summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp')
-rw-r--r--src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp528
1 files changed, 528 insertions, 0 deletions
diff --git a/src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp b/src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp
new file mode 100644
index 0000000000..697e042954
--- /dev/null
+++ b/src/3rdparty/angle/src/compiler/translator/EmulatePrecision.cpp
@@ -0,0 +1,528 @@
+//
+// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/EmulatePrecision.h"
+
+namespace
+{
+
+static void writeVectorPrecisionEmulationHelpers(
+ TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size)
+{
+ std::stringstream vecTypeStrStr;
+ if (outputLanguage == SH_ESSL_OUTPUT)
+ vecTypeStrStr << "highp ";
+ vecTypeStrStr << "vec" << size;
+ std::string vecType = vecTypeStrStr.str();
+
+ sink <<
+ vecType << " angle_frm(in " << vecType << " v) {\n"
+ " v = clamp(v, -65504.0, 65504.0);\n"
+ " " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n"
+ " bvec" << size << " isNonZero = greaterThanEqual(exponent, vec" << size << "(-25.0));\n"
+ " v = v * exp2(-exponent);\n"
+ " v = sign(v) * floor(abs(v));\n"
+ " return v * exp2(exponent) * vec" << size << "(isNonZero);\n"
+ "}\n";
+
+ sink <<
+ vecType << " angle_frl(in " << vecType << " v) {\n"
+ " v = clamp(v, -2.0, 2.0);\n"
+ " v = v * 256.0;\n"
+ " v = sign(v) * floor(abs(v));\n"
+ " return v * 0.00390625;\n"
+ "}\n";
+}
+
+static void writeMatrixPrecisionEmulationHelper(
+ TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size, const char *functionName)
+{
+ std::stringstream matTypeStrStr;
+ if (outputLanguage == SH_ESSL_OUTPUT)
+ matTypeStrStr << "highp ";
+ matTypeStrStr << "mat" << size;
+ std::string matType = matTypeStrStr.str();
+
+ sink << matType << " " << functionName << "(in " << matType << " m) {\n"
+ " " << matType << " rounded;\n";
+
+ for (unsigned int i = 0; i < size; ++i)
+ {
+ sink << " rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n";
+ }
+
+ sink << " return rounded;\n"
+ "}\n";
+}
+
+static void writeCommonPrecisionEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
+{
+ // Write the angle_frm functions that round floating point numbers to
+ // half precision, and angle_frl functions that round them to minimum lowp
+ // precision.
+
+ // Unoptimized version of angle_frm for single floats:
+ //
+ // int webgl_maxNormalExponent(in int exponentBits) {
+ // int possibleExponents = int(exp2(float(exponentBits)));
+ // int exponentBias = possibleExponents / 2 - 1;
+ // int allExponentBitsOne = possibleExponents - 1;
+ // return (allExponentBitsOne - 1) - exponentBias;
+ // }
+ //
+ // float angle_frm(in float x) {
+ // int mantissaBits = 10;
+ // int exponentBits = 5;
+ // float possibleMantissas = exp2(float(mantissaBits));
+ // float mantissaMax = 2.0 - 1.0 / possibleMantissas;
+ // int maxNE = webgl_maxNormalExponent(exponentBits);
+ // float max = exp2(float(maxNE)) * mantissaMax;
+ // if (x > max) {
+ // return max;
+ // }
+ // if (x < -max) {
+ // return -max;
+ // }
+ // float exponent = floor(log2(abs(x)));
+ // if (abs(x) == 0.0 || exponent < -float(maxNE)) {
+ // return 0.0 * sign(x)
+ // }
+ // x = x * exp2(-(exponent - float(mantissaBits)));
+ // x = sign(x) * floor(abs(x));
+ // return x * exp2(exponent - float(mantissaBits));
+ // }
+
+ // All numbers with a magnitude less than 2^-15 are subnormal, and are
+ // flushed to zero.
+
+ // Note the constant numbers below:
+ // a) 65504 is the maximum possible mantissa (1.1111111111 in binary) times
+ // 2^15, the maximum normal exponent.
+ // b) 10.0 is the number of mantissa bits.
+ // c) -25.0 is the minimum normal half-float exponent -15.0 minus the number
+ // of mantissa bits.
+ // d) + 1e-30 is to make sure the argument of log2() won't be zero. It can
+ // only affect the result of log2 on x where abs(x) < 1e-22. Since these
+ // numbers will be flushed to zero either way (2^-15 is the smallest
+ // normal positive number), this does not introduce any error.
