summaryrefslogtreecommitdiffstats
path: root/src/corelib/text/qstringconverter.cpp
diff options
context:
space:
mode:
authorLars Knoll <lars.knoll@qt.io>2020-04-17 12:10:21 +0200
committerLars Knoll <lars.knoll@qt.io>2020-05-14 07:46:38 +0200
commitea0a08c898fed9cfd8d8eb16613e352740d3eb02 (patch)
tree38c2fde7a8ca9266bda81a7a454f298a7e3b6aff /src/corelib/text/qstringconverter.cpp
parentf64a6bd638d399403845fe52e6f8e52889f1f52b (diff)
Move the UTF conversion methods to qstringconverter
Separate them from the qutfcodec, so that the codec can later on be moved out of Qt Core. Fix the QUtf methods to take qsizetype instead of int for length arguments. This also makes it possible to not build QTextCodec into the bootstrap lib anymore. Change-Id: I0b4f83139d61b19c651520a2f3a5012aa7e85cb8 Reviewed-by: Thiago Macieira <thiago.macieira@intel.com>
Diffstat (limited to 'src/corelib/text/qstringconverter.cpp')
-rw-r--r--src/corelib/text/qstringconverter.cpp949
1 files changed, 947 insertions, 2 deletions
diff --git a/src/corelib/text/qstringconverter.cpp b/src/corelib/text/qstringconverter.cpp
index 1f61eee5cb..36567f5106 100644
--- a/src/corelib/text/qstringconverter.cpp
+++ b/src/corelib/text/qstringconverter.cpp
@@ -39,10 +39,954 @@
****************************************************************************/
#include <qstringconverter.h>
-#include <private/qutfcodec_p.h>
+#include <private/qstringconverter_p.h>
+#include "qendian.h"
+
+#include "private/qsimd_p.h"
+#include "private/qstringiterator_p.h"
QT_BEGIN_NAMESPACE
+enum { Endian = 0, Data = 1 };
+
+static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf };
+
+#if (defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2)) \
+ || (defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64))
+static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept
+{
+ uint result = qCountLeadingZeroBits(v);
+ // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31
+ // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when
+ // counting up: msb index is 0 (because it starts there), and the lsb index is 31.
+ result ^= sizeof(unsigned) * 8 - 1;
+ return result;
+}
+#endif
+
+#if defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2)
+static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end)
+{
+ // do sixteen characters at a time
+ for ( ; end - src >= 16; src += 16, dst += 16) {
+# ifdef __AVX2__
+ __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src));
+ __m128i data1 = _mm256_castsi256_si128(data);
+ __m128i data2 = _mm256_extracti128_si256(data, 1);
+# else
+ __m128i data1 = _mm_loadu_si128((const __m128i*)src);
+ __m128i data2 = _mm_loadu_si128(1+(const __m128i*)src);
+# endif
+
+ // check if everything is ASCII
+ // the highest ASCII value is U+007F
+ // Do the packing directly:
+ // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit
+ // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff,
+ // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII,
+ // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as
+ // "non-ASCII", but it's an acceptable compromise.
