summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/ParseHelper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/angle/src/compiler/ParseHelper.cpp')
-rw-r--r--src/3rdparty/angle/src/compiler/ParseHelper.cpp1528
1 files changed, 1528 insertions, 0 deletions
diff --git a/src/3rdparty/angle/src/compiler/ParseHelper.cpp b/src/3rdparty/angle/src/compiler/ParseHelper.cpp
new file mode 100644
index 0000000000..508f1726a7
--- /dev/null
+++ b/src/3rdparty/angle/src/compiler/ParseHelper.cpp
@@ -0,0 +1,1528 @@
+//
+// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/ParseHelper.h"
+
+#include <stdarg.h>
+#include <stdio.h>
+
+#include "compiler/glslang.h"
+#include "compiler/preprocessor/new/SourceLocation.h"
+
+///////////////////////////////////////////////////////////////////////
+//
+// Sub- vector and matrix fields
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a vector.
+//
+bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line)
+{
+ fields.num = (int) compString.size();
+ if (fields.num > 4) {
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+
+ enum {
+ exyzw,
+ ergba,
+ estpq,
+ } fieldSet[4];
+
+ for (int i = 0; i < fields.num; ++i) {
+ switch (compString[i]) {
+ case 'x':
+ fields.offsets[i] = 0;
+ fieldSet[i] = exyzw;
+ break;
+ case 'r':
+ fields.offsets[i] = 0;
+ fieldSet[i] = ergba;
+ break;
+ case 's':
+ fields.offsets[i] = 0;
+ fieldSet[i] = estpq;
+ break;
+ case 'y':
+ fields.offsets[i] = 1;
+ fieldSet[i] = exyzw;
+ break;
+ case 'g':
+ fields.offsets[i] = 1;
+ fieldSet[i] = ergba;
+ break;
+ case 't':
+ fields.offsets[i] = 1;
+ fieldSet[i] = estpq;
+ break;
+ case 'z':
+ fields.offsets[i] = 2;
+ fieldSet[i] = exyzw;
+ break;
+ case 'b':
+ fields.offsets[i] = 2;
+ fieldSet[i] = ergba;
+ break;
+ case 'p':
+ fields.offsets[i] = 2;
+ fieldSet[i] = estpq;
+ break;
+
+ case 'w':
+ fields.offsets[i] = 3;
+ fieldSet[i] = exyzw;
+ break;
+ case 'a':
+ fields.offsets[i] = 3;
+ fieldSet[i] = ergba;
+ break;
+ case 'q':
+ fields.offsets[i] = 3;
+ fieldSet[i] = estpq;
+ break;
+ default:
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+ }
+
+ for (int i = 0; i < fields.num; ++i) {
+ if (fields.offsets[i] >= vecSize) {
+ error(line, "vector field selection out of range", compString.c_str());
+ return false;
+ }
+
+ if (i > 0) {
+ if (fieldSet[i] != fieldSet[i-1]) {
+ error(line, "illegal - vector component fields not from the same set", compString.c_str());
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a matrix.
+//
+bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line)
+{
+ fields.wholeRow = false;
+ fields.wholeCol = false;
+ fields.row = -1;
+ fields.col = -1;
+
+ if (compString.size() != 2) {
+ error(line, "illegal length of matrix field selection", compString.c_str());
+ return false;
+ }
+
+ if (compString[0] == '_') {
+ if (compString[1] < '0' || compString[1] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.wholeCol = true;
+ fields.col = compString[1] - '0';
+ } else if (compString[1] == '_') {
+ if (compString[0] < '0' || compString[0] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.wholeRow = true;
+ fields.row = compString[0] - '0';
+ } else {
+ if (compString[0] < '0' || compString[0] > '3' ||
+ compString[1] < '0' || compString[1] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.row = compString[0] - '0';
+ fields.col = compString[1] - '0';
+ }
+
+ if (fields.row >= matSize || fields.col >= matSize) {
+ error(line, "matrix field selection out of range", compString.c_str());
+ return false;
+ }
+
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////
+//
+// Errors
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Track whether errors have occurred.
