summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/freetype/src/sdf/ftsdf.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/freetype/src/sdf/ftsdf.c')
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdf.c3932
1 files changed, 3932 insertions, 0 deletions
diff --git a/src/3rdparty/freetype/src/sdf/ftsdf.c b/src/3rdparty/freetype/src/sdf/ftsdf.c
new file mode 100644
index 0000000000..bc4625d984
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdf.c
@@ -0,0 +1,3932 @@
+/****************************************************************************
+ *
+ * ftsdf.c
+ *
+ * Signed Distance Field support for outline fonts (body).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#include <freetype/internal/ftobjs.h>
+#include <freetype/internal/ftdebug.h>
+#include <freetype/ftoutln.h>
+#include <freetype/fttrigon.h>
+#include <freetype/ftbitmap.h>
+#include "ftsdf.h"
+
+#include "ftsdferrs.h"
+
+
+ /**************************************************************************
+ *
+ * A brief technical overview of how the SDF rasterizer works
+ * ----------------------------------------------------------
+ *
+ * [Notes]:
+ * * SDF stands for Signed Distance Field everywhere.
+ *
+ * * This renderer generates SDF directly from outlines. There is
+ * another renderer called 'bsdf', which converts bitmaps to SDF; see
+ * file `ftbsdf.c` for more.
+ *
+ * * The basic idea of generating the SDF is taken from Viktor Chlumsky's
+ * research paper. The paper explains both single and multi-channel
+ * SDF, however, this implementation only generates single-channel SDF.
+ *
+ * Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance
+ * Fields. Master's thesis. Czech Technical University in Prague,
+ * Faculty of InformationTechnology, 2015.
+ *
+ * For more information: https://github.com/Chlumsky/msdfgen
+ *
+ * ========================================================================
+ *
+ * Generating SDF from outlines is pretty straightforward.
+ *
+ * (1) We have a set of contours that make the outline of a shape/glyph.
+ * Each contour comprises of several edges, with three types of edges.
+ *
+ * * line segments
+ * * conic Bezier curves
+ * * cubic Bezier curves
+ *
+ * (2) Apart from the outlines we also have a two-dimensional grid, namely
+ * the bitmap that is used to represent the final SDF data.
+ *
+ * (3) In order to generate SDF, our task is to find shortest signed
+ * distance from each grid point to the outline. The 'signed
+ * distance' means that if the grid point is filled by any contour
+ * then its sign is positive, otherwise it is negative. The pseudo
+ * code is as follows.
+ *
+ * ```
+ * foreach grid_point (x, y):
+ * {
+ * int min_dist = INT_MAX;
+ *
+ * foreach contour in outline:
+ * {
+ * foreach edge in contour:
+ * {
+ * // get shortest distance from point (x, y) to the edge
+ * d = get_min_dist(x, y, edge);
+ *
+ * if (d < min_dist)
+ * min_dist = d;
+ * }
+ *
+ * bitmap[x, y] = min_dist;
+ * }
+ * }
+ * ```
+ *
+ * (4) After running this algorithm the bitmap contains information about
+ * the shortest distance from each point to the outline of the shape.
+ * Of course, while this is the most straightforward way of generating
+ * SDF, we use various optimizations in our implementation. See the
+ * `sdf_generate_*' functions in this file for all details.
+ *
+ * The optimization currently used by default is subdivision; see
+ * function `sdf_generate_subdivision` for more.
+ *
+ * Also, to see how we compute the shortest distance from a point to
+ * each type of edge, check out the `get_min_distance_*' functions.
+ *
+ */
+
+
+ /**************************************************************************
+ *
+ * The macro FT_COMPONENT is used in trace mode. It is an implicit
+ * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
+ * messages during execution.
+ */
+#undef FT_COMPONENT
+#define FT_COMPONENT sdf
+
+
+ /**************************************************************************
+ *
+ * definitions
+ *
+ */
+
+ /*
+ * If set to 1, the rasterizer uses Newton-Raphson's method for finding
+ * the shortest distance from a point to a conic curve.
+ *
+ * If set to 0, an analytical method gets used instead, which computes the
+ * roots of a cubic polynomial to find the shortest distance. However,
+ * the analytical method can currently underflow; we thus use Newton's
+ * method by default.
+ */
+#ifndef USE_NEWTON_FOR_CONIC
+#define USE_NEWTON_FOR_CONIC 1
+#endif
+
+ /*
+ * The number of intervals a Bezier curve gets sampled and checked to find
+ * the shortest distance.
+ */
+#define MAX_NEWTON_DIVISIONS 4
+
+ /*
+ * The number of steps of Newton's iterations in each interval of the
+ * Bezier curve. Basically, we run Newton's approximation
+ *
+ * x -= Q(t) / Q'(t)
+ *
+ * for each division to get the shortest distance.
+ */
+#define MAX_NEWTON_STEPS 4
+
+ /*
+ * The epsilon distance (in 16.16 fractional units) used for corner
+ * resolving. If the difference of two distances is less than this value
+ * they will be checked for a corner if they are ambiguous.
+ */
+#define CORNER_CHECK_EPSILON 32
+
+#if 0
+ /*
+ * Coarse grid dimension. Will probably be removed in the future because
+ * coarse grid optimization is the slowest algorithm.
+ */
+#define CG_DIMEN 8
+#endif
+
+
+ /**************************************************************************
+ *
+ * macros
+ *
+ */
+
+#define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 )
+#define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \
+ MUL_26D6( p.y, q.y ) )
+
+
+ /**************************************************************************
+ *
+ * structures and enums
+ *
+ */
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_TRaster
+ *
+ * @Description:
+ * This struct is used in place of @FT_Raster and is stored within the
+ * internal FreeType renderer struct. While rasterizing it is passed to
+ * the @FT_Raster_RenderFunc function, which then can be used however we
+ * want.
+ *
+ * @Fields:
+ * memory ::
+ * Used internally to allocate intermediate memory while raterizing.
+ *
+ */
+ typedef struct SDF_TRaster_
+ {
+ FT_Memory memory;
+
+ } SDF_TRaster, *SDF_PRaster;
+
+
+ /**************************************************************************
+ *
+ * @Enum:
+ * SDF_Edge_Type
+ *
+ * @Description:
+ * Enumeration of all curve types present in fonts.
+ *
+ * @Fields:
+ * SDF_EDGE_UNDEFINED ::
+ * Undefined edge, simply used to initialize and detect errors.
+ *
+ * SDF_EDGE_LINE ::
+ * Line segment with start and end point.
+ *
+ * SDF_EDGE_CONIC ::
+ * A conic/quadratic Bezier curve with start, end, and one control
+ * point.
+ *
+ * SDF_EDGE_CUBIC ::
+ * A cubic Bezier curve with start, end, and two control points.
+ *
+ */
+ typedef enum SDF_Edge_Type_
+ {
+ SDF_EDGE_UNDEFINED = 0,
+ SDF_EDGE_LINE = 1,
+ SDF_EDGE_CONIC = 2,
+ SDF_EDGE_CUBIC = 3
+
+ } SDF_Edge_Type;
+
+
+ /**************************************************************************
+ *
+ * @Enum:
+ * SDF_Contour_Orientation
+ *
+ * @Description:
+ * Enumeration of all orientation values of a contour. We determine the
+ * orientation by calculating the area covered by a contour. Contrary
+ * to values returned by @FT_Outline_Get_Orientation,
+ * `SDF_Contour_Orientation` is independent of the fill rule, which can
+ * be different for different font formats.
+ *
+ * @Fields:
+ * SDF_ORIENTATION_NONE ::
+ * Undefined orientation, used for initialization and error detection.
+ *
+ * SDF_ORIENTATION_CW ::
+ * Clockwise orientation (positive area covered).
+ *
+ * SDF_ORIENTATION_CCW ::
+ * Counter-clockwise orientation (negative area covered).
+ *
+ * @Note:
+ * See @FT_Outline_Get_Orientation for more details.
+ *
+ */
+ typedef enum SDF_Contour_Orientation_
+ {
+ SDF_ORIENTATION_NONE = 0,
+ SDF_ORIENTATION_CW = 1,
+ SDF_ORIENTATION_CCW = 2
+
+ } SDF_Contour_Orientation;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Edge
+ *
+ * @Description:
+ * Represent an edge of a contour.
+ *
+ * @Fields:
+ * start_pos ::
+ * Start position of an edge. Valid for all types of edges.
+ *
+ * end_pos ::
+ * Etart position of an edge. Valid for all types of edges.
+ *
+ * control_a ::
+ * A control point of the edge. Valid only for `SDF_EDGE_CONIC`
+ * and `SDF_EDGE_CUBIC`.
+ *
+ * control_b ::
+ * Another control point of the edge. Valid only for
+ * `SDF_EDGE_CONIC`.
+ *
+ * edge_type ::
+ * Type of the edge, see @SDF_Edge_Type for all possible edge types.
+ *
+ * next ::
+ * Used to create a singly linked list, which can be interpreted
+ * as a contour.