+ __m128i packed = _mm_packus_epi16(data1, data2);
+ __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128());
+
+ // store, even if there are non-ASCII characters here
+ _mm_storeu_si128((__m128i*)dst, packed);
+
+ // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL)
+ ushort n = ~_mm_movemask_epi8(nonAscii);
+ if (n) {
+ // find the next probable ASCII character
+ // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ nextAscii = src + qBitScanReverse(n) + 1;
+
+ n = qCountTrailingZeroBits(n);
+ dst += n;
+ src += n;
+ return false;
+ }
+ }
+
+ if (end - src >= 8) {
+ // do eight characters at a time
+ __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src));
+ __m128i packed = _mm_packus_epi16(data, data);
+ __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128());
+
+ // store even non-ASCII
+ _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), packed);
+
+ uchar n = ~_mm_movemask_epi8(nonAscii);
+ if (n) {
+ nextAscii = src + qBitScanReverse(n) + 1;
+ n = qCountTrailingZeroBits(n);
+ dst += n;
+ src += n;
+ return false;
+ }
+ }
+
+ return src == end;
+}
+
+static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end)
+{
+ // do sixteen characters at a time
+ for ( ; end - src >= 16; src += 16, dst += 16) {
+ __m128i data = _mm_loadu_si128((const __m128i*)src);
+
+#ifdef __AVX2__
+ const int BitSpacing = 2;
+ // load and zero extend to an YMM register
+ const __m256i extended = _mm256_cvtepu8_epi16(data);
+
+ uint n = _mm256_movemask_epi8(extended);
+ if (!n) {
+ // store
+ _mm256_storeu_si256((__m256i*)dst, extended);
+ continue;
+ }
+#else
+ const int BitSpacing = 1;
+
+ // check if everything is ASCII
+ // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII
+ uint n = _mm_movemask_epi8(data);
+ if (!n) {
+ // unpack
+ _mm_storeu_si128((__m128i*)dst, _mm_unpacklo_epi8(data, _mm_setzero_si128()));
+ _mm_storeu_si128(1+(__m128i*)dst, _mm_unpackhi_epi8(data, _mm_setzero_si128()));
+ continue;
+ }
+#endif
+
+ // copy the front part that is still ASCII
+ while (!(n & 1)) {
+ *dst++ = *src++;
+ n >>= BitSpacing;
+ }
+
+ // find the next probable ASCII character
+ // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ n = qBitScanReverse(n);
+ nextAscii = src + (n / BitSpacing) + 1;
+ return false;
+
+ }
+
+ if (end - src >= 8) {
+ __m128i data = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src));
+ uint n = _mm_movemask_epi8(data) & 0xff;
+ if (!n) {
+ // unpack and store
+ _mm_storeu_si128(reinterpret_cast<__m128i *>(dst), _mm_unpacklo_epi8(data, _mm_setzero_si128()));
+ } else {
+ while (!(n & 1)) {
+ *dst++ = *src++;
+ n >>= 1;
+ }
+
+ n = qBitScanReverse(n);
+ nextAscii = src + n + 1;
+ return false;
+ }
+ }
+
+ return src == end;
+}
+
+static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
+{
+#ifdef __AVX2__
+ // do 32 characters at a time
+ // (this is similar to simdTestMask in qstring.cpp)
+ const __m256i mask = _mm256_set1_epi8(0x80);
+ for ( ; end - src >= 32; src += 32) {
+ __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src));
+ if (_mm256_testz_si256(mask, data))
+ continue;
+
+ uint n = _mm256_movemask_epi8(data);
+ Q_ASSUME(n);
+
+ // find the next probable ASCII character
+ // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ nextAscii = src + qBitScanReverse(n) + 1;
+
+ // return the non-ASCII character
+ return src + qCountTrailingZeroBits(n);
+ }
+#endif
+
+ // do sixteen characters at a time
+ for ( ; end - src >= 16; src += 16) {
+ __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));
+
+ // check if everything is ASCII
+ // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII
+ uint n = _mm_movemask_epi8(data);
+ if (!n)
+ continue;
+
+ // find the next probable ASCII character
+ // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ nextAscii = src + qBitScanReverse(n) + 1;
+
+ // return the non-ASCII character
+ return src + qCountTrailingZeroBits(n);
+ }
+
+ // do four characters at a time
+ for ( ; end - src >= 4; src += 4) {
+ quint32 data = qFromUnaligned<quint32>(src);
+ data &= 0x80808080U;
+ if (!data)
+ continue;
+
+ // We don't try to guess which of the three bytes is ASCII and which
+ // one isn't. The chance that at least two of them are non-ASCII is
+ // better than 75%.
