summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/common/mathutil.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/angle/src/common/mathutil.h')
-rw-r--r--src/3rdparty/angle/src/common/mathutil.h1145
1 files changed, 0 insertions, 1145 deletions
diff --git a/src/3rdparty/angle/src/common/mathutil.h b/src/3rdparty/angle/src/common/mathutil.h
deleted file mode 100644
index 88aedddfe8..0000000000
--- a/src/3rdparty/angle/src/common/mathutil.h
+++ /dev/null
@@ -1,1145 +0,0 @@
-//
-// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-//
-
-// mathutil.h: Math and bit manipulation functions.
-
-#ifndef COMMON_MATHUTIL_H_
-#define COMMON_MATHUTIL_H_
-
-#include <limits>
-#include <algorithm>
-#include <math.h>
-#include <string.h>
-#include <stdint.h>
-#include <stdlib.h>
-
-#include <anglebase/numerics/safe_math.h>
-
-#include "common/debug.h"
-#include "common/platform.h"
-
-namespace angle
-{
-using base::CheckedNumeric;
-using base::IsValueInRangeForNumericType;
-}
-
-namespace gl
-{
-
-const unsigned int Float32One = 0x3F800000;
-const unsigned short Float16One = 0x3C00;
-
-template<typename T>
-inline bool isPow2(T x)
-{
- static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
- return (x & (x - 1)) == 0 && (x != 0);
-}
-
-inline int log2(int x)
-{
- int r = 0;
- while ((x >> r) > 1) r++;
- return r;
-}
-
-inline unsigned int ceilPow2(unsigned int x)
-{
- if (x != 0) x--;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
- x++;
-
- return x;
-}
-
-template <typename DestT, typename SrcT>
-inline DestT clampCast(SrcT value)
-{
- // For floating-point types with denormalization, min returns the minimum positive normalized
- // value. To find the value that has no values less than it, use numeric_limits::lowest.
- constexpr const long double destLo =
- static_cast<long double>(std::numeric_limits<DestT>::lowest());
- constexpr const long double destHi =
- static_cast<long double>(std::numeric_limits<DestT>::max());
- constexpr const long double srcLo =
- static_cast<long double>(std::numeric_limits<SrcT>::lowest());
- constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
-
- if (destHi < srcHi)
- {
- DestT destMax = std::numeric_limits<DestT>::max();
- if (value >= static_cast<SrcT>(destMax))
- {
- return destMax;
- }
- }
-
- if (destLo > srcLo)
- {
- DestT destLow = std::numeric_limits<DestT>::lowest();
- if (value <= static_cast<SrcT>(destLow))
- {
- return destLow;
- }
- }
-
- return static_cast<DestT>(value);
-}
-
-// Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
-// value is casted to the source type.
-template <>
-inline unsigned int clampCast(bool value)
-{
- return static_cast<unsigned int>(value);
-}
-
-template <>
-inline int clampCast(bool value)
-{
- return static_cast<int>(value);
-}
-
-template<typename T, typename MIN, typename MAX>
-inline T clamp(T x, MIN min, MAX max)
-{
- // Since NaNs fail all comparison tests, a NaN value will default to min
- return x > min ? (x > max ? max : x) : min;
-}
-
-inline float clamp01(float x)
-{
- return clamp(x, 0.0f, 1.0f);
-}
-
-template<const int n>
-inline unsigned int unorm(float x)
-{
- const unsigned int max = 0xFFFFFFFF >> (32 - n);
-
- if (x > 1)
- {
- return max;
- }
- else if (x < 0)
- {
- return 0;
- }
- else
- {
- return (unsigned int)(max * x + 0.5f);
- }
-}
-
-inline bool supportsSSE2()
-{
-#if defined(ANGLE_USE_SSE)
- static bool checked = false;
- static bool supports = false;
-
- if (checked)
- {
- return supports;
- }
-
-#if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
- {
- int info[4];
- __cpuid(info, 0);
-
- if (info[0] >= 1)
- {
- __cpuid(info, 1);
-
- supports = (info[3] >> 26) & 1;
- }
- }
-#endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
- checked = true;
- return supports;
-#else // defined(ANGLE_USE_SSE)
- return false;
-#endif
-}
-
-template <typename destType, typename sourceType>
-destType bitCast(const sourceType &source)
-{
- size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
- destType output;
- memcpy(&output, &source, copySize);
- return output;
-}
-
-inline unsigned short float32ToFloat16(float fp32)
-{
- unsigned int fp32i = bitCast<unsigned int>(fp32);
- unsigned int sign = (fp32i & 0x80000000) >> 16;
- unsigned int abs = fp32i & 0x7FFFFFFF;
-
- if(abs > 0x47FFEFFF) // Infinity
- {
- return static_cast<unsigned short>(sign | 0x7FFF);
