
@@ -2327,7 +2833,12 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
png_ptr->gamma_shift = shift;
#ifdef PNG_16BIT_SUPPORTED
- if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND))
+ /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
+ * PNG_COMPOSE). This effectively smashed the background calculation for
+ * 16-bit output because the 8-bit table assumes the result will be reduced
+ * to 8 bits.
+ */
+ if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
#endif
png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
@@ -2341,8 +2852,9 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
#endif
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
+ defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
- if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY))
+ if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
{
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
png_reciprocal(png_ptr->gamma));
@@ -2355,7 +2867,7 @@ png_build_gamma_table(png_structp png_ptr, int bit_depth)
png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
png_ptr->gamma/* Probably doing rgb_to_gray */);
}
-#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
+#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
}
}
#endif /* READ_GAMMA */