+ *
+ */
+ typedef struct SDF_Edge_
+ {
+ FT_26D6_Vec start_pos;
+ FT_26D6_Vec end_pos;
+ FT_26D6_Vec control_a;
+ FT_26D6_Vec control_b;
+
+ SDF_Edge_Type edge_type;
+
+ struct SDF_Edge_* next;
+
+ } SDF_Edge;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Contour
+ *
+ * @Description:
+ * Represent a complete contour, which contains a list of edges.
+ *
+ * @Fields:
+ * last_pos ::
+ * Contains the value of `end_pos' of the last edge in the list of
+ * edges. Useful while decomposing the outline with
+ * @FT_Outline_Decompose.
+ *
+ * edges ::
+ * Linked list of all the edges that make the contour.
+ *
+ * next ::
+ * Used to create a singly linked list, which can be interpreted as a
+ * complete shape or @FT_Outline.
+ *
+ */
+ typedef struct SDF_Contour_
+ {
+ FT_26D6_Vec last_pos;
+ SDF_Edge* edges;
+
+ struct SDF_Contour_* next;
+
+ } SDF_Contour;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Shape
+ *
+ * @Description:
+ * Represent a complete shape, which is the decomposition of
+ * @FT_Outline.
+ *
+ * @Fields:
+ * memory ::
+ * Used internally to allocate memory.
+ *
+ * contours ::
+ * Linked list of all the contours that make the shape.
+ *
+ */
+ typedef struct SDF_Shape_
+ {
+ FT_Memory memory;
+ SDF_Contour* contours;
+
+ } SDF_Shape;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Signed_Distance
+ *
+ * @Description:
+ * Represent signed distance of a point, i.e., the distance of the edge
+ * nearest to the point.
+ *
+ * @Fields:
+ * distance ::
+ * Distance of the point from the nearest edge. Can be squared or
+ * absolute depending on the `USE_SQUARED_DISTANCES` macro defined in
+ * file `ftsdfcommon.h`.
+ *
+ * cross ::
+ * Cross product of the shortest distance vector (i.e., the vector
+ * from the point to the nearest edge) and the direction of the edge
+ * at the nearest point. This is used to resolve ambiguities of
+ * `sign`.
+ *
+ * sign ::
+ * A value used to indicate whether the distance vector is outside or
+ * inside the contour corresponding to the edge.
+ *
+ * @Note:
+ * `sign` may or may not be correct, therefore it must be checked
+ * properly in case there is an ambiguity.
+ *
+ */
+ typedef struct SDF_Signed_Distance_
+ {
+ FT_16D16 distance;
+ FT_16D16 cross;
+ FT_Char sign;
+
+ } SDF_Signed_Distance;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Params
+ *
+ * @Description:
+ * Yet another internal parameters required by the rasterizer.
+ *
+ * @Fields:
+ * orientation ::
+ * This is not the @SDF_Contour_Orientation value but @FT_Orientation,
+ * which determines whether clockwise-oriented outlines are to be
+ * filled or counter-clockwise-oriented ones.
+ *
+ * flip_sign ::
+ * If set to true, flip the sign. By default the points filled by the
+ * outline are positive.
+ *
+ * flip_y ::
+ * If set to true the output bitmap is upside-down. Can be useful
+ * because OpenGL and DirectX use different coordinate systems for
+ * textures.
+ *
+ * overload_sign ::
+ * In the subdivision and bounding box optimization, the default
+ * outside sign is taken as -1. This parameter can be used to modify
+ * that behaviour. For example, while generating SDF for a single
+ * counter-clockwise contour, the outside sign should be 1.
+ *
+ */
+ typedef struct SDF_Params_
+ {
+ FT_Orientation orientation;
+ FT_Bool flip_sign;
+ FT_Bool flip_y;
+
+ FT_Int overload_sign;
+
+ } SDF_Params;
+
+
+ /**************************************************************************
+ *
+ * constants, initializer, and destructor
+ *
+ */
+
+ static
+ const FT_Vector zero_vector = { 0, 0 };
+
+ static
+ const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 },
+ { 0, 0 }, { 0, 0 },
+ SDF_EDGE_UNDEFINED, NULL };
+
+ static
+ const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL };
+
+ static
+ const SDF_Shape null_shape = { NULL, NULL };
+
+ static
+ const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 };
+
+
+ /* Create a new @SDF_Edge on the heap and assigns the `edge` */
+ /* pointer to the newly allocated memory. */
+ static FT_Error
+ sdf_edge_new( FT_Memory memory,
+ SDF_Edge** edge )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Edge* ptr = NULL;
+
+
+ if ( !memory || !edge )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( !FT_QNEW( ptr ) )
+ {
+ *ptr = null_edge;
+ *edge = ptr;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* Free the allocated `edge` variable. */
+ static void
+ sdf_edge_done( FT_Memory memory,
+ SDF_Edge** edge )
+ {
+ if ( !memory || !edge || !*edge )
+ return;
+
+ FT_FREE( *edge );
+ }
+
+
+ /* Create a new @SDF_Contour on the heap and assign */
+ /* the `contour` pointer to the newly allocated memory. */
+ static FT_Error
+ sdf_contour_new( FT_Memory memory,
+ SDF_Contour** contour )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Contour* ptr = NULL;
+
+
+ if ( !memory || !contour )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( !FT_QNEW( ptr ) )
+ {
+ *ptr = null_contour;
+ *contour = ptr;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* Free the allocated `contour` variable. */
+ /* Also free the list of edges. */
+ static void
+ sdf_contour_done( FT_Memory memory,
+ SDF_Contour** contour )
+ {
+ SDF_Edge* edges;
+ SDF_Edge* temp;
+
+
+ if ( !memory || !contour || !*contour )
+ return;
+
+ edges = (*contour)->edges;
+
+ /* release all edges */
+ while ( edges )
+ {
+ temp = edges;
+ edges = edges->next;
+
+ sdf_edge_done( memory, &temp );
+ }
+
+ FT_FREE( *contour );
+ }
+
+
+ /* Create a new @SDF_Shape on the heap and assign */
+ /* the `shape` pointer to the newly allocated memory. */
+ static FT_Error
+ sdf_shape_new( FT_Memory memory,
+ SDF_Shape** shape )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Shape* ptr = NULL;
+
+
+ if ( !memory || !shape )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( !FT_QNEW( ptr ) )
+ {
+ *ptr = null_shape;
+ ptr->memory = memory;
+ *shape = ptr;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* Free the allocated `shape` variable. */
+ /* Also free the list of contours. */
+ static void
+ sdf_shape_done( SDF_Shape** shape )
+ {
+ FT_Memory memory;
+ SDF_Contour* contours;
+ SDF_Contour* temp;
+
+
+ if ( !shape || !*shape )
+ return;
+
+ memory = (*shape)->memory;
+ contours = (*shape)->contours;
+
+ if ( !memory )
+ return;
+
+ /* release all contours */
+ while ( contours )
+ {
+ temp = contours;
+ contours = contours->next;
+
+ sdf_contour_done( memory, &temp );
+ }
+
+ /* release the allocated shape struct */
+ FT_FREE( *shape );
+ }
+
+
+ /**************************************************************************
+ *
+ * shape decomposition functions
+ *
+ */
+
+ /* This function is called when starting a new contour at `to`, */
+ /* which gets added to the shape's list. */
+ static FT_Error
+ sdf_move_to( const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ FT_CALL( sdf_contour_new( memory, &contour ) );
+
+ contour->last_pos = *to;
+ contour->next = shape->contours;
+ shape->contours = contour;
+
+ Exit:
+ return error;
+ }
+
+
+ /* This function is called when there is a line in the */
+ /* contour. The line starts at the previous edge point and */
+ /* stops at `to`. */
+ static FT_Error
+ sdf_line_to( const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Edge* edge = NULL;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contour = shape->contours;
+
+ if ( contour->last_pos.x == to->x &&
+ contour->last_pos.y == to->y )
+ goto Exit;
+
+ FT_CALL( sdf_edge_new( memory, &edge ) );
+
+ edge->edge_type = SDF_EDGE_LINE;
+ edge->start_pos = contour->last_pos;
+ edge->end_pos = *to;
+
+ edge->next = contour->edges;
+ contour->edges = edge;
+ contour->last_pos = *to;
+
+ Exit:
+ return error;
+ }
+
+
+ /* This function is called when there is a conic Bezier curve */
+ /* in the contour. The curve starts at the previous edge point */
+ /* and stops at `to`, with control point `control_1`. */
+ static FT_Error
+ sdf_conic_to( const FT_26D6_Vec* control_1,