+//
+void TParseContext::recover()
+{
+}
+
+//
+// Used by flex/bison to output all syntax and parsing errors.
+//
+void TParseContext::error(TSourceLoc loc,
+ const char* reason, const char* token,
+ const char* extraInfo)
+{
+ pp::SourceLocation srcLoc;
+ DecodeSourceLoc(loc, &srcLoc.file, &srcLoc.line);
+ diagnostics.writeInfo(pp::Diagnostics::ERROR,
+ srcLoc, reason, token, extraInfo);
+
+}
+
+void TParseContext::warning(TSourceLoc loc,
+ const char* reason, const char* token,
+ const char* extraInfo) {
+ pp::SourceLocation srcLoc;
+ DecodeSourceLoc(loc, &srcLoc.file, &srcLoc.line);
+ diagnostics.writeInfo(pp::Diagnostics::WARNING,
+ srcLoc, reason, token, extraInfo);
+}
+
+void TParseContext::trace(const char* str)
+{
+ diagnostics.writeDebug(str);
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void TParseContext::assignError(int line, const char* op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void TParseContext::unaryOpError(int line, const char* op, TString operand)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
+ << " (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand type", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void TParseContext::binaryOpError(int line, const char* op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
+ << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand types ", op, extraInfo.c_str());
+}
+
+bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){
+ if (!checksPrecisionErrors)
+ return false;
+ switch( type ){
+ case EbtFloat:
+ if( precision == EbpUndefined ){
+ error( line, "No precision specified for (float)", "" );
+ return true;
+ }
+ break;
+ case EbtInt:
+ if( precision == EbpUndefined ){
+ error( line, "No precision specified (int)", "" );
+ return true;
+ }
+ break;
+ default:
+ return false;
+ }
+ return false;
+}
+
+//
+// Both test and if necessary, spit out an error, to see if the node is really
+// an l-value that can be operated on this way.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node)
+{
+ TIntermSymbol* symNode = node->getAsSymbolNode();
+ TIntermBinary* binaryNode = node->getAsBinaryNode();
+
+ if (binaryNode) {
+ bool errorReturn;
+
+ switch(binaryNode->getOp()) {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ return lValueErrorCheck(line, op, binaryNode->getLeft());
+ case EOpVectorSwizzle:
+ errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
+ if (!errorReturn) {
+ int offset[4] = {0,0,0,0};
+
+ TIntermTyped* rightNode = binaryNode->getRight();
+ TIntermAggregate *aggrNode = rightNode->getAsAggregate();
+
+ for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
+ p != aggrNode->getSequence().end(); p++) {
+ int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst();
+ offset[value]++;
+ if (offset[value] > 1) {
+ error(line, " l-value of swizzle cannot have duplicate components", op);
+
+ return true;
+ }
+ }
+ }
+
+ return errorReturn;
+ default:
+ break;
+ }
+ error(line, " l-value required", op);
+
+ return true;
+ }
+
+
+ const char* symbol = 0;
+ if (symNode != 0)
+ symbol = symNode->getSymbol().c_str();
+
+ const char* message = 0;
+ switch (node->getQualifier()) {
+ case EvqConst: message = "can't modify a const"; break;
+ case EvqConstReadOnly: message = "can't modify a const"; break;
+ case EvqAttribute: message = "can't modify an attribute"; break;
+ case EvqUniform: message = "can't modify a uniform"; break;
+ case EvqVaryingIn: message = "can't modify a varying"; break;
+ case EvqInput: message = "can't modify an input"; break;
+ case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
+ case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
+ case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
+ default:
+
+ //
+ // Type that can't be written to?
+ //
+ switch (node->getBasicType()) {
+ case EbtSampler2D:
+ case EbtSamplerCube:
+ message = "can't modify a sampler";
+ break;
+ case EbtVoid:
+ message = "can't modify void";
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (message == 0 && binaryNode == 0 && symNode == 0) {
+ error(line, " l-value required", op);
+
+ return true;
+ }
+
+
+ //
+ // Everything else is okay, no error.