+
+ std::string floatType = "float";
+ if (outputLanguage == SH_ESSL_OUTPUT)
+ floatType = "highp float";
+
+ sink <<
+ floatType << " angle_frm(in " << floatType << " x) {\n"
+ " x = clamp(x, -65504.0, 65504.0);\n"
+ " " << floatType << " exponent = floor(log2(abs(x) + 1e-30)) - 10.0;\n"
+ " bool isNonZero = (exponent >= -25.0);\n"
+ " x = x * exp2(-exponent);\n"
+ " x = sign(x) * floor(abs(x));\n"
+ " return x * exp2(exponent) * float(isNonZero);\n"
+ "}\n";
+
+ sink <<
+ floatType << " angle_frl(in " << floatType << " x) {\n"
+ " x = clamp(x, -2.0, 2.0);\n"
+ " x = x * 256.0;\n"
+ " x = sign(x) * floor(abs(x));\n"
+ " return x * 0.00390625;\n"
+ "}\n";
+
+ writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 2);
+ writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 3);
+ writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 4);
+ for (unsigned int size = 2; size <= 4; ++size)
+ {
+ writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frm");
+ writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frl");
+ }
+}
+
+static void writeCompoundAssignmentPrecisionEmulation(
+ TInfoSinkBase& sink, ShShaderOutput outputLanguage,
+ const char *lType, const char *rType, const char *opStr, const char *opNameStr)
+{
+ std::string lTypeStr = lType;
+ std::string rTypeStr = rType;
+ if (outputLanguage == SH_ESSL_OUTPUT)
+ {
+ std::stringstream lTypeStrStr;
+ lTypeStrStr << "highp " << lType;
+ lTypeStr = lTypeStrStr.str();
+ std::stringstream rTypeStrStr;
+ rTypeStrStr << "highp " << rType;
+ rTypeStr = rTypeStrStr.str();
+ }
+
+ // Note that y should be passed through angle_frm at the function call site,
+ // but x can't be passed through angle_frm there since it is an inout parameter.
+ // So only pass x and the result through angle_frm here.
+ sink <<
+ lTypeStr << " angle_compound_" << opNameStr << "_frm(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
+ " x = angle_frm(angle_frm(x) " << opStr << " y);\n"
+ " return x;\n"
+ "}\n";
+ sink <<
+ lTypeStr << " angle_compound_" << opNameStr << "_frl(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
+ " x = angle_frl(angle_frm(x) " << opStr << " y);\n"
+ " return x;\n"
+ "}\n";
+}
+
+const char *getFloatTypeStr(const TType& type)
+{
+ switch (type.getNominalSize())
+ {
+ case 1:
+ return "float";
+ case 2:
+ return type.getSecondarySize() > 1 ? "mat2" : "vec2";
+ case 3:
+ return type.getSecondarySize() > 1 ? "mat3" : "vec3";
+ case 4:
+ return type.getSecondarySize() > 1 ? "mat4" : "vec4";
+ default:
+ UNREACHABLE();
+ return NULL;
+ }
+}
+
+bool canRoundFloat(const TType &type)
+{
+ return type.getBasicType() == EbtFloat && !type.isNonSquareMatrix() && !type.isArray() &&
+ (type.getPrecision() == EbpLow || type.getPrecision() == EbpMedium);
+}
+
+TIntermAggregate *createInternalFunctionCallNode(TString name, TIntermNode *child)
+{
+ TIntermAggregate *callNode = new TIntermAggregate();
+ callNode->setOp(EOpInternalFunctionCall);
+ callNode->setName(name);
+ callNode->getSequence()->push_back(child);
+ return callNode;
+}
+
+TIntermAggregate *createRoundingFunctionCallNode(TIntermTyped *roundedChild)
+{
+ TString roundFunctionName;
+ if (roundedChild->getPrecision() == EbpMedium)
+ roundFunctionName = "angle_frm";
+ else
+ roundFunctionName = "angle_frl";
+ return createInternalFunctionCallNode(roundFunctionName, roundedChild);
+}
+
+TIntermAggregate *createCompoundAssignmentFunctionCallNode(TIntermTyped *left, TIntermTyped *right, const char *opNameStr)
+{
+ std::stringstream strstr;
+ if (left->getPrecision() == EbpMedium)
+ strstr << "angle_compound_" << opNameStr << "_frm";
+ else
+ strstr << "angle_compound_" << opNameStr << "_frl";
+ TString functionName = strstr.str().c_str();
+ TIntermAggregate *callNode = createInternalFunctionCallNode(functionName, left);
+ callNode->getSequence()->push_back(right);
+ return callNode;
+}
+
+bool parentUsesResult(TIntermNode* parent, TIntermNode* node)
+{
+ if (!parent)
+ {
+ return false;
+ }
+
+ TIntermAggregate *aggParent = parent->getAsAggregate();
+ // If the parent's op is EOpSequence, the result is not assigned anywhere,
+ // so rounding it is not needed. In particular, this can avoid a lot of
+ // unnecessary rounding of unused return values of assignment.