+ nextAscii = src;
+ return src;
+ }
+ nextAscii = end;
+ return src;
+}
+#elif defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64) // vaddv is only available on Aarch64
+static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end)
+{
+ uint16x8_t maxAscii = vdupq_n_u16(0x7f);
+ uint16x8_t mask1 = { 1, 1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 };
+ uint16x8_t mask2 = vshlq_n_u16(mask1, 1);
+
+ // do sixteen characters at a time
+ for ( ; end - src >= 16; src += 16, dst += 16) {
+ // load 2 lanes (or: "load interleaved")
+ uint16x8x2_t in = vld2q_u16(src);
+
+ // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc),
+ // add those together into a scalar, and merge the scalars.
+ uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1))
+ | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2));
+
+ // merge the two lanes by shifting the values of the second by 8 and inserting them
+ uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8);
+
+ // store, even if there are non-ASCII characters here
+ vst1q_u8(dst, vreinterpretq_u8_u16(out));
+
+ if (nonAscii) {
+ // find the next probable ASCII character
+ // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ nextAscii = src + qBitScanReverse(nonAscii) + 1;
+
+ nonAscii = qCountTrailingZeroBits(nonAscii);
+ dst += nonAscii;
+ src += nonAscii;
+ return false;
+ }
+ }
+ return src == end;
+}
+
+static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end)
+{
+ // do eight characters at a time
+ uint8x8_t msb_mask = vdup_n_u8(0x80);
+ uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
+ for ( ; end - src >= 8; src += 8, dst += 8) {
+ uint8x8_t c = vld1_u8(src);
+ uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask));
+ if (!n) {
+ // store
+ vst1q_u16(dst, vmovl_u8(c));
+ continue;
+ }
+
+ // copy the front part that is still ASCII
+ while (!(n & 1)) {
+ *dst++ = *src++;
+ n >>= 1;
+ }
+
+ // find the next probable ASCII character
+ // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ n = qBitScanReverse(n);
+ nextAscii = src + n + 1;
+ return false;
+
+ }
+ return src == end;
+}
+
+static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
+{
+ // The SIMD code below is untested, so just force an early return until
+ // we've had the time to verify it works.
+ nextAscii = end;
+ return src;
+
+ // do eight characters at a time
+ uint8x8_t msb_mask = vdup_n_u8(0x80);
+ uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
+ for ( ; end - src >= 8; src += 8) {
+ uint8x8_t c = vld1_u8(src);
+ uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask));
+ if (!n)
+ continue;
+
+ // find the next probable ASCII character
+ // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
+ // characters still coming
+ nextAscii = src + qBitScanReverse(n) + 1;
+
+ // return the non-ASCII character
+ return src + qCountTrailingZeroBits(n);
+ }
+ nextAscii = end;
+ return src;
+}
+#else
+static inline bool simdEncodeAscii(uchar *, const ushort *, const ushort *, const ushort *)
+{
+ return false;
+}
+
+static inline bool simdDecodeAscii(ushort *, const uchar *, const uchar *, const uchar *)
+{
+ return false;
+}
+
+static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
+{
+ nextAscii = end;
+ return src;
+}
+#endif
+
+QByteArray QUtf8::convertFromUnicode(const QChar *uc, qsizetype len)
+{
+ // create a QByteArray with the worst case scenario size
+ QByteArray result(len * 3, Qt::Uninitialized);
+ uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData()));
+ const ushort *src = reinterpret_cast<const ushort *>(uc);
+ const ushort *const end = src + len;
+
+ while (src != end) {
+ const ushort *nextAscii = end;
+ if (simdEncodeAscii(dst, nextAscii, src, end))
+ break;
+
+ do {
+ ushort uc = *src++;
+ int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, dst, src, end);
+ if (res < 0) {
+ // encoding error - append '?'