+ //
+ if (message == 0)
+ return false;
+
+ //
+ // If we get here, we have an error and a message.
+ //
+ if (symNode) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "\"" << symbol << "\" (" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+ else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "(" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::constErrorCheck(TIntermTyped* node)
+{
+ if (node->getQualifier() == EvqConst)
+ return false;
+
+ error(node->getLine(), "constant expression required", "");
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
+{
+ if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
+ return false;
+
+ error(node->getLine(), "integer expression required", token);
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::globalErrorCheck(int line, bool global, const char* token)
+{
+ if (global)
+ return false;
+
+ error(line, "only allowed at global scope", token);
+
+ return true;
+}
+
+//
+// For now, keep it simple: if it starts "gl_", it's reserved, independent
+// of scope. Except, if the symbol table is at the built-in push-level,
+// which is when we are parsing built-ins.
+// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
+// webgl shader.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::reservedErrorCheck(int line, const TString& identifier)
+{
+ static const char* reservedErrMsg = "reserved built-in name";
+ if (!symbolTable.atBuiltInLevel()) {
+ if (identifier.compare(0, 3, "gl_") == 0) {
+ error(line, reservedErrMsg, "gl_");
+ return true;
+ }
+ if (isWebGLBasedSpec(shaderSpec)) {
+ if (identifier.compare(0, 6, "webgl_") == 0) {
+ error(line, reservedErrMsg, "webgl_");
+ return true;
+ }
+ if (identifier.compare(0, 7, "_webgl_") == 0) {
+ error(line, reservedErrMsg, "_webgl_");
+ return true;
+ }
+ if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
+ error(line, reservedErrMsg, "css_");
+ return true;
+ }
+ }
+ if (identifier.find("__") != TString::npos) {
+ error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// Make sure there is enough data provided to the constructor to build
+// something of the type of the constructor. Also returns the type of
+// the constructor.
+//
+// Returns true if there was an error in construction.
+//
+bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
+{
+ *type = function.getReturnType();
+
+ bool constructingMatrix = false;
+ switch(op) {
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ constructingMatrix = true;
+ break;
+ default:
+ break;
+ }
+
+ //
+ // Note: It's okay to have too many components available, but not okay to have unused
+ // arguments. 'full' will go to true when enough args have been seen. If we loop
+ // again, there is an extra argument, so 'overfull' will become true.
+ //
+
+ int size = 0;
+ bool constType = true;
+ bool full = false;
+ bool overFull = false;
+ bool matrixInMatrix = false;
+ bool arrayArg = false;
+ for (int i = 0; i < function.getParamCount(); ++i) {
+ const TParameter& param = function.getParam(i);
+ size += param.type->getObjectSize();
+
+ if (constructingMatrix && param.type->isMatrix())
+ matrixInMatrix = true;
+ if (full)
+ overFull = true;
+ if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
+ full = true;
+ if (param.type->getQualifier() != EvqConst)
+ constType = false;
+ if (param.type->isArray())
+ arrayArg = true;
+ }
+
+ if (constType)
+ type->setQualifier(EvqConst);
+
+ if (type->isArray() && type->getArraySize() != function.getParamCount()) {
+ error(line, "array constructor needs one argument per array element", "constructor");
+ return true;
+ }
+
+ if (arrayArg && op != EOpConstructStruct) {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return true;
+ }
+
+ if (matrixInMatrix && !type->isArray()) {
+ if (function.getParamCount() != 1) {
+ error(line, "constructing matrix from matrix can only take one argument", "constructor");
+ return true;
+ }
+ }
+
+ if (overFull) {
+ error(line, "too many arguments", "constructor");
+ return true;
+ }
+
+ if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) {
+ error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
+ return true;
+ }
+
+ if (!type->isMatrix() || !matrixInMatrix) {