+ if (aggParent && aggParent->getOp() == EOpSequence)
+ {
+ return false;
+ }
+ if (aggParent && aggParent->getOp() == EOpComma && (aggParent->getSequence()->back() != node))
+ {
+ return false;
+ }
+ return true;
+}
+
+} // namespace anonymous
+
+EmulatePrecision::EmulatePrecision()
+ : TIntermTraverser(true, true, true),
+ mDeclaringVariables(false),
+ mInLValue(false),
+ mInFunctionCallOutParameter(false)
+{}
+
+void EmulatePrecision::visitSymbol(TIntermSymbol *node)
+{
+ if (canRoundFloat(node->getType()) &&
+ !mDeclaringVariables && !mInLValue && !mInFunctionCallOutParameter)
+ {
+ TIntermNode *parent = getParentNode();
+ TIntermNode *replacement = createRoundingFunctionCallNode(node);
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+ }
+}
+
+
+bool EmulatePrecision::visitBinary(Visit visit, TIntermBinary *node)
+{
+ bool visitChildren = true;
+
+ if (node->isAssignment())
+ {
+ if (visit == PreVisit)
+ mInLValue = true;
+ else if (visit == InVisit)
+ mInLValue = false;
+ }
+
+ TOperator op = node->getOp();
+
+ // RHS of initialize is not being declared.
+ if (op == EOpInitialize && visit == InVisit)
+ mDeclaringVariables = false;
+
+ if ((op == EOpIndexDirectStruct || op == EOpVectorSwizzle) && visit == InVisit)
+ visitChildren = false;
+
+ if (visit != PreVisit)
+ return visitChildren;
+
+ const TType& type = node->getType();
+ bool roundFloat = canRoundFloat(type);
+
+ if (roundFloat) {
+ switch (op) {
+ // Math operators that can result in a float may need to apply rounding to the return
+ // value. Note that in the case of assignment, the rounding is applied to its return
+ // value here, not the value being assigned.
+ case EOpAssign:
+ case EOpAdd:
+ case EOpSub:
+ case EOpMul:
+ case EOpDiv:
+ case EOpVectorTimesScalar:
+ case EOpVectorTimesMatrix:
+ case EOpMatrixTimesVector:
+ case EOpMatrixTimesScalar:
+ case EOpMatrixTimesMatrix:
+ {
+ TIntermNode *parent = getParentNode();
+ if (!parentUsesResult(parent, node))
+ {
+ break;
+ }
+ TIntermNode *replacement = createRoundingFunctionCallNode(node);
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+ break;
+ }
+
+ // Compound assignment cases need to replace the operator with a function call.
+ case EOpAddAssign:
+ {
+ mEmulateCompoundAdd.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+ TIntermNode *parent = getParentNode();
+ TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "add");
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+ break;
+ }
+ case EOpSubAssign:
+ {
+ mEmulateCompoundSub.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+ TIntermNode *parent = getParentNode();
+ TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "sub");
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+ break;
+ }
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ {
+ mEmulateCompoundMul.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+ TIntermNode *parent = getParentNode();
+ TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "mul");
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+ break;
+ }
+ case EOpDivAssign:
+ {
+ mEmulateCompoundDiv.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+ TIntermNode *parent = getParentNode();
+ TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "div");
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+ break;
+ }
+ default:
+ // The rest of the binary operations should not need precision emulation.
+ break;
+ }
+ }
+ return visitChildren;
+}
+
+bool EmulatePrecision::visitAggregate(Visit visit, TIntermAggregate *node)
+{
+ bool visitChildren = true;
+ switch (node->getOp())
+ {
+ case EOpSequence:
+ case EOpConstructStruct:
+ // No special handling
+ break;
+ case EOpFunction:
+ if (visit == PreVisit)
+ {
+ const TIntermSequence &sequence = *(node->getSequence());
+ TIntermSequence::const_iterator seqIter = sequence.begin();
+ TIntermAggregate *params = (*seqIter)->getAsAggregate();
+ ASSERT(params != NULL);
+ ASSERT(params->getOp() == EOpParameters);
+ mFunctionMap[node->getName()] = params->getSequence();
+ }
+ break;
+ case EOpPrototype:
+ if (visit == PreVisit)
+ mFunctionMap[node->getName()] = node->getSequence();
+ visitChildren = false;
+ break;
+ case EOpParameters:
+ visitChildren = false;
+ break;
+ case EOpInvariantDeclaration:
+ visitChildren = false;
+ break;
+ case EOpDeclaration:
+ // Variable declaration.