+ *dst++ = '?';
+ }
+ } while (src < nextAscii);
+ }
+
+ result.truncate(dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData())));
+ return result;
+}
+
+QByteArray QUtf8::convertFromUnicode(const QChar *uc, qsizetype len, QStringConverter::State *state)
+{
+ uchar replacement = '?';
+ qsizetype rlen = 3*len;
+ int surrogate_high = -1;
+ if (state) {
+ if (state->flags & QStringConverter::ConvertInvalidToNull)
+ replacement = 0;
+ if (!(state->flags & QStringConverter::IgnoreHeader))
+ rlen += 3;
+ if (state->remainingChars)
+ surrogate_high = state->state_data[0];
+ }
+
+
+ QByteArray rstr(rlen, Qt::Uninitialized);
+ uchar *cursor = reinterpret_cast<uchar *>(const_cast<char *>(rstr.constData()));
+ const ushort *src = reinterpret_cast<const ushort *>(uc);
+ const ushort *const end = src + len;
+
+ int invalid = 0;
+ if (state && !(state->flags & QStringConverter::IgnoreHeader)) {
+ // append UTF-8 BOM
+ *cursor++ = utf8bom[0];
+ *cursor++ = utf8bom[1];
+ *cursor++ = utf8bom[2];
+ }
+
+ const ushort *nextAscii = src;
+ while (src != end) {
+ int res;
+ ushort uc;
+ if (surrogate_high != -1) {
+ uc = surrogate_high;
+ surrogate_high = -1;
+ res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, cursor, src, end);
+ } else {
+ if (src >= nextAscii && simdEncodeAscii(cursor, nextAscii, src, end))
+ break;
+
+ uc = *src++;
+ res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, cursor, src, end);
+ }
+ if (Q_LIKELY(res >= 0))
+ continue;
+
+ if (res == QUtf8BaseTraits::Error) {
+ // encoding error
+ ++invalid;
+ *cursor++ = replacement;
+ } else if (res == QUtf8BaseTraits::EndOfString) {
+ surrogate_high = uc;
+ break;
+ }
+ }
+
+ rstr.resize(cursor - (const uchar*)rstr.constData());
+ if (state) {
+ state->invalidChars += invalid;
+ state->flags |= QStringConverter::IgnoreHeader;
+ state->remainingChars = 0;
+ if (surrogate_high >= 0) {
+ state->remainingChars = 1;
+ state->state_data[0] = surrogate_high;
+ }
+ }
+ return rstr;
+}
+
+QString QUtf8::convertToUnicode(const char *chars, qsizetype len)
+{
+ // UTF-8 to UTF-16 always needs the exact same number of words or less:
+ // UTF-8 UTF-16
+ // 1 byte 1 word
+ // 2 bytes 1 word
+ // 3 bytes 1 word
+ // 4 bytes 2 words (one surrogate pair)
+ // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8),
+ // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or
+ // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK).
+ //
+ // The table holds for invalid sequences too: we'll insert one replacement char
+ // per invalid byte.
+ QString result(len, Qt::Uninitialized);
+ QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared
+ const QChar *end = convertToUnicode(data, chars, len);
+ result.truncate(end - data);
+ return result;
+}
+
+/*!
+ \since 5.7
+ \overload
+
+ Converts the UTF-8 sequence of \a len octets beginning at \a chars to
+ a sequence of QChar starting at \a buffer. The buffer is expected to be
+ large enough to hold the result. An upper bound for the size of the
+ buffer is \a len QChars.
+
+ If, during decoding, an error occurs, a QChar::ReplacementCharacter is
+ written.
+
+ Returns a pointer to one past the last QChar written.
+
+ This function never throws.