+ const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Edge* edge = NULL;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !control_1 || !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contour = shape->contours;
+
+ /* If the control point coincides with any of the end points */
+ /* then it is a line and should be treated as one to avoid */
+ /* unnecessary complexity later in the algorithm. */
+ if ( ( contour->last_pos.x == control_1->x &&
+ contour->last_pos.y == control_1->y ) ||
+ ( control_1->x == to->x &&
+ control_1->y == to->y ) )
+ {
+ sdf_line_to( to, user );
+ goto Exit;
+ }
+
+ FT_CALL( sdf_edge_new( memory, &edge ) );
+
+ edge->edge_type = SDF_EDGE_CONIC;
+ edge->start_pos = contour->last_pos;
+ edge->control_a = *control_1;
+ edge->end_pos = *to;
+
+ edge->next = contour->edges;
+ contour->edges = edge;
+ contour->last_pos = *to;
+
+ Exit:
+ return error;
+ }
+
+
+ /* This function is called when there is a cubic Bezier curve */
+ /* in the contour. The curve starts at the previous edge point */
+ /* and stops at `to`, with two control points `control_1` and */
+ /* `control_2`. */
+ static FT_Error
+ sdf_cubic_to( const FT_26D6_Vec* control_1,
+ const FT_26D6_Vec* control_2,
+ const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Edge* edge = NULL;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !control_2 || !control_1 || !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contour = shape->contours;
+
+ FT_CALL( sdf_edge_new( memory, &edge ) );
+
+ edge->edge_type = SDF_EDGE_CUBIC;
+ edge->start_pos = contour->last_pos;
+ edge->control_a = *control_1;
+ edge->control_b = *control_2;
+ edge->end_pos = *to;
+
+ edge->next = contour->edges;
+ contour->edges = edge;
+ contour->last_pos = *to;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Construct the structure to hold all four outline */
+ /* decomposition functions. */
+ FT_DEFINE_OUTLINE_FUNCS(
+ sdf_decompose_funcs,
+
+ (FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */
+ (FT_Outline_LineTo_Func) sdf_line_to, /* line_to */
+ (FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */
+ (FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */
+
+ 0, /* shift */
+ 0 /* delta */
+ )
+
+
+ /* Decompose `outline` and put it into the `shape` structure. */
+ static FT_Error
+ sdf_outline_decompose( FT_Outline* outline,
+ SDF_Shape* shape )
+ {
+ FT_Error error = FT_Err_Ok;
+
+
+ if ( !outline || !shape )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ error = FT_Outline_Decompose( outline,
+ &sdf_decompose_funcs,
+ (void*)shape );
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * utility functions
+ *
+ */
+
+ /* Return the control box of an edge. The control box is a rectangle */
+ /* in which all the control points can fit tightly. */
+ static FT_CBox
+ get_control_box( SDF_Edge edge )
+ {
+ FT_CBox cbox = { 0, 0, 0, 0 };
+ FT_Bool is_set = 0;
+
+
+ switch ( edge.edge_type )
+ {
+ case SDF_EDGE_CUBIC:
+ cbox.xMin = edge.control_b.x;
+ cbox.xMax = edge.control_b.x;
+ cbox.yMin = edge.control_b.y;
+ cbox.yMax = edge.control_b.y;
+
+ is_set = 1;
+ FALL_THROUGH;
+
+ case SDF_EDGE_CONIC:
+ if ( is_set )
+ {
+ cbox.xMin = edge.control_a.x < cbox.xMin
+ ? edge.control_a.x
+ : cbox.xMin;
+ cbox.xMax = edge.control_a.x > cbox.xMax
+ ? edge.control_a.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.control_a.y < cbox.yMin
+ ? edge.control_a.y
+ : cbox.yMin;
+ cbox.yMax = edge.control_a.y > cbox.yMax
+ ? edge.control_a.y
+ : cbox.yMax;
+ }
+ else
+ {
+ cbox.xMin = edge.control_a.x;
+ cbox.xMax = edge.control_a.x;
+ cbox.yMin = edge.control_a.y;
+ cbox.yMax = edge.control_a.y;
+
+ is_set = 1;
+ }
+ FALL_THROUGH;
+
+ case SDF_EDGE_LINE:
+ if ( is_set )
+ {
+ cbox.xMin = edge.start_pos.x < cbox.xMin
+ ? edge.start_pos.x
+ : cbox.xMin;
+ cbox.xMax = edge.start_pos.x > cbox.xMax
+ ? edge.start_pos.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.start_pos.y < cbox.yMin
+ ? edge.start_pos.y
+ : cbox.yMin;
+ cbox.yMax = edge.start_pos.y > cbox.yMax
+ ? edge.start_pos.y
+ : cbox.yMax;
+ }
+ else
+ {
+ cbox.xMin = edge.start_pos.x;
+ cbox.xMax = edge.start_pos.x;
+ cbox.yMin = edge.start_pos.y;
+ cbox.yMax = edge.start_pos.y;
+ }
+
+ cbox.xMin = edge.end_pos.x < cbox.xMin
+ ? edge.end_pos.x
+ : cbox.xMin;
+ cbox.xMax = edge.end_pos.x > cbox.xMax
+ ? edge.end_pos.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.end_pos.y < cbox.yMin
+ ? edge.end_pos.y
+ : cbox.yMin;
+ cbox.yMax = edge.end_pos.y > cbox.yMax
+ ? edge.end_pos.y
+ : cbox.yMax;
+
+ break;
+
+ default:
+ break;
+ }
+
+ return cbox;
+ }
+
+
+ /* Return orientation of a single contour. */
+ /* Note that the orientation is independent of the fill rule! */
+ /* So, for TTF a clockwise-oriented contour has to be filled */
+ /* and the opposite for OTF fonts. */
+ static SDF_Contour_Orientation
+ get_contour_orientation ( SDF_Contour* contour )
+ {
+ SDF_Edge* head = NULL;
+ FT_26D6 area = 0;
+
+
+ /* return none if invalid parameters */
+ if ( !contour || !contour->edges )
+ return SDF_ORIENTATION_NONE;
+
+ head = contour->edges;
+
+ /* Calculate the area of the control box for all edges. */
+ while ( head )
+ {
+ switch ( head->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
+ ( head->end_pos.y + head->start_pos.y ) );
+ break;
+
+ case SDF_EDGE_CONIC:
+ area += MUL_26D6( head->control_a.x - head->start_pos.x,
+ head->control_a.y + head->start_pos.y );
+ area += MUL_26D6( head->end_pos.x - head->control_a.x,
+ head->end_pos.y + head->control_a.y );
+ break;
+
+ case SDF_EDGE_CUBIC:
+ area += MUL_26D6( head->control_a.x - head->start_pos.x,
+ head->control_a.y + head->start_pos.y );
+ area += MUL_26D6( head->control_b.x - head->control_a.x,
+ head->control_b.y + head->control_a.y );
+ area += MUL_26D6( head->end_pos.x - head->control_b.x,
+ head->end_pos.y + head->control_b.y );
+ break;
+
+ default:
+ return SDF_ORIENTATION_NONE;
+ }
+
+ head = head->next;
+ }
+
+ /* Clockwise contours cover a positive area, and counter-clockwise */
+ /* contours cover a negative area. */
+ if ( area > 0 )
+ return SDF_ORIENTATION_CW;
+ else
+ return SDF_ORIENTATION_CCW;
+ }
+
+
+ /* This function is exactly the same as the one */
+ /* in the smooth renderer. It splits a conic */
+ /* into two conics exactly half way at t = 0.5. */
+ static void
+ split_conic( FT_26D6_Vec* base )
+ {
+ FT_26D6 a, b;
+
+
+ base[4].x = base[2].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ base[3].x = b / 2;
+ base[2].x = ( a + b ) / 4;
+ base[1].x = a / 2;
+
+ base[4].y = base[2].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ base[3].y = b / 2;
+ base[2].y = ( a + b ) / 4;
+ base[1].y = a / 2;
+ }
+
+
+ /* This function is exactly the same as the one */
+ /* in the smooth renderer. It splits a cubic */
+ /* into two cubics exactly half way at t = 0.5. */
+ static void
+ split_cubic( FT_26D6_Vec* base )
+ {
+ FT_26D6 a, b, c;
+
+
+ base[6].x = base[3].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ c = base[2].x + base[3].x;
+ base[5].x = c / 2;
+ c += b;
+ base[4].x = c / 4;
+ base[1].x = a / 2;
+ a += b;
+ base[2].x = a / 4;
+ base[3].x = ( a + c ) / 8;
+
+ base[6].y = base[3].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ c = base[2].y + base[3].y;
+ base[5].y = c / 2;
+ c += b;
+ base[4].y = c / 4;
+ base[1].y = a / 2;
+ a += b;
+ base[2].y = a / 4;
+ base[3].y = ( a + c ) / 8;
+ }
+
+
+ /* Split a conic Bezier curve into a number of lines */
+ /* and add them to `out'. */
+ /* */
+ /* This function uses recursion; we thus need */
+ /* parameter `max_splits' for stopping. */
+ static FT_Error
+ split_sdf_conic( FT_Memory memory,
+ FT_26D6_Vec* control_points,
+ FT_UInt max_splits,
+ SDF_Edge** out )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_26D6_Vec cpos[5];
+ SDF_Edge* left,* right;
+
+
+ if ( !memory || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* split conic outline */
+ cpos[0] = control_points[0];
+ cpos[1] = control_points[1];