+ if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
+ (op == EOpConstructStruct && size < type->getObjectSize())) {
+ error(line, "not enough data provided for construction", "constructor");
+ return true;
+ }
+ }
+
+ TIntermTyped *typed = node ? node->getAsTyped() : 0;
+ if (typed == 0) {
+ error(line, "constructor argument does not have a type", "constructor");
+ return true;
+ }
+ if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
+ error(line, "cannot convert a sampler", "constructor");
+ return true;
+ }
+ if (typed->getBasicType() == EbtVoid) {
+ error(line, "cannot convert a void", "constructor");
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if a void variable has been declared and raise an error message for such a case
+//
+// returns true in case of an error
+//
+bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType)
+{
+ if (pubType.type == EbtVoid) {
+ error(line, "illegal use of type 'void'", identifier.c_str());
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
+//
+// returns true in case of an error
+//
+bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type)
+{
+ if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
+ error(line, "boolean expression expected", "");
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
+//
+// returns true in case of an error
+//
+bool TParseContext::boolErrorCheck(int line, const TPublicType& pType)
+{
+ if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
+ error(line, "boolean expression expected", "");
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason)
+{
+ if (pType.type == EbtStruct) {
+ if (containsSampler(*pType.userDef)) {
+ error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
+
+ return true;
+ }
+
+ return false;
+ } else if (IsSampler(pType.type)) {
+ error(line, reason, getBasicString(pType.type));
+
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType)
+{
+ if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
+ pType.type == EbtStruct) {
+ error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
+
+ return true;
+ }
+
+ if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type)
+{
+ if ((qualifier == EvqOut || qualifier == EvqInOut) &&
+ type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
+ error(line, "samplers cannot be output parameters", type.getBasicString());
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::containsSampler(TType& type)
+{
+ if (IsSampler(type.getBasicType()))
+ return true;
+
+ if (type.getBasicType() == EbtStruct) {
+ TTypeList& structure = *type.getStruct();
+ for (unsigned int i = 0; i < structure.size(); ++i) {
+ if (containsSampler(*structure[i].type))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// Do size checking for an array type's size.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size)
+{
+ TIntermConstantUnion* constant = expr->getAsConstantUnion();
+ if (constant == 0 || constant->getBasicType() != EbtInt) {
+ error(line, "array size must be a constant integer expression", "");
+ return true;
+ }
+
+ size = constant->getUnionArrayPointer()->getIConst();
+
+ if (size <= 0) {
+ error(line, "array size must be a positive integer", "");
+ size = 1;
+ return true;
+ }
+
+ return false;
+}
+
+//
+// See if this qualifier can be an array.
+//
+// Returns true if there is an error.
+//
+bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type)
+{
+ if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) {
+ error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// See if this type can be an array.
+//
+// Returns true if there is an error.
+//
+bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type)
+{
+ //
+ // Can the type be an array?
+ //
+ if (type.array) {
+ error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Do all the semantic checking for declaring an array, with and
+// without a size, and make the right changes to the symbol table.
+//
+// size == 0 means no specified size.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable)
+{
+ //
+ // Don't check for reserved word use until after we know it's not in the symbol table,
+ // because reserved arrays can be redeclared.