- }
- else if(abs < 0x38800000) // Denormal
- {
- unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
- int e = 113 - (abs >> 23);
-
- if(e < 24)
- {
- abs = mantissa >> e;
- }
- else
- {
- abs = 0;
- }
-
- return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
- }
- else
- {
- return static_cast<unsigned short>(sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
- }
-}
-
-float float16ToFloat32(unsigned short h);
-
-unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
-void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
-
-inline unsigned short float32ToFloat11(float fp32)
-{
- const unsigned int float32MantissaMask = 0x7FFFFF;
- const unsigned int float32ExponentMask = 0x7F800000;
- const unsigned int float32SignMask = 0x80000000;
- const unsigned int float32ValueMask = ~float32SignMask;
- const unsigned int float32ExponentFirstBit = 23;
- const unsigned int float32ExponentBias = 127;
-
- const unsigned short float11Max = 0x7BF;
- const unsigned short float11MantissaMask = 0x3F;
- const unsigned short float11ExponentMask = 0x7C0;
- const unsigned short float11BitMask = 0x7FF;
- const unsigned int float11ExponentBias = 14;
-
- const unsigned int float32Maxfloat11 = 0x477E0000;
- const unsigned int float32Minfloat11 = 0x38800000;
-
- const unsigned int float32Bits = bitCast<unsigned int>(fp32);
- const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
-
- unsigned int float32Val = float32Bits & float32ValueMask;
-
- if ((float32Val & float32ExponentMask) == float32ExponentMask)
- {
- // INF or NAN
- if ((float32Val & float32MantissaMask) != 0)
- {
- return float11ExponentMask | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & float11MantissaMask);
- }
- else if (float32Sign)
- {
- // -INF is clamped to 0 since float11 is positive only
- return 0;
- }
- else
- {
- return float11ExponentMask;
- }
- }
- else if (float32Sign)
- {
- // float11 is positive only, so clamp to zero
- return 0;
- }
- else if (float32Val > float32Maxfloat11)
- {
- // The number is too large to be represented as a float11, set to max
- return float11Max;
- }
- else
- {
- if (float32Val < float32Minfloat11)
- {
- // The number is too small to be represented as a normalized float11
- // Convert it to a denormalized value.
- const unsigned int shift = (float32ExponentBias - float11ExponentBias) - (float32Val >> float32ExponentFirstBit);
- float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
- }
- else
- {
- // Rebias the exponent to represent the value as a normalized float11
- float32Val += 0xC8000000;
- }
-
- return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
- }
-}
-
-inline unsigned short float32ToFloat10(float fp32)
-{
- const unsigned int float32MantissaMask = 0x7FFFFF;
- const unsigned int float32ExponentMask = 0x7F800000;
- const unsigned int float32SignMask = 0x80000000;
- const unsigned int float32ValueMask = ~float32SignMask;
- const unsigned int float32ExponentFirstBit = 23;
- const unsigned int float32ExponentBias = 127;
-
- const unsigned short float10Max = 0x3DF;
- const unsigned short float10MantissaMask = 0x1F;
- const unsigned short float10ExponentMask = 0x3E0;
- const unsigned short float10BitMask = 0x3FF;
- const unsigned int float10ExponentBias = 14;
-
- const unsigned int float32Maxfloat10 = 0x477C0000;
- const unsigned int float32Minfloat10 = 0x38800000;
-
- const unsigned int float32Bits = bitCast<unsigned int>(fp32);
- const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
-
- unsigned int float32Val = float32Bits & float32ValueMask;
-
- if ((float32Val & float32ExponentMask) == float32ExponentMask)
- {
- // INF or NAN
- if ((float32Val & float32MantissaMask) != 0)
- {
- return float10ExponentMask | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & float10MantissaMask);
- }
- else if (float32Sign)
- {
- // -INF is clamped to 0 since float11 is positive only
- return 0;
- }
- else
- {
- return float10ExponentMask;
- }
- }
- else if (float32Sign)
- {
- // float10 is positive only, so clamp to zero
- return 0;
- }
- else if (float32Val > float32Maxfloat10)
- {
- // The number is too large to be represented as a float11, set to max
- return float10Max;
- }
- else
- {
- if (float32Val < float32Minfloat10)
- {
- // The number is too small to be represented as a normalized float11
- // Convert it to a denormalized value.