+ cpos[2] = control_points[2];
+
+ split_conic( cpos );
+
+ /* If max number of splits is done */
+ /* then stop and add the lines to */
+ /* the list. */
+ if ( max_splits <= 2 )
+ goto Append;
+
+ /* Otherwise keep splitting. */
+ FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
+ FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );
+
+ /* [NOTE]: This is not an efficient way of */
+ /* splitting the curve. Check the deviation */
+ /* instead and stop if the deviation is less */
+ /* than a pixel. */
+
+ goto Exit;
+
+ Append:
+ /* Do allocation and add the lines to the list. */
+
+ FT_CALL( sdf_edge_new( memory, &left ) );
+ FT_CALL( sdf_edge_new( memory, &right ) );
+
+ left->start_pos = cpos[0];
+ left->end_pos = cpos[2];
+ left->edge_type = SDF_EDGE_LINE;
+
+ right->start_pos = cpos[2];
+ right->end_pos = cpos[4];
+ right->edge_type = SDF_EDGE_LINE;
+
+ left->next = right;
+ right->next = (*out);
+ *out = left;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Split a cubic Bezier curve into a number of lines */
+ /* and add them to `out`. */
+ /* */
+ /* This function uses recursion; we thus need */
+ /* parameter `max_splits' for stopping. */
+ static FT_Error
+ split_sdf_cubic( FT_Memory memory,
+ FT_26D6_Vec* control_points,
+ FT_UInt max_splits,
+ SDF_Edge** out )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_26D6_Vec cpos[7];
+ SDF_Edge* left, *right;
+ const FT_26D6 threshold = ONE_PIXEL / 4;
+
+
+ if ( !memory || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* split the cubic */
+ cpos[0] = control_points[0];
+ cpos[1] = control_points[1];
+ cpos[2] = control_points[2];
+ cpos[3] = control_points[3];
+
+ /* If the segment is flat enough we won't get any benefit by */
+ /* splitting it further, so we can just stop splitting. */
+ /* */
+ /* Check the deviation of the Bezier curve and stop if it is */
+ /* smaller than the pre-defined `threshold` value. */
+ if ( FT_ABS( 2 * cpos[0].x - 3 * cpos[1].x + cpos[3].x ) < threshold &&
+ FT_ABS( 2 * cpos[0].y - 3 * cpos[1].y + cpos[3].y ) < threshold &&
+ FT_ABS( cpos[0].x - 3 * cpos[2].x + 2 * cpos[3].x ) < threshold &&
+ FT_ABS( cpos[0].y - 3 * cpos[2].y + 2 * cpos[3].y ) < threshold )
+ {
+ split_cubic( cpos );
+ goto Append;
+ }
+
+ split_cubic( cpos );
+
+ /* If max number of splits is done */
+ /* then stop and add the lines to */
+ /* the list. */
+ if ( max_splits <= 2 )
+ goto Append;
+
+ /* Otherwise keep splitting. */
+ FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
+ FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );
+
+ /* [NOTE]: This is not an efficient way of */
+ /* splitting the curve. Check the deviation */
+ /* instead and stop if the deviation is less */
+ /* than a pixel. */
+
+ goto Exit;
+
+ Append:
+ /* Do allocation and add the lines to the list. */
+
+ FT_CALL( sdf_edge_new( memory, &left) );
+ FT_CALL( sdf_edge_new( memory, &right) );
+
+ left->start_pos = cpos[0];
+ left->end_pos = cpos[3];
+ left->edge_type = SDF_EDGE_LINE;
+
+ right->start_pos = cpos[3];
+ right->end_pos = cpos[6];
+ right->edge_type = SDF_EDGE_LINE;
+
+ left->next = right;
+ right->next = (*out);
+ *out = left;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Subdivide an entire shape into line segments */
+ /* such that it doesn't look visually different */
+ /* from the original curve. */
+ static FT_Error
+ split_sdf_shape( SDF_Shape* shape )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory;
+
+ SDF_Contour* contours;
+ SDF_Contour* new_contours = NULL;
+
+
+ if ( !shape || !shape->memory )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contours = shape->contours;
+ memory = shape->memory;
+
+ /* for each contour */
+ while ( contours )
+ {
+ SDF_Edge* edges = contours->edges;
+ SDF_Edge* new_edges = NULL;
+
+ SDF_Contour* tempc;
+
+
+ /* for each edge */
+ while ( edges )
+ {
+ SDF_Edge* edge = edges;
+ SDF_Edge* temp;
+
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ /* Just create a duplicate edge in case */
+ /* it is a line. We can use the same edge. */
+ FT_CALL( sdf_edge_new( memory, &temp ) );
+
+ ft_memcpy( temp, edge, sizeof ( *edge ) );
+
+ temp->next = new_edges;
+ new_edges = temp;
+ break;
+
+ case SDF_EDGE_CONIC:
+ /* Subdivide the curve and add it to the list. */
+ {
+ FT_26D6_Vec ctrls[3];
+ FT_26D6 dx, dy;
+ FT_UInt num_splits;
+
+
+ ctrls[0] = edge->start_pos;
+ ctrls[1] = edge->control_a;
+ ctrls[2] = edge->end_pos;
+
+ dx = FT_ABS( ctrls[2].x + ctrls[0].x - 2 * ctrls[1].x );
+ dy = FT_ABS( ctrls[2].y + ctrls[0].y - 2 * ctrls[1].y );
+ if ( dx < dy )
+ dx = dy;
+
+ /* Calculate the number of necessary bisections. Each */
+ /* bisection causes a four-fold reduction of the deviation, */
+ /* hence we bisect the Bezier curve until the deviation */
+ /* becomes less than 1/8 of a pixel. For more details */
+ /* check file `ftgrays.c`. */
+ num_splits = 1;
+ while ( dx > ONE_PIXEL / 8 )
+ {
+ dx >>= 2;
+ num_splits <<= 1;
+ }
+
+ error = split_sdf_conic( memory, ctrls, num_splits, &new_edges );
+ }
+ break;
+
+ case SDF_EDGE_CUBIC:
+ /* Subdivide the curve and add it to the list. */
+ {
+ FT_26D6_Vec ctrls[4];
+
+
+ ctrls[0] = edge->start_pos;
+ ctrls[1] = edge->control_a;
+ ctrls[2] = edge->control_b;
+ ctrls[3] = edge->end_pos;
+
+ error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
+ }
+ break;
+
+ default:
+ error = FT_THROW( Invalid_Argument );
+ }
+
+ if ( error != FT_Err_Ok )
+ goto Exit;
+
+ edges = edges->next;
+ }
+
+ /* add to the contours list */
+ FT_CALL( sdf_contour_new( memory, &tempc ) );
+
+ tempc->next = new_contours;
+ tempc->edges = new_edges;
+ new_contours = tempc;
+ new_edges = NULL;
+
+ /* deallocate the contour */
+ tempc = contours;
+ contours = contours->next;
+
+ sdf_contour_done( memory, &tempc );
+ }
+
+ shape->contours = new_contours;
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * for debugging
+ *
+ */
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+
+ static void
+ sdf_shape_dump( SDF_Shape* shape )
+ {
+ FT_UInt num_contours = 0;
+
+ FT_UInt total_edges = 0;
+ FT_UInt total_lines = 0;
+ FT_UInt total_conic = 0;
+ FT_UInt total_cubic = 0;
+
+ SDF_Contour* contour_list;
+
+
+ if ( !shape )
+ {
+ FT_TRACE5(( "sdf_shape_dump: null shape\n" ));
+ return;
+ }
+
+ contour_list = shape->contours;
+
+ FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" ));
+
+ while ( contour_list )
+ {
+ FT_UInt num_edges = 0;
+ SDF_Edge* edge_list;
+ SDF_Contour* contour = contour_list;
+
+
+ FT_TRACE5(( " Contour %d\n", num_contours ));
+
+ edge_list = contour->edges;
+
+ while ( edge_list )
+ {
+ SDF_Edge* edge = edge_list;
+
+
+ FT_TRACE5(( " %3d: ", num_edges ));
+
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n",
+ edge->start_pos.x, edge->start_pos.y,
+ edge->end_pos.x, edge->end_pos.y ));
+ total_lines++;
+ break;
+
+ case SDF_EDGE_CONIC:
+ FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n",
+ edge->start_pos.x, edge->start_pos.y,
+ edge->control_a.x, edge->control_a.y,
+ edge->end_pos.x, edge->end_pos.y ));
+ total_conic++;
+ break;
+
+ case SDF_EDGE_CUBIC:
+ FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)"
+ " .. (%ld, %ld) .. (%ld %ld)\n",
+ edge->start_pos.x, edge->start_pos.y,
+ edge->control_a.x, edge->control_a.y,
+ edge->control_b.x, edge->control_b.y,
+ edge->end_pos.x, edge->end_pos.y ));
+ total_cubic++;
+ break;
+
+ default:
+ break;
+ }
+
+ num_edges++;
+ total_edges++;
+ edge_list = edge_list->next;
+ }
+
+ num_contours++;
+ contour_list = contour_list->next;
+ }
+
+ FT_TRACE5(( "\n" ));
+ FT_TRACE5(( " total number of contours = %d\n", num_contours ));
+ FT_TRACE5(( " total number of edges = %d\n", total_edges ));
+ FT_TRACE5(( " |__lines = %d\n", total_lines ));
+ FT_TRACE5(( " |__conic = %d\n", total_conic ));
+ FT_TRACE5(( " |__cubic = %d\n", total_cubic ));
+ }
+
+#endif /* FT_DEBUG_LEVEL_TRACE */
+
+
+ /**************************************************************************
+ *
+ * math functions