+ //
+
+ bool builtIn = false;
+ bool sameScope = false;
+ TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
+ if (symbol == 0 || !sameScope) {
+ if (reservedErrorCheck(line, identifier))
+ return true;
+
+ variable = new TVariable(&identifier, TType(type));
+
+ if (type.arraySize)
+ variable->getType().setArraySize(type.arraySize);
+
+ if (! symbolTable.insert(*variable)) {
+ delete variable;
+ error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
+ return true;
+ }
+ } else {
+ if (! symbol->isVariable()) {
+ error(line, "variable expected", identifier.c_str());
+ return true;
+ }
+
+ variable = static_cast<TVariable*>(symbol);
+ if (! variable->getType().isArray()) {
+ error(line, "redeclaring non-array as array", identifier.c_str());
+ return true;
+ }
+ if (variable->getType().getArraySize() > 0) {
+ error(line, "redeclaration of array with size", identifier.c_str());
+ return true;
+ }
+
+ if (! variable->getType().sameElementType(TType(type))) {
+ error(line, "redeclaration of array with a different type", identifier.c_str());
+ return true;
+ }
+
+ TType* t = variable->getArrayInformationType();
+ while (t != 0) {
+ if (t->getMaxArraySize() > type.arraySize) {
+ error(line, "higher index value already used for the array", identifier.c_str());
+ return true;
+ }
+ t->setArraySize(type.arraySize);
+ t = t->getArrayInformationType();
+ }
+
+ if (type.arraySize)
+ variable->getType().setArraySize(type.arraySize);
+ }
+
+ if (voidErrorCheck(line, identifier, type))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line)
+{
+ bool builtIn = false;
+ TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn);
+ if (symbol == 0) {
+ error(line, " undeclared identifier", node->getSymbol().c_str());
+ return true;
+ }
+ TVariable* variable = static_cast<TVariable*>(symbol);
+
+ type->setArrayInformationType(variable->getArrayInformationType());
+ variable->updateArrayInformationType(type);
+
+ // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
+ // its an error
+ if (node->getSymbol() == "gl_FragData") {
+ TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", &builtIn);
+ ASSERT(fragData);
+
+ int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
+ if (fragDataValue <= size) {
+ error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers");
+ return true;
+ }
+ }
+
+ // we dont want to update the maxArraySize when this flag is not set, we just want to include this
+ // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
+ if (!updateFlag)
+ return false;
+
+ size++;
+ variable->getType().setMaxArraySize(size);
+ type->setMaxArraySize(size);
+ TType* tt = type;
+
+ while(tt->getArrayInformationType() != 0) {
+ tt = tt->getArrayInformationType();
+ tt->setMaxArraySize(size);
+ }
+
+ return false;
+}
+
+//
+// Enforce non-initializer type/qualifier rules.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type, bool array)
+{
+ if (type.qualifier == EvqConst)
+ {
+ // Make the qualifier make sense.
+ type.qualifier = EvqTemporary;
+
+ if (array)
+ {
+ error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+ }
+ else if (type.isStructureContainingArrays())
+ {
+ error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+ }
+ else
+ {
+ error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Do semantic checking for a variable declaration that has no initializer,
+// and update the symbol table.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type, TVariable*& variable)
+{
+ if (reservedErrorCheck(line, identifier))
+ recover();
+
+ variable = new TVariable(&identifier, TType(type));
+
+ if (! symbolTable.insert(*variable)) {
+ error(line, "redefinition", variable->getName().c_str());
+ delete variable;
+ variable = 0;
+ return true;
+ }
+
+ if (voidErrorCheck(line, identifier, type))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
+{
+ if (qualifier != EvqConst && qualifier != EvqTemporary) {
+ error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
+ return true;
+ }
+ if (qualifier == EvqConst && paramQualifier != EvqIn) {
+ error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
+ return true;
+ }
+
+ if (qualifier == EvqConst)
+ type->setQualifier(EvqConstReadOnly);
+ else
+ type->setQualifier(paramQualifier);
+
+ return false;
+}
+
+bool TParseContext::extensionErrorCheck(int line, const TString& extension)
+{
+ const TExtensionBehavior& extBehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
+ if (iter == extBehavior.end()) {
+ error(line, "extension", extension.c_str(), "is not supported");
+ return true;
+ }
+ // In GLSL ES, an extension's default behavior is "disable".
+ if (iter->second == EBhDisable || iter->second == EBhUndefined) {
+ error(line, "extension", extension.c_str(), "is disabled");
+ return true;
+ }
+ if (iter->second == EBhWarn) {
+ warning(line, "extension", extension.c_str(), "is being used");
+ return false;
+ }
+
+ return false;
+}
+
+bool TParseContext::supportsExtension(const char* extension)
+{
+ const TExtensionBehavior& extbehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+ return (iter != extbehavior.end());
+}
+
+void TParseContext::handleExtensionDirective(int line, const char* extName, const char* behavior)
+{
+ pp::SourceLocation loc;
+ DecodeSourceLoc(line, &loc.file, &loc.line);
+ directiveHandler.handleExtension(loc, extName, behavior);
+}
+
+void TParseContext::handlePragmaDirective(int line, const char* name, const char* value)
+{
+ pp::SourceLocation loc;
+ DecodeSourceLoc(line, &loc.file, &loc.line);
+ directiveHandler.handlePragma(loc, name, value);
+}
+
+/////////////////////////////////////////////////////////////////////////////////
+//
+// Non-Errors.