+ if (visit == PreVisit)
+ {
+ mDeclaringVariables = true;
+ }
+ else if (visit == InVisit)
+ {
+ mDeclaringVariables = true;
+ }
+ else
+ {
+ mDeclaringVariables = false;
+ }
+ break;
+ case EOpFunctionCall:
+ {
+ // Function call.
+ bool inFunctionMap = (mFunctionMap.find(node->getName()) != mFunctionMap.end());
+ if (visit == PreVisit)
+ {
+ // User-defined function return values are not rounded, this relies on that
+ // calculations producing the value were rounded.
+ TIntermNode *parent = getParentNode();
+ if (canRoundFloat(node->getType()) && !inFunctionMap && parentUsesResult(parent, node))
+ {
+ TIntermNode *replacement = createRoundingFunctionCallNode(node);
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+ }
+
+ if (inFunctionMap)
+ {
+ mSeqIterStack.push_back(mFunctionMap[node->getName()]->begin());
+ if (mSeqIterStack.back() != mFunctionMap[node->getName()]->end())
+ {
+ TQualifier qualifier = (*mSeqIterStack.back())->getAsTyped()->getQualifier();
+ mInFunctionCallOutParameter = (qualifier == EvqOut || qualifier == EvqInOut);
+ }
+ }
+ else
+ {
+ // The function is not user-defined - it is likely built-in texture function.
+ // Assume that those do not have out parameters.
+ mInFunctionCallOutParameter = false;
+ }
+ }
+ else if (visit == InVisit)
+ {
+ if (inFunctionMap)
+ {
+ ++mSeqIterStack.back();
+ TQualifier qualifier = (*mSeqIterStack.back())->getAsTyped()->getQualifier();
+ mInFunctionCallOutParameter = (qualifier == EvqOut || qualifier == EvqInOut);
+ }
+ }
+ else
+ {
+ if (inFunctionMap)
+ {
+ mSeqIterStack.pop_back();
+ mInFunctionCallOutParameter = false;
+ }
+ }
+ break;
+ }
+ default:
+ TIntermNode *parent = getParentNode();
+ if (canRoundFloat(node->getType()) && visit == PreVisit && parentUsesResult(parent, node))
+ {
+ TIntermNode *replacement = createRoundingFunctionCallNode(node);
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+ }
+ break;
+ }
+ return visitChildren;
+}
+
+bool EmulatePrecision::visitUnary(Visit visit, TIntermUnary *node)
+{
+ switch (node->getOp())
+ {
+ case EOpNegative:
+ case EOpVectorLogicalNot:
+ case EOpLogicalNot:
+ break;
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ if (visit == PreVisit)
+ mInLValue = true;
+ else if (visit == PostVisit)
+ mInLValue = false;
+ break;
+ default:
+ if (canRoundFloat(node->getType()) && visit == PreVisit)
+ {
+ TIntermNode *parent = getParentNode();
+ TIntermNode *replacement = createRoundingFunctionCallNode(node);
+ mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+ }
+ break;
+ }
+
+ return true;
+}
+
+void EmulatePrecision::writeEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
+{
+ // Other languages not yet supported
+ ASSERT(outputLanguage == SH_GLSL_COMPATIBILITY_OUTPUT ||
+ outputLanguage == SH_GLSL_CORE_OUTPUT ||
+ outputLanguage == SH_ESSL_OUTPUT);
+ writeCommonPrecisionEmulationHelpers(sink, outputLanguage);
+
+ EmulationSet::const_iterator it;
+ for (it = mEmulateCompoundAdd.begin(); it != mEmulateCompoundAdd.end(); it++)
+ writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "+", "add");
+ for (it = mEmulateCompoundSub.begin(); it != mEmulateCompoundSub.end(); it++)
+ writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "-", "sub");
+ for (it = mEmulateCompoundDiv.begin(); it != mEmulateCompoundDiv.end(); it++)
+ writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "/", "div");
+ for (it = mEmulateCompoundMul.begin(); it != mEmulateCompoundMul.end(); it++)
+ writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "*", "mul");
+}
+