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /* [NOTE]: All the functions below down until rasterizer */
+ /* can be avoided if we decide to subdivide the */
+ /* curve into lines. */
+
+ /* This function uses Newton's iteration to find */
+ /* the cube root of a fixed-point integer. */
+ static FT_16D16
+ cube_root( FT_16D16 val )
+ {
+ /* [IMPORTANT]: This function is not good as it may */
+ /* not break, so use a lookup table instead. Or we */
+ /* can use an algorithm similar to `square_root`. */
+
+ FT_Int v, g, c;
+
+
+ if ( val == 0 ||
+ val == -FT_INT_16D16( 1 ) ||
+ val == FT_INT_16D16( 1 ) )
+ return val;
+
+ v = val < 0 ? -val : val;
+ g = square_root( v );
+ c = 0;
+
+ while ( 1 )
+ {
+ c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
+ c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
+
+ g -= c;
+
+ if ( ( c < 0 ? -c : c ) < 30 )
+ break;
+ }
+
+ return val < 0 ? -g : g;
+ }
+
+
+ /* Calculate the perpendicular by using '1 - base^2'. */
+ /* Then use arctan to compute the angle. */
+ static FT_16D16
+ arc_cos( FT_16D16 val )
+ {
+ FT_16D16 p;
+ FT_16D16 b = val;
+ FT_16D16 one = FT_INT_16D16( 1 );
+
+
+ if ( b > one )
+ b = one;
+ if ( b < -one )
+ b = -one;
+
+ p = one - FT_MulFix( b, b );
+ p = square_root( p );
+
+ return FT_Atan2( b, p );
+ }
+
+
+ /* Compute roots of a quadratic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/QuadraticFormula.html */
+ static FT_UShort
+ solve_quadratic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_16D16 out[2] )
+ {
+ FT_16D16 discriminant = 0;
+
+
+ a = FT_26D6_16D16( a );
+ b = FT_26D6_16D16( b );
+ c = FT_26D6_16D16( c );
+
+ if ( a == 0 )
+ {
+ if ( b == 0 )
+ return 0;
+ else
+ {
+ out[0] = FT_DivFix( -c, b );
+
+ return 1;
+ }
+ }
+
+ discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
+
+ if ( discriminant < 0 )
+ return 0;
+ else if ( discriminant == 0 )
+ {
+ out[0] = FT_DivFix( -b, 2 * a );
+
+ return 1;
+ }
+ else
+ {
+ discriminant = square_root( discriminant );
+
+ out[0] = FT_DivFix( -b + discriminant, 2 * a );
+ out[1] = FT_DivFix( -b - discriminant, 2 * a );
+
+ return 2;
+ }
+ }
+
+
+ /* Compute roots of a cubic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/CubicFormula.html */
+ static FT_UShort
+ solve_cubic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_26D6 d,
+ FT_16D16 out[3] )
+ {
+ FT_16D16 q = 0; /* intermediate */
+ FT_16D16 r = 0; /* intermediate */
+
+ FT_16D16 a2 = b; /* x^2 coefficients */
+ FT_16D16 a1 = c; /* x coefficients */
+ FT_16D16 a0 = d; /* constant */
+
+ FT_16D16 q3 = 0;
+ FT_16D16 r2 = 0;
+ FT_16D16 a23 = 0;
+ FT_16D16 a22 = 0;
+ FT_16D16 a1x2 = 0;
+
+
+ /* cutoff value for `a` to be a cubic, otherwise solve quadratic */
+ if ( a == 0 || FT_ABS( a ) < 16 )
+ return solve_quadratic_equation( b, c, d, out );
+
+ if ( d == 0 )
+ {
+ out[0] = 0;
+
+ return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
+ }
+
+ /* normalize the coefficients; this also makes them 16.16 */
+ a2 = FT_DivFix( a2, a );
+ a1 = FT_DivFix( a1, a );
+ a0 = FT_DivFix( a0, a );
+
+ /* compute intermediates */
+ a1x2 = FT_MulFix( a1, a2 );
+ a22 = FT_MulFix( a2, a2 );
+ a23 = FT_MulFix( a22, a2 );
+
+ q = ( 3 * a1 - a22 ) / 9;
+ r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
+
+ /* [BUG]: `q3` and `r2` still cause underflow. */
+
+ q3 = FT_MulFix( q, q );
+ q3 = FT_MulFix( q3, q );
+
+ r2 = FT_MulFix( r, r );
+
+ if ( q3 < 0 && r2 < -q3 )
+ {
+ FT_16D16 t = 0;
+
+
+ q3 = square_root( -q3 );
+ t = FT_DivFix( r, q3 );
+
+ if ( t > ( 1 << 16 ) )
+ t = ( 1 << 16 );
+ if ( t < -( 1 << 16 ) )
+ t = -( 1 << 16 );
+
+ t = arc_cos( t );
+ a2 /= 3;
+ q = 2 * square_root( -q );
+
+ out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
+ out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
+ out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
+
+ return 3;
+ }
+
+ else if ( r2 == -q3 )
+ {
+ FT_16D16 s = 0;
+
+
+ s = cube_root( r );
+ a2 /= -3;
+
+ out[0] = a2 + ( 2 * s );
+ out[1] = a2 - s;
+
+ return 2;
+ }
+
+ else
+ {
+ FT_16D16 s = 0;
+ FT_16D16 t = 0;
+ FT_16D16 dis = 0;
+
+
+ if ( q3 == 0 )
+ dis = FT_ABS( r );
+ else
+ dis = square_root( q3 + r2 );
+
+ s = cube_root( r + dis );
+ t = cube_root( r - dis );
+ a2 /= -3;
+ out[0] = ( a2 + ( s + t ) );
+
+ return 1;
+ }
+ }
+
+#endif /* !USE_NEWTON_FOR_CONIC */
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** RASTERIZER **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /**************************************************************************
+ *
+ * @Function:
+ * resolve_corner
+ *
+ * @Description:
+ * At some places on the grid two edges can give opposite directions;
+ * this happens when the closest point is on one of the endpoint. In
+ * that case we need to check the proper sign.
+ *
+ * This can be visualized by an example:
+ *
+ * ```
+ * x
+ *
+ * o
+ * ^ \
+ * / \
+ * / \
+ * (a) / \ (b)
+ * / \
+ * / \
+ * / v
+ * ```
+ *
+ * Suppose `x` is the point whose shortest distance from an arbitrary
+ * contour we want to find out. It is clear that `o` is the nearest
+ * point on the contour. Now to determine the sign we do a cross
+ * product of the shortest distance vector and the edge direction, i.e.,
+ *
+ * ```
+ * => sign = cross(x - o, direction(a))
+ * ```
+ *
+ * Using the right hand thumb rule we can see that the sign will be
+ * positive.
+ *
+ * If we use `b', however, we have
+ *
+ * ```
+ * => sign = cross(x - o, direction(b))
+ * ```
+ *
+ * In this case the sign will be negative. To determine the correct
+ * sign we thus divide the plane in two halves and check which plane the
+ * point lies in.
+ *
+ * ```
+ * |
+ * x |
+ * |
+ * o
+ * ^|\
+ * / | \
+ * / | \
+ * (a) / | \ (b)
+ * / | \
+ * / \
+ * / v
+ * ```
+ *
+ * We can see that `x` lies in the plane of `a`, so we take the sign
+ * determined by `a`. This test can be easily done by calculating the
+ * orthogonality and taking the greater one.
+ *
+ * The orthogonality is simply the sinus of the two vectors (i.e.,
+ * x - o) and the corresponding direction. We efficiently pre-compute
+ * the orthogonality with the corresponding `get_min_distance_*`
+ * functions.
+ *
+ * @Input:
+ * sdf1 ::
+ * First signed distance (can be any of `a` or `b`).
+ *
+ * sdf1 ::
+ * Second signed distance (can be any of `a` or `b`).
+ *
+ * @Return:
+ * The correct signed distance, which is computed by using the above
+ * algorithm.
+ *
+ * @Note:
+ * The function does not care about the actual distance, it simply
+ * returns the signed distance which has a larger cross product. As a
+ * consequence, this function should not be used if the two distances
+ * are fairly apart. In that case simply use the signed distance with
+ * a shorter absolute distance.
+ *
+ */
+ static SDF_Signed_Distance
+ resolve_corner( SDF_Signed_Distance sdf1,
+ SDF_Signed_Distance sdf2 )
+ {
+ return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_line
+ *
+ * @Description:
+ * Find the shortest distance from the `line` segment to a given `point`
+ * and assign it to `out`. Use it for line segments only.
+ *
+ * @Input:
+ * line ::
+ * The line segment to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `line`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The `line' parameter must have an edge type of `SDF_EDGE_LINE`.
+ *
+ */
+ static FT_Error
+ get_min_distance_line( SDF_Edge* line,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * In order to calculate the shortest distance from a point to
+ * a line segment, we do the following. Let's assume that
+ *
+ * ```
+ * a = start point of the line segment
+ * b = end point of the line segment
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) Write the parametric equation of the line.
+ *
+ * ```
+ * point_on_line = a + (b - a) * t (t is the factor)
+ * ```
+ *
+ * (2) Find the projection of point `p` on the line. The projection
+ * will be perpendicular to the line, which allows us to get the
+ * solution by making the dot product zero.