+*/
+
+QChar *QUtf8::convertToUnicode(QChar *buffer, const char *chars, qsizetype len) noexcept
+{
+ ushort *dst = reinterpret_cast<ushort *>(buffer);
+ const uchar *src = reinterpret_cast<const uchar *>(chars);
+ const uchar *end = src + len;
+
+ // attempt to do a full decoding in SIMD
+ const uchar *nextAscii = end;
+ if (!simdDecodeAscii(dst, nextAscii, src, end)) {
+ // at least one non-ASCII entry
+ // check if we failed to decode the UTF-8 BOM; if so, skip it
+ if (Q_UNLIKELY(src == reinterpret_cast<const uchar *>(chars))
+ && end - src >= 3
+ && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) {
+ src += 3;
+ }
+
+ while (src < end) {
+ nextAscii = end;
+ if (simdDecodeAscii(dst, nextAscii, src, end))
+ break;
+
+ do {
+ uchar b = *src++;
+ int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end);
+ if (res < 0) {
+ // decoding error
+ *dst++ = QChar::ReplacementCharacter;
+ }
+ } while (src < nextAscii);
+ }
+ }
+
+ return reinterpret_cast<QChar *>(dst);
+}
+
+QString QUtf8::convertToUnicode(const char *chars, qsizetype len, QStringConverter::State *state)
+{
+ bool headerdone = false;
+ ushort replacement = QChar::ReplacementCharacter;
+ int invalid = 0;
+ int res;
+ uchar ch = 0;
+
+ // See above for buffer requirements for stateless decoding. However, that
+ // fails if the state is not empty. The following situations can add to the
+ // requirements:
+ // state contains chars starts with requirement
+ // 1 of 2 bytes valid continuation 0
+ // 2 of 3 bytes same 0
+ // 3 bytes of 4 same +1 (need to insert surrogate pair)
+ // 1 of 2 bytes invalid continuation +1 (need to insert replacement and restart)
+ // 2 of 3 bytes same +1 (same)
+ // 3 of 4 bytes same +1 (same)
+ QString result(len + 1, Qt::Uninitialized);
+
+ ushort *dst = reinterpret_cast<ushort *>(const_cast<QChar *>(result.constData()));
+ const uchar *src = reinterpret_cast<const uchar *>(chars);
+ const uchar *end = src + len;
+
+ if (state) {
+ if (state->flags & QStringConverter::IgnoreHeader)
+ headerdone = true;
+ if (state->flags & QStringConverter::ConvertInvalidToNull)
+ replacement = QChar::Null;
+ if (state->remainingChars) {
+ // handle incoming state first
+ uchar remainingCharsData[4]; // longest UTF-8 sequence possible
+ qsizetype remainingCharsCount = state->remainingChars;
+ qsizetype newCharsToCopy = qMin<int>(sizeof(remainingCharsData) - remainingCharsCount, end - src);
+
+ memset(remainingCharsData, 0, sizeof(remainingCharsData));
+ memcpy(remainingCharsData, &state->state_data[0], remainingCharsCount);
+ memcpy(remainingCharsData + remainingCharsCount, src, newCharsToCopy);
+
+ const uchar *begin = &remainingCharsData[1];
+ res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(remainingCharsData[0], dst, begin,
+ static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy);
+ if (res == QUtf8BaseTraits::Error || (res == QUtf8BaseTraits::EndOfString && len == 0)) {
+ // special case for len == 0:
+ // if we were supplied an empty string, terminate the previous, unfinished sequence with error
+ ++invalid;
+ *dst++ = replacement;
+ } else if (res == QUtf8BaseTraits::EndOfString) {
+ // if we got EndOfString again, then there were too few bytes in src;
+ // copy to our state and return
+ state->remainingChars = remainingCharsCount + newCharsToCopy;
+ memcpy(&state->state_data[0], remainingCharsData, state->remainingChars);
+ return QString();
+ } else if (!headerdone && res >= 0) {
+ // eat the UTF-8 BOM
+ headerdone = true;
+ if (dst[-1] == 0xfeff)
+ --dst;
+ }
+
+ // adjust src now that we have maybe consumed a few chars
+ if (res >= 0) {
+ Q_ASSERT(res > remainingCharsCount);
+ src += res - remainingCharsCount;
+ }
+ }
+ }
+
+ // main body, stateless decoding
+ res = 0;
+ const uchar *nextAscii = src;
+ const uchar *start = src;
+ while (res >= 0 && src < end) {
+ if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end))
+ break;
+
+ ch = *src++;
+ res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(ch, dst, src, end);
+ if (!headerdone && res >= 0) {
+ headerdone = true;
+ if (src == start + 3) { // 3 == sizeof(utf8-bom)
+ // eat the UTF-8 BOM (it can only appear at the beginning of the string).