- const unsigned int shift = (float32ExponentBias - float10ExponentBias) - (float32Val >> float32ExponentFirstBit);
- float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
- }
- else
- {
- // Rebias the exponent to represent the value as a normalized float11
- float32Val += 0xC8000000;
- }
-
- return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
- }
-}
-
-inline float float11ToFloat32(unsigned short fp11)
-{
- unsigned short exponent = (fp11 >> 6) & 0x1F;
- unsigned short mantissa = fp11 & 0x3F;
-
- if (exponent == 0x1F)
- {
- // INF or NAN
- return bitCast<float>(0x7f800000 | (mantissa << 17));
- }
- else
- {
- if (exponent != 0)
- {
- // normalized
- }
- else if (mantissa != 0)
- {
- // The value is denormalized
- exponent = 1;
-
- do
- {
- exponent--;
- mantissa <<= 1;
- }
- while ((mantissa & 0x40) == 0);
-
- mantissa = mantissa & 0x3F;
- }
- else // The value is zero
- {
- exponent = static_cast<unsigned short>(-112);
- }
-
- return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
- }
-}
-
-inline float float10ToFloat32(unsigned short fp11)
-{
- unsigned short exponent = (fp11 >> 5) & 0x1F;
- unsigned short mantissa = fp11 & 0x1F;
-
- if (exponent == 0x1F)
- {
- // INF or NAN
- return bitCast<float>(0x7f800000 | (mantissa << 17));
- }
- else
- {
- if (exponent != 0)
- {
- // normalized
- }
- else if (mantissa != 0)
- {
- // The value is denormalized
- exponent = 1;
-
- do
- {
- exponent--;
- mantissa <<= 1;
- }
- while ((mantissa & 0x20) == 0);
-
- mantissa = mantissa & 0x1F;
- }
- else // The value is zero
- {
- exponent = static_cast<unsigned short>(-112);
- }
-
- return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
- }
-}
-
-template <typename T>
-inline float normalizedToFloat(T input)
-{
- static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
-
- const float inverseMax = 1.0f / std::numeric_limits<T>::max();
- return input * inverseMax;
-}
-
-template <unsigned int inputBitCount, typename T>
-inline float normalizedToFloat(T input)
-{
- static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
- static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
-
- const float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
- return input * inverseMax;
-}
-
-template <typename T>
-inline T floatToNormalized(float input)
-{
- return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
-}
-
-template <unsigned int outputBitCount, typename T>
-inline T floatToNormalized(float input)
-{
- static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
- return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
-}
-
-template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
-inline T getShiftedData(T input)
-{
- static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
- "T must have at least as many bits as inputBitCount + inputBitStart.");
- const T mask = (1 << inputBitCount) - 1;
- return (input >> inputBitStart) & mask;
-}
-
-template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
-inline T shiftData(T input)
-{
- static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
- "T must have at least as many bits as inputBitCount + inputBitStart.");
- const T mask = (1 << inputBitCount) - 1;
- return (input & mask) << inputBitStart;
-}
-
-inline unsigned int CountLeadingZeros(uint32_t x)
-{
- // Use binary search to find the amount of leading zeros.