+ *
+ * ```
+ * (point_on_line - a) . (p - point_on_line) = 0
+ *
+ * (point_on_line)
+ * (a) x-------o----------------x (b)
+ * |_|
+ * |
+ * |
+ * (p)
+ * ```
+ *
+ * (3) Simplification of the above equation yields the factor of
+ * `point_on_line`:
+ *
+ * ```
+ * t = ((p - a) . (b - a)) / |b - a|^2
+ * ```
+ *
+ * (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line`
+ * can be outside of the line segment:
+ *
+ * ```
+ * (point_on_line)
+ * (a) x------------------------x (b) -----o---
+ * |_|
+ * |
+ * |
+ * (p)
+ * ```
+ *
+ * (5) Finally, the distance we are interested in is
+ *
+ * ```
+ * |point_on_line - p|
+ * ```
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_Vector a; /* start position */
+ FT_Vector b; /* end position */
+ FT_Vector p; /* current point */
+
+ FT_26D6_Vec line_segment; /* `b` - `a` */
+ FT_26D6_Vec p_sub_a; /* `p` - `a` */
+
+ FT_26D6 sq_line_length; /* squared length of `line_segment` */
+ FT_16D16 factor; /* factor of the nearest point */
+ FT_26D6 cross; /* used to determine sign */
+
+ FT_16D16_Vec nearest_point; /* `point_on_line` */
+ FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */
+
+
+ if ( !line || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( line->edge_type != SDF_EDGE_LINE )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ a = line->start_pos;
+ b = line->end_pos;
+ p = point;
+
+ line_segment.x = b.x - a.x;
+ line_segment.y = b.y - a.y;
+
+ p_sub_a.x = p.x - a.x;
+ p_sub_a.y = p.y - a.y;
+
+ sq_line_length = ( line_segment.x * line_segment.x ) / 64 +
+ ( line_segment.y * line_segment.y ) / 64;
+
+ /* currently factor is 26.6 */
+ factor = ( p_sub_a.x * line_segment.x ) / 64 +
+ ( p_sub_a.y * line_segment.y ) / 64;
+
+ /* now factor is 16.16 */
+ factor = FT_DivFix( factor, sq_line_length );
+
+ /* clamp the factor between 0.0 and 1.0 in fixed-point */
+ if ( factor > FT_INT_16D16( 1 ) )
+ factor = FT_INT_16D16( 1 );
+ if ( factor < 0 )
+ factor = 0;
+
+ nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ),
+ factor );
+ nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ),
+ factor );
+
+ nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x;
+ nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y;
+
+ nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x );
+ nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y );
+
+ cross = FT_MulFix( nearest_vector.x, line_segment.y ) -
+ FT_MulFix( nearest_vector.y, line_segment.x );
+
+ /* assign the output */
+ out->sign = cross < 0 ? 1 : -1;
+ out->distance = VECTOR_LENGTH_16D16( nearest_vector );
+
+ /* Instead of finding `cross` for checking corner we */
+ /* directly set it here. This is more efficient */
+ /* because if the distance is perpendicular we can */
+ /* directly set it to 1. */
+ if ( factor != 0 && factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 );
+ else
+ {
+ /* [OPTIMIZATION]: Pre-compute this direction. */
+ /* If not perpendicular then compute `cross`. */
+ FT_Vector_NormLen( &line_segment );
+ FT_Vector_NormLen( &nearest_vector );
+
+ out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) -
+ FT_MulFix( line_segment.y, nearest_vector.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_conic
+ *
+ * @Description:
+ * Find the shortest distance from the `conic` Bezier curve to a given
+ * `point` and assign it to `out`. Use it for conic/quadratic curves
+ * only.
+ *
+ * @Input:
+ * conic ::
+ * The conic Bezier curve to which the shortest distance is to be
+ * computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `conic`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`.
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /*
+ * The function uses an analytical method to find the shortest distance
+ * which is faster than the Newton-Raphson method, but has underflows at
+ * the moment. Use Newton's method if you can see artifacts in the SDF.
+ */
+ static FT_Error
+ get_min_distance_conic( SDF_Edge* conic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * The procedure to find the shortest distance from a point to a
+ * quadratic Bezier curve is similar to the line segment algorithm. The
+ * shortest distance is perpendicular to the Bezier curve; the only
+ * difference from line is that there can be more than one
+ * perpendicular, and we also have to check the endpoints, because the
+ * perpendicular may not be the shortest.
+ *
+ * Let's assume that
+ * ```
+ * p0 = first endpoint
+ * p1 = control point
+ * p2 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a quadratic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
+ * ```
+ *
+ * with `t` a factor in the range [0.0f, 1.0f]. This equation can
+ * be rewritten as
+ *
+ * ```
+ * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = p0 - 2p1 + p2
+ * B = p1 - p0
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^2 * A + 2t * B + p0
+ * ```
+ *
+ * (2) The derivative of the last equation above is
+ *
+ * ```
+ * B'(t) = 2 *(tA + B)
+ * ```
+ *
+ * (3) To find the shortest distance from `p` to `B(t)` we find the
+ * point on the curve at which the shortest distance vector (i.e.,
+ * `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees.
+ * In other words, we make the dot product zero.
+ *
+ * ```
+ * (B(t) - p) . (B'(t)) = 0
+ * (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0
+ * ```
+ *
+ * After simplifying we get a cubic equation
+ *
+ * ```
+ * at^3 + bt^2 + ct + d = 0
+ * ```
+ *
+ * with
+ *
+ * ```
+ * a = A.A
+ * b = 3A.B
+ * c = 2B.B + A.p0 - A.p
+ * d = p0.B - p.B
+ * ```
+ *
+ * (4) Now the roots of the equation can be computed using 'Cardano's
+ * Cubic formula'; we clamp the roots in the range [0.0f, 1.0f].
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB; /* A, B in the above comment */
+ FT_26D6_Vec nearest_point = { 0, 0 };
+ /* point on curve nearest to `point` */
+ FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_26D6 a, b, c, d; /* cubic coefficients */
+
+ FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */
+ FT_16D16 min_factor; /* factor at `nearest_point` */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
+
+ FT_UShort num_roots; /* number of real roots of cubic */
+ FT_UShort i;
+
+
+ if ( !conic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( conic->edge_type != SDF_EDGE_CONIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = conic->start_pos;
+ p1 = conic->control_a;
+ p2 = conic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = p0.x - 2 * p1.x + p2.x;
+ aA.y = p0.y - 2 * p1.y + p2.y;
+
+ bB.x = p1.x - p0.x;
+ bB.y = p1.y - p0.y;
+
+ /* compute cubic coefficients */
+ a = VEC_26D6_DOT( aA, aA );
+
+ b = 3 * VEC_26D6_DOT( aA, bB );
+
+ c = 2 * VEC_26D6_DOT( bB, bB ) +
+ VEC_26D6_DOT( aA, p0 ) -
+ VEC_26D6_DOT( aA, p );
+
+ d = VEC_26D6_DOT( p0, bB ) -
+ VEC_26D6_DOT( p, bB );
+
+ /* find the roots */
+ num_roots = solve_cubic_equation( a, b, c, d, roots );
+
+ if ( num_roots == 0 )
+ {
+ roots[0] = 0;
+ roots[1] = FT_INT_16D16( 1 );
+ num_roots = 2;
+ }
+
+ /* [OPTIMIZATION]: Check the roots, clamp them and discard */
+ /* duplicate roots. */
+
+ /* convert these values to 16.16 for further computation */
+ aA.x = FT_26D6_16D16( aA.x );
+ aA.y = FT_26D6_16D16( aA.y );
+
+ bB.x = FT_26D6_16D16( bB.x );
+ bB.y = FT_26D6_16D16( bB.y );
+
+ p0.x = FT_26D6_16D16( p0.x );
+ p0.y = FT_26D6_16D16( p0.y );
+
+ p.x = FT_26D6_16D16( p.x );
+ p.y = FT_26D6_16D16( p.y );
+
+ for ( i = 0; i < num_roots; i++ )
+ {
+ FT_16D16 t = roots[i];
+ FT_16D16 t2 = 0;
+ FT_16D16 dist = 0;
+
+ FT_16D16_Vec curve_point;
+ FT_16D16_Vec dist_vector;
+
+ /*
+ * Ideally we should discard the roots which are outside the range
+ * [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad
+ * Esfahbod proved the following lemma.
+ *
+ * Lemma:
+ *
+ * (1) If the closest point on the curve [0, 1] is to the endpoint at
+ * `t` = 1 and the cubic has no real roots at `t` = 1 then the
+ * cubic must have a real root at some `t` > 1.
+ *
+ * (2) Similarly, if the closest point on the curve [0, 1] is to the
+ * endpoint at `t` = 0 and the cubic has no real roots at `t` = 0
+ * then the cubic must have a real root at some `t` < 0.
+ *
+ * Now because of this lemma we only need to clamp the roots and that
+ * will take care of the endpoints.