+//
+/////////////////////////////////////////////////////////////////////////////////
+
+//
+// Look up a function name in the symbol table, and make sure it is a function.
+//
+// Return the function symbol if found, otherwise 0.
+//
+const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn)
+{
+ // First find by unmangled name to check whether the function name has been
+ // hidden by a variable name or struct typename.
+ const TSymbol* symbol = symbolTable.find(call->getName(), builtIn);
+ if (symbol == 0) {
+ symbol = symbolTable.find(call->getMangledName(), builtIn);
+ }
+
+ if (symbol == 0) {
+ error(line, "no matching overloaded function found", call->getName().c_str());
+ return 0;
+ }
+
+ if (!symbol->isFunction()) {
+ error(line, "function name expected", call->getName().c_str());
+ return 0;
+ }
+
+ return static_cast<const TFunction*>(symbol);
+}
+
+//
+// Initializers show up in several places in the grammar. Have one set of
+// code to handle them here.
+//
+bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType,
+ TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
+{
+ TType type = TType(pType);
+
+ if (variable == 0) {
+ if (reservedErrorCheck(line, identifier))
+ return true;
+
+ if (voidErrorCheck(line, identifier, pType))
+ return true;
+
+ //
+ // add variable to symbol table
+ //
+ variable = new TVariable(&identifier, type);
+ if (! symbolTable.insert(*variable)) {
+ error(line, "redefinition", variable->getName().c_str());
+ return true;
+ // don't delete variable, it's used by error recovery, and the pool
+ // pop will take care of the memory
+ }
+ }
+
+ //
+ // identifier must be of type constant, a global, or a temporary
+ //
+ TQualifier qualifier = variable->getType().getQualifier();
+ if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
+ error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
+ return true;
+ }
+ //
+ // test for and propagate constant
+ //
+
+ if (qualifier == EvqConst) {
+ if (qualifier != initializer->getType().getQualifier()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " assigning non-constant to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (type != initializer->getType()) {
+ error(line, " non-matching types for const initializer ",
+ variable->getType().getQualifierString());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (initializer->getAsConstantUnion()) {
+ ConstantUnion* unionArray = variable->getConstPointer();
+
+ if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) {
+ *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0];
+ } else {
+ variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
+ }
+ } else if (initializer->getAsSymbolNode()) {
+ const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
+ const TVariable* tVar = static_cast<const TVariable*>(symbol);
+
+ ConstantUnion* constArray = tVar->getConstPointer();
+ variable->shareConstPointer(constArray);
+ } else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " cannot assign to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ }
+
+ if (qualifier != EvqConst) {
+ TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
+ intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
+ if (intermNode == 0) {
+ assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+ return true;
+ }
+ } else
+ intermNode = 0;
+
+ return false;
+}
+
+bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
+{
+ ASSERT(aggrNode != NULL);
+ if (!aggrNode->isConstructor())
+ return false;
+
+ bool allConstant = true;
+
+ // check if all the child nodes are constants so that they can be inserted into
+ // the parent node
+ TIntermSequence &sequence = aggrNode->getSequence() ;
+ for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
+ if (!(*p)->getAsTyped()->getAsConstantUnion())
+ return false;
+ }
+
+ return allConstant;
+}
+
+// This function is used to test for the correctness of the parameters passed to various constructor functions
+// and also convert them to the right datatype if it is allowed and required.
+//
+// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
+//
+TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggrNode = node->getAsAggregate();
+
+ TTypeList::const_iterator memberTypes;
+ if (op == EOpConstructStruct)
+ memberTypes = type->getStruct()->begin();
+
+ TType elementType = *type;
+ if (type->isArray())
+ elementType.clearArrayness();
+
+ bool singleArg;
+ if (aggrNode) {
+ if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
+ singleArg = true;
+ else
+ singleArg = false;
+ } else
+ singleArg = true;
+
+ TIntermTyped *newNode;
+ if (singleArg) {
+ // If structure constructor or array constructor is being called
+ // for only one parameter inside the structure, we need to call constructStruct function once.