+ if (dst[-1] == 0xfeff)
+ --dst;
+ }
+ }
+ if (res == QUtf8BaseTraits::Error) {
+ res = 0;
+ ++invalid;
+ *dst++ = replacement;
+ }
+ }
+
+ if (!state && res == QUtf8BaseTraits::EndOfString) {
+ // unterminated UTF sequence
+ *dst++ = QChar::ReplacementCharacter;
+ while (src++ < end)
+ *dst++ = QChar::ReplacementCharacter;
+ }
+
+ result.truncate(dst - (const ushort *)result.unicode());
+ if (state) {
+ state->invalidChars += invalid;
+ if (headerdone)
+ state->flags |= QStringConverter::IgnoreHeader;
+ if (res == QUtf8BaseTraits::EndOfString) {
+ --src; // unread the byte in ch
+ state->remainingChars = end - src;
+ memcpy(&state->state_data[0], src, end - src);
+ } else {
+ state->remainingChars = 0;
+ }
+ }
+ return result;
+}
+
+struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii
+{
+ struct NoOutput {};
+ static void appendUtf16(const NoOutput &, ushort) {}
+ static void appendUcs4(const NoOutput &, uint) {}
+};
+
+QUtf8::ValidUtf8Result QUtf8::isValidUtf8(const char *chars, qsizetype len)
+{
+ const uchar *src = reinterpret_cast<const uchar *>(chars);
+ const uchar *end = src + len;
+ const uchar *nextAscii = src;
+ bool isValidAscii = true;
+
+ while (src < end) {
+ if (src >= nextAscii)
+ src = simdFindNonAscii(src, end, nextAscii);
+ if (src == end)
+ break;
+
+ do {
+ uchar b = *src++;
+ if ((b & 0x80) == 0)
+ continue;
+
+ isValidAscii = false;
+ QUtf8NoOutputTraits::NoOutput output;
+ int res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, output, src, end);
+ if (res < 0) {
+ // decoding error
+ return { false, false };
+ }
+ } while (src < nextAscii);
+ }
+
+ return { true, isValidAscii };
+}
+
+int QUtf8::compareUtf8(const char *utf8, qsizetype u8len, const QChar *utf16, qsizetype u16len)
+{
+ uint uc1, uc2;
+ auto src1 = reinterpret_cast<const uchar *>(utf8);
+ auto end1 = src1 + u8len;
+ QStringIterator src2(utf16, utf16 + u16len);
+
+ while (src1 < end1 && src2.hasNext()) {
+ uchar b = *src1++;
+ uint *output = &uc1;
+ int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1);
+ if (res < 0) {
+ // decoding error
+ uc1 = QChar::ReplacementCharacter;
+ }
+
+ uc2 = src2.next();
+ if (uc1 != uc2)
+ return int(uc1) - int(uc2);
+ }
+
+ // the shorter string sorts first
+ return (end1 > src1) - int(src2.hasNext());
+}
+
+int QUtf8::compareUtf8(const char *utf8, qsizetype u8len, QLatin1String s)
+{
+ uint uc1;
+ auto src1 = reinterpret_cast<const uchar *>(utf8);
+ auto end1 = src1 + u8len;
+ auto src2 = reinterpret_cast<const uchar *>(s.latin1());
+ auto end2 = src2 + s.size();
+
+ while (src1 < end1 && src2 < end2) {
+ uchar b = *src1++;
+ uint *output = &uc1;
+ int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1);
+ if (res < 0) {
+ // decoding error
+ uc1 = QChar::ReplacementCharacter;
+ }
+
+ uint uc2 = *src2++;
+ if (uc1 != uc2)
+ return int(uc1) - int(uc2);
+ }
+
+ // the shorter string sorts first
+ return (end1 > src1) - (end2 > src2);
+}
+
+QByteArray QUtf16::convertFromUnicode(const QChar *uc, qsizetype len, QStringConverter::State *state, DataEndianness e)
+{
+ DataEndianness endian = e;
+ qsizetype length = 2*len;
+ if (!state || (!(state->flags & QStringConverter::IgnoreHeader))) {
+ length += 2;
+ }