+ *
+ * For more details see
+ *
+ * https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html
+ */
+
+ if ( t < 0 )
+ t = 0;
+ if ( t > FT_INT_16D16( 1 ) )
+ t = FT_INT_16D16( 1 );
+
+ t2 = FT_MulFix( t, t );
+
+ /* B(t) = t^2 * A + 2t * B + p0 - p */
+ curve_point.x = FT_MulFix( aA.x, t2 ) +
+ 2 * FT_MulFix( bB.x, t ) + p0.x;
+ curve_point.y = FT_MulFix( aA.y, t2 ) +
+ 2 * FT_MulFix( bB.y, t ) + p0.y;
+
+ /* `curve_point` - `p` */
+ dist_vector.x = curve_point.x - p.x;
+ dist_vector.y = curve_point.y - p.y;
+
+ dist = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( dist < min )
+ {
+ min = dist;
+ nearest_point = curve_point;
+ min_factor = t;
+ }
+ }
+
+ /* B'(t) = 2 * (tA + B) */
+ direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x;
+ direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - p.x, direction.y ) -
+ FT_MulFix( nearest_point.y - p.y, direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+#else /* USE_NEWTON_FOR_CONIC */
+
+ /*
+ * The function uses Newton's approximation to find the shortest distance,
+ * which is a bit slower than the analytical method but doesn't cause
+ * underflow.
+ */
+ static FT_Error
+ get_min_distance_conic( SDF_Edge* conic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * This method uses Newton-Raphson's approximation to find the shortest
+ * distance from a point to a conic curve. It does not involve solving
+ * any cubic equation, that is why there is no risk of underflow.
+ *
+ * Let's assume that
+ *
+ * ```
+ * p0 = first endpoint
+ * p1 = control point
+ * p3 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a quadratic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
+ * ```
+ *
+ * with `t` the factor in the range [0.0f, 1.0f]. The above
+ * equation can be rewritten as
+ *
+ * ```
+ * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = p0 - 2p1 + p2
+ * B = 2 * (p1 - p0)
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^2 * A + t * B + p0
+ * ```
+ *
+ * (2) The derivative of the above equation is
+ *
+ * ```
+ * B'(t) = 2t * A + B
+ * ```
+ *
+ * (3) The second derivative of the above equation is
+ *
+ * ```
+ * B''(t) = 2A
+ * ```
+ *
+ * (4) The equation `P(t)` of the distance from point `p` to the curve
+ * can be written as
+ *
+ * ```
+ * P(t) = t^2 * A + t^2 * B + p0 - p
+ * ```
+ *
+ * With
+ *
+ * ```
+ * C = p0 - p
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * P(t) = t^2 * A + t * B + C
+ * ```
+ *
+ * (5) Finally, the equation of the angle between `B(t)` and `P(t)` can
+ * be written as
+ *
+ * ```
+ * Q(t) = P(t) . B'(t)
+ * ```
+ *
+ * (6) Our task is to find a value of `t` such that the above equation
+ * `Q(t)` becomes zero, that is, the point-to-curve vector makes
+ * 90~degrees with the curve. We solve this with the Newton-Raphson
+ * method.
+ *
+ * (7) We first assume an arbitrary value of factor `t`, which we then
+ * improve.
+ *
+ * ```
+ * t := Q(t) / Q'(t)
+ * ```
+ *
+ * Putting the value of `Q(t)` from the above equation gives
+ *
+ * ```
+ * t := P(t) . B'(t) / derivative(P(t) . B'(t))
+ * t := P(t) . B'(t) /
+ * (P'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * Note that `P'(t)` is the same as `B'(t)` because the constant is
+ * gone due to the derivative.
+ *
+ * (8) Finally we get the equation to improve the factor as
+ *
+ * ```
+ * t := P(t) . B'(t) /
+ * (B'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
+ FT_26D6_Vec nearest_point = { 0, 0 };
+ /* point on curve nearest to `point` */
+ FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_16D16 min_factor = 0; /* factor at `nearest_point' */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
+
+ FT_UShort iterations;
+ FT_UShort steps;
+
+
+ if ( !conic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( conic->edge_type != SDF_EDGE_CONIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = conic->start_pos;
+ p1 = conic->control_a;
+ p2 = conic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = p0.x - 2 * p1.x + p2.x;
+ aA.y = p0.y - 2 * p1.y + p2.y;
+
+ bB.x = 2 * ( p1.x - p0.x );
+ bB.y = 2 * ( p1.y - p0.y );
+
+ cC.x = p0.x;
+ cC.y = p0.y;
+
+ /* do Newton's iterations */
+ for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
+ {
+ FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
+ FT_16D16 factor2;
+ FT_16D16 length;
+
+ FT_16D16_Vec curve_point; /* point on the curve */
+ FT_16D16_Vec dist_vector; /* `curve_point` - `p` */
+
+ FT_26D6_Vec d1; /* first derivative */
+ FT_26D6_Vec d2; /* second derivative */
+
+ FT_16D16 temp1;
+ FT_16D16 temp2;
+
+
+ for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
+ {
+ factor2 = FT_MulFix( factor, factor );
+
+ /* B(t) = t^2 * A + t * B + p0 */
+ curve_point.x = FT_MulFix( aA.x, factor2 ) +
+ FT_MulFix( bB.x, factor ) + cC.x;
+ curve_point.y = FT_MulFix( aA.y, factor2 ) +
+ FT_MulFix( bB.y, factor ) + cC.y;
+
+ /* convert to 16.16 */
+ curve_point.x = FT_26D6_16D16( curve_point.x );
+ curve_point.y = FT_26D6_16D16( curve_point.y );
+
+ /* P(t) in the comment */
+ dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
+ dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
+
+ length = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( length < min )
+ {
+ min = length;
+ min_factor = factor;
+ nearest_point = curve_point;
+ }
+
+ /* This is Newton's approximation. */
+ /* */
+ /* t := P(t) . B'(t) / */
+ /* (B'(t) . B'(t) + P(t) . B''(t)) */
+
+ /* B'(t) = 2tA + B */
+ d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
+ d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
+
+ /* B''(t) = 2A */
+ d2.x = 2 * aA.x;
+ d2.y = 2 * aA.y;
+
+ dist_vector.x /= 1024;
+ dist_vector.y /= 1024;
+
+ /* temp1 = P(t) . B'(t) */
+ temp1 = VEC_26D6_DOT( dist_vector, d1 );
+
+ /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
+ temp2 = VEC_26D6_DOT( d1, d1 ) +
+ VEC_26D6_DOT( dist_vector, d2 );
+
+ factor -= FT_DivFix( temp1, temp2 );
+
+ if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
+ break;
+ }
+ }
+
+ /* B'(t) = 2t * A + B */
+ direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
+ direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
+ direction.y ) -
+ FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
+ direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+#endif /* USE_NEWTON_FOR_CONIC */
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_cubic
+ *
+ * @Description:
+ * Find the shortest distance from the `cubic` Bezier curve to a given
+ * `point` and assigns it to `out`. Use it for cubic curves only.
+ *
+ * @Input:
+ * cubic ::
+ * The cubic Bezier curve to which the shortest distance is to be
+ * computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `cubic`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function uses Newton's approximation to find the shortest
+ * distance. Another way would be to divide the cubic into conic or
+ * subdivide the curve into lines, but that is not implemented.
+ *
+ * The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`.
+ *
+ */
+ static FT_Error
+ get_min_distance_cubic( SDF_Edge* cubic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * The procedure to find the shortest distance from a point to a cubic
+ * Bezier curve is similar to quadratic curve algorithm. The only
+ * difference is that while calculating factor `t`, instead of a cubic
+ * polynomial equation we have to find the roots of a 5th degree
+ * polynomial equation. Solving this would require a significant amount
+ * of time, and still the results may not be accurate. We are thus
+ * going to directly approximate the value of `t` using the Newton-Raphson
+ * method.
+ *
+ * Let's assume that
+ *
+ * ```
+ * p0 = first endpoint
+ * p1 = first control point
+ * p2 = second control point
+ * p3 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a cubic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 +
+ * 3(1 - t)t^2 * p2 + t^3 * p3
+ * ```
+ *
+ * The equation can be expanded and written as
+ *
+ * ```
+ * B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) +
+ * 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = -p0 + 3p1 - 3p2 + p3
+ * B = 3(p0 - 2p1 + p2)
+ * C = 3(-p0 + p1)
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^3 * A + t^2 * B + t * C + p0
+ * ```
+ *
+ * (2) The derivative of the above equation is
+ *
+ * ```
+ * B'(t) = 3t^2 * A + 2t * B + C
+ * ```
+ *
+ * (3) The second derivative of the above equation is
+ *
+ * ```
+ * B''(t) = 6t * A + 2B
+ * ```
+ *
+ * (4) The equation `P(t)` of the distance from point `p` to the curve
+ * can be written as
+ *
+ * ```
+ * P(t) = t^3 * A + t^2 * B + t * C + p0 - p
+ * ```
+ *
+ * With
+ *
+ * ```
+ * D = p0 - p
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * P(t) = t^3 * A + t^2 * B + t * C + D
+ * ```
+ *
+ * (5) Finally the equation of the angle between `B(t)` and `P(t)` can
+ * be written as
+ *
+ * ```
+ * Q(t) = P(t) . B'(t)
+ * ```
+ *
+ * (6) Our task is to find a value of `t` such that the above equation
+ * `Q(t)` becomes zero, that is, the point-to-curve vector makes
+ * 90~degree with curve. We solve this with the Newton-Raphson
+ * method.