+ if (type->isArray())
+ newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
+ else if (op == EOpConstructStruct)
+ newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false);
+ else
+ newNode = constructBuiltIn(type, op, node, node->getLine(), false);
+
+ if (newNode && newNode->getAsAggregate()) {
+ TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
+ if (constConstructor)
+ return constConstructor;
+ }
+
+ return newNode;
+ }
+
+ //
+ // Handle list of arguments.
+ //
+ TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor
+ // if the structure constructor contains more than one parameter, then construct
+ // each parameter
+
+ int paramCount = 0; // keeps a track of the constructor parameter number being checked
+
+ // for each parameter to the constructor call, check to see if the right type is passed or convert them
+ // to the right type if possible (and allowed).
+ // for structure constructors, just check if the right type is passed, no conversion is allowed.
+
+ for (TIntermSequence::iterator p = sequenceVector.begin();
+ p != sequenceVector.end(); p++, paramCount++) {
+ if (type->isArray())
+ newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
+ else if (op == EOpConstructStruct)
+ newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true);
+ else
+ newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
+
+ if (newNode) {
+ *p = newNode;
+ }
+ }
+
+ TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
+ TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
+ if (constConstructor)
+ return constConstructor;
+
+ return constructor;
+}
+
+TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
+{
+ bool canBeFolded = areAllChildConst(aggrNode);
+ aggrNode->setType(type);
+ if (canBeFolded) {
+ bool returnVal = false;
+ ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
+ if (aggrNode->getSequence().size() == 1) {
+ returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true);
+ }
+ else {
+ returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type);
+ }
+ if (returnVal)
+ return 0;
+
+ return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
+ }
+
+ return 0;
+}
+
+// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
+// for the parameter to the constructor (passed to this function). Essentially, it converts
+// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
+// float, then float is converted to int.
+//
+// Returns 0 for an error or the constructed node.
+//
+TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
+{
+ TIntermTyped* newNode;
+ TOperator basicOp;
+
+ //
+ // First, convert types as needed.
+ //
+ switch (op) {
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ case EOpConstructFloat:
+ basicOp = EOpConstructFloat;
+ break;
+
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructInt:
+ basicOp = EOpConstructInt;
+ break;
+
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBool:
+ basicOp = EOpConstructBool;
+ break;
+
+ default:
+ error(line, "unsupported construction", "");
+ recover();
+
+ return 0;
+ }
+ newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
+ if (newNode == 0) {
+ error(line, "can't convert", "constructor");
+ return 0;
+ }
+
+ //
+ // Now, if there still isn't an operation to do the construction, and we need one, add one.
+ //
+
+ // Otherwise, skip out early.
+ if (subset || (newNode != node && newNode->getType() == *type))
+ return newNode;
+
+ // setAggregateOperator will insert a new node for the constructor, as needed.
+ return intermediate.setAggregateOperator(newNode, op, line);
+}
+
+// This function tests for the type of the parameters to the structures constructors. Raises
+// an error message if the expected type does not match the parameter passed to the constructor.
+//
+// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
+//
+TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset)
+{
+ if (*type == node->getAsTyped()->getType()) {
+ if (subset)
+ return node->getAsTyped();
+ else
+ return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
+ } else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert parameter " << paramCount
+ << " from '" << node->getAsTyped()->getType().getBasicString()
+ << "' to '" << type->getBasicString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "constructor", extraInfo.c_str());
+ recover();
+ }
+
+ return 0;
+}
+
+//
+// This function returns the tree representation for the vector field(s) being accessed from contant vector.
+// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
+// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
+// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
+// a constant matrix.