+ if (e == DetectEndianness) {
+ endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
+ }
+
+ QByteArray d;
+ d.resize(length);
+ char *data = d.data();
+ if (!state || !(state->flags & QStringConverter::IgnoreHeader)) {
+ QChar bom(QChar::ByteOrderMark);
+ if (endian == BigEndianness)
+ qToBigEndian(bom.unicode(), data);
+ else
+ qToLittleEndian(bom.unicode(), data);
+ data += 2;
+ }
+ if (endian == BigEndianness)
+ qToBigEndian<ushort>(uc, len, data);
+ else
+ qToLittleEndian<ushort>(uc, len, data);
+
+ if (state) {
+ state->remainingChars = 0;
+ state->flags |= QStringConverter::IgnoreHeader;
+ }
+ return d;
+}
+
+QString QUtf16::convertToUnicode(const char *chars, qsizetype len, QStringConverter::State *state, DataEndianness e)
+{
+ DataEndianness endian = e;
+ bool half = false;
+ uchar buf = 0;
+ bool headerdone = false;
+ if (state) {
+ headerdone = state->flags & QStringConverter::IgnoreHeader;
+ if (endian == DetectEndianness)
+ endian = (DataEndianness)state->state_data[Endian];
+ if (state->remainingChars) {
+ half = true;
+ buf = state->state_data[Data];
+ }
+ }
+ if (headerdone && endian == DetectEndianness)
+ endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
+
+ QString result(len, Qt::Uninitialized); // worst case
+ QChar *qch = (QChar *)result.data();
+ while (len--) {
+ if (half) {
+ QChar ch;
+ if (endian == LittleEndianness) {
+ ch.setRow(*chars++);
+ ch.setCell(buf);
+ } else {
+ ch.setRow(buf);
+ ch.setCell(*chars++);
+ }
+ if (!headerdone) {
+ headerdone = true;
+ if (endian == DetectEndianness) {
+ if (ch == QChar::ByteOrderSwapped) {
+ endian = LittleEndianness;
+ } else if (ch == QChar::ByteOrderMark) {
+ endian = BigEndianness;
+ } else {
+ if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
+ endian = BigEndianness;
+ } else {
+ endian = LittleEndianness;
+ ch = QChar::fromUcs2((ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8));
+ }
+ *qch++ = ch;
+ }
+ } else if (ch != QChar::ByteOrderMark) {
+ *qch++ = ch;
+ }
+ } else {
+ *qch++ = ch;
+ }
+ half = false;
+ } else {
+ buf = *chars++;
+ half = true;
+ }
+ }
+ result.truncate(qch - result.unicode());
+
+ if (state) {
+ if (headerdone)
+ state->flags |= QStringConverter::IgnoreHeader;
+ state->state_data[Endian] = endian;
+ if (half) {
+ state->remainingChars = 1;
+ state->state_data[Data] = buf;
+ } else {
+ state->remainingChars = 0;
+ state->state_data[Data] = 0;
+ }
+ }
+ return result;
+}
+
+QByteArray QUtf32::convertFromUnicode(const QChar *uc, qsizetype len, QStringConverter::State *state, DataEndianness e)
+{
+ DataEndianness endian = e;
+ qsizetype length = 4*len;
+ if (!state || (!(state->flags & QStringConverter::IgnoreHeader))) {
+ length += 4;
+ }
+ if (e == DetectEndianness) {
+ endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
+ }
+
+ QByteArray d(length, Qt::Uninitialized);
+ char *data = d.data();
+ if (!state || !(state->flags & QStringConverter::IgnoreHeader)) {
+ if (endian == BigEndianness) {
+ data[0] = 0;
+ data[1] = 0;
+ data[2] = (char)0xfe;
+ data[3] = (char)0xff;
+ } else {
+ data[0] = (char)0xff;
+ data[1] = (char)0xfe;
+ data[2] = 0;
+ data[3] = 0;
+ }
+ data += 4;
+ }
+
+ QStringIterator i(uc, uc + len);
+ if (endian == BigEndianness) {