- unsigned int zeros = 32u;
- uint32_t y;
-
- y = x >> 16u;
- if (y != 0)
- {
- zeros = zeros - 16u;
- x = y;
- }
- y = x >> 8u;
- if (y != 0)
- {
- zeros = zeros - 8u;
- x = y;
- }
- y = x >> 4u;
- if (y != 0)
- {
- zeros = zeros - 4u;
- x = y;
- }
- y = x >> 2u;
- if (y != 0)
- {
- zeros = zeros - 2u;
- x = y;
- }
- y = x >> 1u;
- if (y != 0)
- {
- return zeros - 2u;
- }
- return zeros - x;
-}
-
-inline unsigned char average(unsigned char a, unsigned char b)
-{
- return ((a ^ b) >> 1) + (a & b);
-}
-
-inline signed char average(signed char a, signed char b)
-{
- return ((short)a + (short)b) / 2;
-}
-
-inline unsigned short average(unsigned short a, unsigned short b)
-{
- return ((a ^ b) >> 1) + (a & b);
-}
-
-inline signed short average(signed short a, signed short b)
-{
- return ((int)a + (int)b) / 2;
-}
-
-inline unsigned int average(unsigned int a, unsigned int b)
-{
- return ((a ^ b) >> 1) + (a & b);
-}
-
-inline int average(int a, int b)
-{
- long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
- return static_cast<int>(average);
-}
-
-inline float average(float a, float b)
-{
- return (a + b) * 0.5f;
-}
-
-inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
-{
- return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
-}
-
-inline unsigned int averageFloat11(unsigned int a, unsigned int b)
-{
- return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) + float11ToFloat32(static_cast<unsigned short>(b))) * 0.5f);
-}
-
-inline unsigned int averageFloat10(unsigned int a, unsigned int b)
-{
- return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) + float10ToFloat32(static_cast<unsigned short>(b))) * 0.5f);
-}
-
-template <typename T>
-class Range
-{
- public:
- Range() {}
- Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
-
- T length() const { return (empty() ? 0 : (mHigh - mLow)); }
-
- bool intersects(Range<T> other)
- {
- if (mLow <= other.mLow)
- {
- return other.mLow < mHigh;
- }
- else
- {
- return mLow < other.mHigh;
- }
- }
-
- // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
- void extend(T value)
- {
- mLow = value < mLow ? value : mLow;
- mHigh = value >= mHigh ? (value + 1) : mHigh;
- }
-
- bool empty() const { return mHigh <= mLow; }
-
- bool contains(T value) const { return value >= mLow && value < mHigh; }
-
- class Iterator final
- {
- public:
- Iterator(T value) : mCurrent(value) {}
-
- Iterator &operator++()
- {
- mCurrent++;
- return *this;
- }
- bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
- bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
- T operator*() const { return mCurrent; }
-
- private:
- T mCurrent;
- };
-
- Iterator begin() const { return Iterator(mLow); }
-
- Iterator end() const { return Iterator(mHigh); }
-
- T low() const { return mLow; }
- T high() const { return mHigh; }
-
- private:
- T mLow;
- T mHigh;
-};
-
-typedef Range<int> RangeI;
-typedef Range<unsigned int> RangeUI;
-
-struct IndexRange
-{
- IndexRange() : IndexRange(0, 0, 0) {}
- IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
- : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
- {
- ASSERT(start <= end);
- }
-
- // Number of vertices in the range.
- size_t vertexCount() const { return (end - start) + 1; }
-
- // Inclusive range of indices that are not primitive restart
- size_t start;
- size_t end;
-
- // Number of non-primitive restart indices
- size_t vertexIndexCount;
-};
-
-// Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
-// floating-point value. As in GLSL ldexp() built-in.
-inline float Ldexp(float x, int exp)
-{
- if (exp > 128)
- {
- return std::numeric_limits<float>::infinity();
- }
- if (exp < -126)
- {
- return 0.0f;
- }
- double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
- return static_cast<float>(result);
-}
-
-// First, both normalized floating-point values are converted into 16-bit integer values.
-// Then, the results are packed into the returned 32-bit unsigned integer.
-// The first float value will be written to the least significant bits of the output;
-// the last float value will be written to the most significant bits.
-// The conversion of each value to fixed point is done as follows :
-// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
-inline uint32_t packSnorm2x16(float f1, float f2)
-{
- int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
- int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
- return static_cast<uint32_t>(mostSignificantBits) << 16 |
- (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
-}
-
-// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each
-// component is converted to a normalized floating-point value to generate the returned two float values.