+//
+TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+ ConstantUnion *unionArray;
+ if (tempConstantNode) {
+ unionArray = tempConstantNode->getUnionArrayPointer();
+ ASSERT(unionArray);
+
+ if (!unionArray) {
+ return node;
+ }
+ } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
+ error(line, "Cannot offset into the vector", "Error");
+ recover();
+
+ return 0;
+ }
+
+ ConstantUnion* constArray = new ConstantUnion[fields.num];
+
+ for (int i = 0; i < fields.num; i++) {
+ if (fields.offsets[i] >= node->getType().getObjectSize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ fields.offsets[i] = 0;
+ }
+
+ constArray[i] = unionArray[fields.offsets[i]];
+
+ }
+ typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
+ return typedNode;
+}
+
+//
+// This function returns the column being accessed from a constant matrix. The values are retrieved from
+// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
+// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
+// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+ if (index >= node->getType().getNominalSize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "matrix field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ index = 0;
+ }
+
+ if (tempConstantNode) {
+ ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+ int size = tempConstantNode->getType().getNominalSize();
+ typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
+ } else {
+ error(line, "Cannot offset into the matrix", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+
+//
+// This function returns an element of an array accessed from a constant array. The values are retrieved from
+// the symbol table and parse-tree is built for the type of the element. The input
+// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
+// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+ TType arrayElementType = node->getType();
+ arrayElementType.clearArrayness();
+
+ if (index >= node->getType().getArraySize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "array field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ index = 0;
+ }
+
+ int arrayElementSize = arrayElementType.getObjectSize();
+
+ if (tempConstantNode) {
+ ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+ typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
+ } else {
+ error(line, "Cannot offset into the array", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+
+//
+// This function returns the value of a particular field inside a constant structure from the symbol table.
+// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
+// function and returns the parse-tree with the values of the embedded/nested struct.
+//
+TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line)
+{
+ const TTypeList* fields = node->getType().getStruct();
+ TIntermTyped *typedNode;
+ int instanceSize = 0;
+ unsigned int index = 0;
+ TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
+
+ for ( index = 0; index < fields->size(); ++index) {
+ if ((*fields)[index].type->getFieldName() == identifier) {
+ break;
+ } else {
+ instanceSize += (*fields)[index].type->getObjectSize();
+ }
+ }
+
+ if (tempConstantNode) {
+ ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
+
+ typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
+ } else {
+ error(line, "Cannot offset into the structure", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+bool TParseContext::enterStructDeclaration(int line, const TString& identifier)
+{
+ ++structNestingLevel;
+
+ // Embedded structure definitions are not supported per GLSL ES spec.
+ // They aren't allowed in GLSL either, but we need to detect this here
+ // so we don't rely on the GLSL compiler to catch it.
+ if (structNestingLevel > 1) {
+ error(line, "", "Embedded struct definitions are not allowed");
+ return true;
+ }
+
+ return false;
+}
+
+void TParseContext::exitStructDeclaration()
+{
+ --structNestingLevel;
+}
+
+namespace {
+
+const int kWebGLMaxStructNesting = 4;
+
+} // namespace
+
+bool TParseContext::structNestingErrorCheck(TSourceLoc line, const TType& fieldType)
+{
+ if (!isWebGLBasedSpec(shaderSpec)) {
+ return false;
+ }
+
+ if (fieldType.getBasicType() != EbtStruct) {
+ return false;
+ }
+
+ // We're already inside a structure definition at this point, so add
+ // one to the field's struct nesting.
+ if (1 + fieldType.getDeepestStructNesting() > kWebGLMaxStructNesting) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "Reference of struct type " << fieldType.getTypeName()
+ << " exceeds maximum struct nesting of " << kWebGLMaxStructNesting;
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "", extraInfo.c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Parse an array of strings using yyparse.
+//
+// Returns 0 for success.
+//
+int PaParseStrings(int count, const char* const string[], const int length[],
+ TParseContext* context) {
+ if ((count == 0) || (string == NULL))
+ return 1;
+
+ if (glslang_initialize(context))
+ return 1;
+
+ int error = glslang_scan(count, string, length, context);
+ if (!error)
+ error = glslang_parse(context);
+
+ glslang_finalize(context);
+
+ return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
+}
+
+
+