+ while (i.hasNext()) {
+ uint cp = i.next();
+ qToBigEndian(cp, data);
+ data += 4;
+ }
+ } else {
+ while (i.hasNext()) {
+ uint cp = i.next();
+ qToLittleEndian(cp, data);
+ data += 4;
+ }
+ }
+
+ if (state) {
+ state->remainingChars = 0;
+ state->flags |= QStringConverter::IgnoreHeader;
+ }
+ return d;
+}
+
+QString QUtf32::convertToUnicode(const char *chars, qsizetype len, QStringConverter::State *state, DataEndianness e)
+{
+ DataEndianness endian = e;
+ uchar tuple[4];
+ int num = 0;
+ bool headerdone = false;
+ if (state) {
+ headerdone = state->flags & QStringConverter::IgnoreHeader;
+ if (endian == DetectEndianness) {
+ endian = (DataEndianness)state->state_data[Endian];
+ }
+ num = state->remainingChars;
+ memcpy(tuple, &state->state_data[Data], 4);
+ }
+ if (headerdone && endian == DetectEndianness)
+ endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
+
+ QString result;
+ result.resize((num + len) >> 2 << 1); // worst case
+ QChar *qch = (QChar *)result.data();
+
+ const char *end = chars + len;
+ while (chars < end) {
+ tuple[num++] = *chars++;
+ if (num == 4) {
+ if (!headerdone) {
+ headerdone = true;
+ if (endian == DetectEndianness) {
+ if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0 && endian != BigEndianness) {
+ endian = LittleEndianness;
+ num = 0;
+ continue;
+ } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff && endian != LittleEndianness) {
+ endian = BigEndianness;
+ num = 0;
+ continue;
+ } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
+ endian = BigEndianness;
+ } else {
+ endian = LittleEndianness;
+ }
+ } else if (((endian == BigEndianness) ? qFromBigEndian<quint32>(tuple) : qFromLittleEndian<quint32>(tuple)) == QChar::ByteOrderMark) {
+ num = 0;
+ continue;
+ }
+ }
+ uint code = (endian == BigEndianness) ? qFromBigEndian<quint32>(tuple) : qFromLittleEndian<quint32>(tuple);
+ for (char16_t c : QChar::fromUcs4(code))
+ *qch++ = c;
+ num = 0;
+ }
+ }
+ result.truncate(qch - result.unicode());
+
+ if (state) {
+ if (headerdone)
+ state->flags |= QStringConverter::IgnoreHeader;
+ state->state_data[Endian] = endian;
+ state->remainingChars = num;
+ memcpy(&state->state_data[Data], tuple, 4);
+ }
+ return result;
+}
+
+QString qFromUtfEncoded(const QByteArray &ba)
+{
+ const qsizetype arraySize = ba.size();
+ const uchar *buf = reinterpret_cast<const uchar *>(ba.constData());
+ const uint bom = 0xfeff;
+
+ if (arraySize > 3) {
+ uint uc = qFromUnaligned<uint>(buf);
+ if (uc == qToBigEndian(bom) || uc == qToLittleEndian(bom))
+ return QUtf32::convertToUnicode(ba.constData(), ba.length(), nullptr); // utf-32
+ }
+
+ if (arraySize > 1) {
+ ushort uc = qFromUnaligned<ushort>(buf);
+ if (uc == qToBigEndian(ushort(bom)) || qToLittleEndian(ushort(bom)))
+ return QUtf16::convertToUnicode(ba.constData(), ba.length(), nullptr); // utf-16
+ }
+ return QUtf8::convertToUnicode(ba.constData(), ba.length());
+}
+
/*!
\enum QStringConverter::Flag
@@ -60,7 +1004,8 @@ void QStringConverter::State::clear()
{
if (clearFn)
clearFn(this);
- state_data[0] = state_data[1] = state_data[2] = state_data[3] = 0;
+ else
+ state_data[0] = state_data[1] = state_data[2] = state_data[3] = 0;
remainingChars = 0;
invalidChars = 0;
}