-// The first float value will be extracted from the least significant bits of the input;
-// the last float value will be extracted from the most-significant bits.
-// The conversion for unpacked fixed-point value to floating point is done as follows:
-// unpackSnorm2x16 : clamp(f / 32767.0, -1, +1)
-inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
-{
- int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
- int16_t mostSignificantBits = static_cast<int16_t>(u >> 16);
- *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
- *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
-}
-
-// First, both normalized floating-point values are converted into 16-bit integer values.
-// Then, the results are packed into the returned 32-bit unsigned integer.
-// The first float value will be written to the least significant bits of the output;
-// the last float value will be written to the most significant bits.
-// The conversion of each value to fixed point is done as follows:
-// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
-inline uint32_t packUnorm2x16(float f1, float f2)
-{
- uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
- uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
- return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits);
-}
-
-// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, each
-// component is converted to a normalized floating-point value to generate the returned two float values.
-// The first float value will be extracted from the least significant bits of the input;
-// the last float value will be extracted from the most-significant bits.
-// The conversion for unpacked fixed-point value to floating point is done as follows:
-// unpackUnorm2x16 : f / 65535.0
-inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
-{
- uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
- uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
- *f1 = static_cast<float>(leastSignificantBits) / 65535.0f;
- *f2 = static_cast<float>(mostSignificantBits) / 65535.0f;
-}
-
-// Helper functions intended to be used only here.
-namespace priv
-{
-
-inline uint8_t ToPackedUnorm8(float f)
-{
- return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
-}
-
-inline int8_t ToPackedSnorm8(float f)
-{
- return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
-}
-
-} // namespace priv
-
-// Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
-// similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
-// unsigned integer starting from the least significant bits.
-inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
-{
- uint8_t bits[4];
- bits[0] = priv::ToPackedUnorm8(f1);
- bits[1] = priv::ToPackedUnorm8(f2);
- bits[2] = priv::ToPackedUnorm8(f3);
- bits[3] = priv::ToPackedUnorm8(f4);
- uint32_t result = 0u;
- for (int i = 0; i < 4; ++i)
- {
- int shift = i * 8;
- result |= (static_cast<uint32_t>(bits[i]) << shift);
- }
- return result;
-}
-
-// Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
-// Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
-// bits.
-inline void UnpackUnorm4x8(uint32_t u, float *f)
-{
- for (int i = 0; i < 4; ++i)
- {
- int shift = i * 8;
- uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
- f[i] = static_cast<float>(bits) / 255.0f;
- }
-}
-
-// Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
-// are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
-// significant bits.
-inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
-{
- int8_t bits[4];
- bits[0] = priv::ToPackedSnorm8(f1);
- bits[1] = priv::ToPackedSnorm8(f2);
- bits[2] = priv::ToPackedSnorm8(f3);
- bits[3] = priv::ToPackedSnorm8(f4);
- uint32_t result = 0u;
- for (int i = 0; i < 4; ++i)
- {
- int shift = i * 8;
- result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
- }
- return result;
-}
-
-// Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
-// Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
-// bits, and clamped to the range -1.0 to 1.0.
-inline void UnpackSnorm4x8(uint32_t u, float *f)
-{
- for (int i = 0; i < 4; ++i)
- {
- int shift = i * 8;
- int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
- f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
- }
-}
-
-// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
-// floating-point representation found in the OpenGL ES Specification, and then packing these
-// two 16-bit integers into a 32-bit unsigned integer.
-// f1: The 16 least-significant bits of the result;
-// f2: The 16 most-significant bits.
-inline uint32_t packHalf2x16(float f1, float f2)
-{
- uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
- uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2));
- return static_cast<uint32_t>(mostSignificantBits) << 16 | static_cast<uint32_t>(leastSignificantBits);
-}
-
-// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values,
-// interpreting those values as 16-bit floating-point numbers according to the OpenGL ES Specification,
-// and converting them to 32-bit floating-point values.
-// The first float value is obtained from the 16 least-significant bits of u;
-// the second component is obtained from the 16 most-significant bits of u.
-inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
-{
- uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
- uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
-
- *f1 = float16ToFloat32(leastSignificantBits);
- *f2 = float16ToFloat32(mostSignificantBits);
-}
-
-inline uint8_t sRGBToLinear(uint8_t srgbValue)
-{
- float value = srgbValue / 255.0f;
- if (value <= 0.04045f)
- {
- value = value / 12.92f;
- }
- else
- {
- value = std::pow((value + 0.055f) / 1.055f, 2.4f);
- }
- return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
-}
-
-inline uint8_t linearToSRGB(uint8_t linearValue)
-{
- float value = linearValue / 255.0f;
- if (value <= 0.0f)
- {
- value = 0.0f;
- }
- else if (value < 0.0031308f)
- {
- value = value * 12.92f;
- }
- else if (value < 1.0f)
- {
- value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
- }
- else
- {
- value = 1.0f;
- }
- return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
-}
-
-// Reverse the order of the bits.
-inline uint32_t BitfieldReverse(uint32_t value)
-{
- // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
- // for this, and right now it's not used in performance-critical paths.
- uint32_t result = 0u;
- for (size_t j = 0u; j < 32u; ++j)
- {
- result |= (((value >> j) & 1u) << (31u - j));
- }
- return result;
-}
-
-// Count the 1 bits.
-#if defined(ANGLE_PLATFORM_WINDOWS)
-#if defined(_M_ARM) || defined(_M_ARM64)
-inline int BitCount(uint32_t bits)
-{
- bits = bits - ((bits >> 1) & 0x55555555);
- bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
- return (((bits + (bits >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
-}
-#else // _M_ARM || _M_ARM64
-inline int BitCount(uint32_t bits)
-{
- return static_cast<int>(__popcnt(bits));
-}
-#if defined(ANGLE_IS_64_BIT_CPU)
-inline int BitCount(uint64_t bits)
-{
- return static_cast<int>(__popcnt64(bits));
-}
-#endif // !_M_ARM
-#endif // defined(ANGLE_IS_64_BIT_CPU)
-#endif // defined(ANGLE_PLATFORM_WINDOWS)
-
-#if defined(ANGLE_PLATFORM_POSIX)
-inline int BitCount(uint32_t bits)
-{
- return __builtin_popcount(bits);
-}
-
-#if defined(ANGLE_IS_64_BIT_CPU)
-inline int BitCount(uint64_t bits)
-{
- return __builtin_popcountll(bits);
-}
-#endif // defined(ANGLE_IS_64_BIT_CPU)
-#endif // defined(ANGLE_PLATFORM_POSIX)
-
-#if defined(ANGLE_PLATFORM_WINDOWS)
-// Return the index of the least significant bit set. Indexing is such that bit 0 is the least
-// significant bit. Implemented for different bit widths on different platforms.
-inline unsigned long ScanForward(uint32_t bits)
-{
- ASSERT(bits != 0u);
- unsigned long firstBitIndex = 0ul;
- unsigned char ret = _BitScanForward(&firstBitIndex, bits);
- ASSERT(ret != 0u);
- return firstBitIndex;
-}
-
-#if defined(ANGLE_IS_64_BIT_CPU)
-inline unsigned long ScanForward(uint64_t bits)
-{
- ASSERT(bits != 0u);
- unsigned long firstBitIndex = 0ul;
- unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
- ASSERT(ret != 0u);
- return firstBitIndex;
-}
-#endif // defined(ANGLE_IS_64_BIT_CPU)
-#endif // defined(ANGLE_PLATFORM_WINDOWS)
-
-#if defined(ANGLE_PLATFORM_POSIX)
-inline unsigned long ScanForward(uint32_t bits)
-{
- ASSERT(bits != 0u);
- return static_cast<unsigned long>(__builtin_ctz(bits));
-}
-
-#if defined(ANGLE_IS_64_BIT_CPU)
-inline unsigned long ScanForward(uint64_t bits)
-{
- ASSERT(bits != 0u);
- return static_cast<unsigned long>(__builtin_ctzll(bits));
-}
-#endif // defined(ANGLE_IS_64_BIT_CPU)
-#endif // defined(ANGLE_PLATFORM_POSIX)
-
-// Return the index of the most significant bit set. Indexing is such that bit 0 is the least
-// significant bit.
-inline unsigned long ScanReverse(unsigned long bits)
-{
- ASSERT(bits != 0u);
-#if defined(ANGLE_PLATFORM_WINDOWS)
- unsigned long lastBitIndex = 0ul;
- unsigned char ret = _BitScanReverse(&lastBitIndex, bits);
- ASSERT(ret != 0u);
- return lastBitIndex;
-#elif defined(ANGLE_PLATFORM_POSIX)
- return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits));
-#else
-#error Please implement bit-scan-reverse for your platform!
-#endif
-}
-
-// Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
-template <typename T>
-int FindLSB(T bits)
-{
- static_assert(std::is_integral<T>::value, "must be integral type.");
- if (bits == 0u)
- {
- return -1;
- }
- else
- {
- return static_cast<int>(ScanForward(bits));
- }
-}
-
-// Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
-template <typename T>
-int FindMSB(T bits)
-{
- static_assert(std::is_integral<T>::value, "must be integral type.");
- if (bits == 0u)
- {
- return -1;
- }
- else
- {
- return static_cast<int>(ScanReverse(bits));
- }
-}
-
-// Returns whether the argument is Not a Number.
-// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) - non-zero.
-inline bool isNaN(float f)
-{
- // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
- // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
- return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && (bitCast<uint32_t>(f) & 0x7fffffu);
-}
-
-// Returns whether the argument is infinity.
-// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) - zero.
-inline bool isInf(float f)
-{
- // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
- // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
- return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && !(bitCast<uint32_t>(f) & 0x7fffffu);
-}
-
-namespace priv
-{
-template <unsigned int N, unsigned int R>
-struct iSquareRoot
-{
- static constexpr unsigned int solve()
- {
- return (R * R > N)
- ? 0
- : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
- }
- enum Result
- {
- value = iSquareRoot::solve()
- };
-};
-
-template <unsigned int N>
-struct iSquareRoot<N, N>
-{
- enum result
- {
- value = N
- };
-};
-
-} // namespace priv
-
-template <unsigned int N>
-constexpr unsigned int iSquareRoot()
-{
- return priv::iSquareRoot<N, 1>::value;
-}
-
-// Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
-//
-// Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
-// behavior is undefined.
-
-template <typename T>
-inline T WrappingSum(T lhs, T rhs)
-{
- uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
- uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
- return static_cast<T>(lhsUnsigned + rhsUnsigned);
-}
-
-template <typename T>
-inline T WrappingDiff(T lhs, T rhs)
-{
- uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
- uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
- return static_cast<T>(lhsUnsigned - rhsUnsigned);
-}
-
-inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
-{
- int64_t lhsWide = static_cast<int64_t>(lhs);
- int64_t rhsWide = static_cast<int64_t>(rhs);
- // The multiplication is guaranteed not to overflow.
- int64_t resultWide = lhsWide * rhsWide;
- // Implement the desired wrapping behavior by masking out the high-order 32 bits.
- resultWide = resultWide & 0xffffffffll;
- // Casting to a narrower signed type is fine since the casted value is representable in the
- // narrower type.
- return static_cast<int32_t>(resultWide);
-}
-
-} // namespace gl
-
-namespace rx
-{
-
-template <typename T>
-T roundUp(const T value, const T alignment)
-{
- auto temp = value + alignment - static_cast<T>(1);
- return temp - temp % alignment;
-}
-
-template <typename T>
-angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
-{
- angle::CheckedNumeric<T> checkedValue(value);
- angle::CheckedNumeric<T> checkedAlignment(alignment);
- return roundUp(checkedValue, checkedAlignment);
-}
-
-inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
-{
- unsigned int divided = value / divisor;
- return (divided + ((value % divisor == 0) ? 0 : 1));
-}
-
-#if defined(_MSC_VER)
-
-#define ANGLE_ROTL(x,y) _rotl(x,y)
-#define ANGLE_ROTR16(x,y) _rotr16(x,y)
-
-#else
-
-inline uint32_t RotL(uint32_t x, int8_t r)
-{
- return (x << r) | (x >> (32 - r));
-}
-
-inline uint16_t RotR16(uint16_t x, int8_t r)
-{
- return (x >> r) | (x << (16 - r));
-}
-
-#define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
-#define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
-
-#endif // namespace rx
-
-}
-
-#endif // COMMON_MATHUTIL_H_