+ *
+ * (7) We first assume an arbitrary value of factor `t`, which we then
+ * improve.
+ *
+ * ```
+ * t := Q(t) / Q'(t)
+ * ```
+ *
+ * Putting the value of `Q(t)` from the above equation gives
+ *
+ * ```
+ * t := P(t) . B'(t) / derivative(P(t) . B'(t))
+ * t := P(t) . B'(t) /
+ * (P'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * Note that `P'(t)` is the same as `B'(t)` because the constant is
+ * gone due to the derivative.
+ *
+ * (8) Finally we get the equation to improve the factor as
+ *
+ * ```
+ * t := P(t) . B'(t) /
+ * (B'(t) . B'( t ) + P(t) . B''(t))
+ * ```
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB, cC, dD; /* A, B, C, D in the above comment */
+ FT_16D16_Vec nearest_point = { 0, 0 };
+ /* point on curve nearest to `point` */
+ FT_16D16_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_16D16 min_factor = 0; /* factor at shortest distance */
+ FT_16D16 min_factor_sq = 0; /* factor at shortest distance */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest distance */
+
+ FT_UShort iterations;
+ FT_UShort steps;
+
+
+ if ( !cubic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( cubic->edge_type != SDF_EDGE_CUBIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = cubic->start_pos;
+ p1 = cubic->control_a;
+ p2 = cubic->control_b;
+ p3 = cubic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
+ aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
+
+ bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
+ bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
+
+ cC.x = 3 * ( p1.x - p0.x );
+ cC.y = 3 * ( p1.y - p0.y );
+
+ dD.x = p0.x;
+ dD.y = p0.y;
+
+ for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
+ {
+ FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
+
+ FT_16D16 factor2; /* factor^2 */
+ FT_16D16 factor3; /* factor^3 */
+ FT_16D16 length;
+
+ FT_16D16_Vec curve_point; /* point on the curve */
+ FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
+
+ FT_26D6_Vec d1; /* first derivative */
+ FT_26D6_Vec d2; /* second derivative */
+
+ FT_16D16 temp1;
+ FT_16D16 temp2;
+
+
+ for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
+ {
+ factor2 = FT_MulFix( factor, factor );
+ factor3 = FT_MulFix( factor2, factor );
+
+ /* B(t) = t^3 * A + t^2 * B + t * C + D */
+ curve_point.x = FT_MulFix( aA.x, factor3 ) +
+ FT_MulFix( bB.x, factor2 ) +
+ FT_MulFix( cC.x, factor ) + dD.x;
+ curve_point.y = FT_MulFix( aA.y, factor3 ) +
+ FT_MulFix( bB.y, factor2 ) +
+ FT_MulFix( cC.y, factor ) + dD.y;
+
+ /* convert to 16.16 */
+ curve_point.x = FT_26D6_16D16( curve_point.x );
+ curve_point.y = FT_26D6_16D16( curve_point.y );
+
+ /* P(t) in the comment */
+ dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
+ dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
+
+ length = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( length < min )
+ {
+ min = length;
+ min_factor = factor;
+ min_factor_sq = factor2;
+ nearest_point = curve_point;
+ }
+
+ /* This the Newton's approximation. */
+ /* */
+ /* t := P(t) . B'(t) / */
+ /* (B'(t) . B'(t) + P(t) . B''(t)) */
+
+ /* B'(t) = 3t^2 * A + 2t * B + C */
+ d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
+ FT_MulFix( bB.x, 2 * factor ) + cC.x;
+ d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
+ FT_MulFix( bB.y, 2 * factor ) + cC.y;
+
+ /* B''(t) = 6t * A + 2B */
+ d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
+ d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
+
+ dist_vector.x /= 1024;
+ dist_vector.y /= 1024;
+
+ /* temp1 = P(t) . B'(t) */
+ temp1 = VEC_26D6_DOT( dist_vector, d1 );
+
+ /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
+ temp2 = VEC_26D6_DOT( d1, d1 ) +
+ VEC_26D6_DOT( dist_vector, d2 );
+
+ factor -= FT_DivFix( temp1, temp2 );
+
+ if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
+ break;
+ }
+ }
+
+ /* B'(t) = 3t^2 * A + 2t * B + C */
+ direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
+ FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
+ direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
+ FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
+ direction.y ) -
+ FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
+ direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_edge_get_min_distance
+ *
+ * @Description:
+ * Find shortest distance from `point` to any type of `edge`. It checks
+ * the edge type and then calls the relevant `get_min_distance_*`
+ * function.
+ *
+ * @Input:
+ * edge ::
+ * An edge to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `edge`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_edge_get_min_distance( SDF_Edge* edge,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ FT_Error error = FT_Err_Ok;
+
+
+ if ( !edge || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* edge-specific distance calculation */
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ get_min_distance_line( edge, point, out );
+ break;
+
+ case SDF_EDGE_CONIC:
+ get_min_distance_conic( edge, point, out );
+ break;
+
+ case SDF_EDGE_CUBIC:
+ get_min_distance_cubic( edge, point, out );
+ break;
+
+ default:
+ error = FT_THROW( Invalid_Argument );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* `sdf_generate' is not used at the moment */
+#if 0
+
+ #error "DO NOT USE THIS!"
+ #error "The function still outputs 16-bit data, which might cause memory"
+ #error "corruption. If required I will add this later."
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_contour_get_min_distance
+ *
+ * @Description:
+ * Iterate over all edges that make up the contour, find the shortest
+ * distance from a point to this contour, and assigns result to `out`.
+ *
+ * @Input:
+ * contour ::
+ * A contour to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from the `point' to the `contour'.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function does not return a signed distance for each edge which
+ * makes up the contour, it simply returns the shortest of all the
+ * edges.
+ *
+ */
+ static FT_Error
+ sdf_contour_get_min_distance( SDF_Contour* contour,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Signed_Distance min_dist = max_sdf;
+ SDF_Edge* edge_list;
+
+
+ if ( !contour || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ edge_list = contour->edges;
+
+ /* iterate over all the edges manually */
+ while ( edge_list )
+ {
+ SDF_Signed_Distance current_dist = max_sdf;
+ FT_16D16 diff;
+
+
+ FT_CALL( sdf_edge_get_min_distance( edge_list,
+ point,
+ &current_dist ) );
+
+ if ( current_dist.distance >= 0 )
+ {
+ diff = current_dist.distance - min_dist.distance;
+
+
+ if ( FT_ABS( diff ) < CORNER_CHECK_EPSILON )
+ min_dist = resolve_corner( min_dist, current_dist );
+ else if ( diff < 0 )
+ min_dist = current_dist;
+ }
+ else
+ FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" ));
+
+ edge_list = edge_list->next;
+ }
+
+ *out = min_dist;
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate
+ *
+ * @Description:
+ * This is the main function that is responsible for generating signed
+ * distance fields. The function does not align or compute the size of
+ * `bitmap`; therefore the calling application must set up `bitmap`
+ * properly and transform the `shape' appropriately in advance.
+ *
+ * Currently we check all pixels against all contours and all edges.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer. See
+ * @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed in the output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_generate( const SDF_Params internal_params,
+ const SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ FT_UInt width = 0;
+ FT_UInt rows = 0;
+ FT_UInt x = 0; /* used to loop in x direction, i.e., width */
+ FT_UInt y = 0; /* used to loop in y direction, i.e., rows */
+ FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */
+
+ FT_Short* buffer;
+
+
+ if ( !shape || !bitmap )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ width = bitmap->width;
+ rows = bitmap->rows;
+ buffer = (FT_Short*)bitmap->buffer;
+
+ if ( USE_SQUARED_DISTANCES )
+ sp_sq = FT_INT_16D16( spread * spread );
+ else
+ sp_sq = FT_INT_16D16( spread );
+
+ if ( width == 0 || rows == 0 )
+ {
+ FT_TRACE0(( "sdf_generate:"
+ " Cannot render glyph with width/height == 0\n" ));
+ FT_TRACE0(( " "
+ " (width, height provided [%d, %d])\n",
+ width, rows ));
+
+ error = FT_THROW( Cannot_Render_Glyph );
+ goto Exit;
+ }
+
+ /* loop over all rows */
+ for ( y = 0; y < rows; y++ )
+ {
+ /* loop over all pixels of a row */
+ for ( x = 0; x < width; x++ )
+ {
+ /* `grid_point` is the current pixel position; */
+ /* our task is to find the shortest distance */
+ /* from this point to the entire shape. */
+ FT_26D6_Vec grid_point = zero_vector;
+ SDF_Signed_Distance min_dist = max_sdf;
+ SDF_Contour* contour_list;
+
+ FT_UInt index;
+ FT_Short value;
+
+
+ grid_point.x = FT_INT_26D6( x );
+ grid_point.y = FT_INT_26D6( y );
+
+ /* This `grid_point' is at the corner, but we */
+ /* use the center of the pixel. */
+ grid_point.x += FT_INT_26D6( 1 ) / 2;
+ grid_point.y += FT_INT_26D6( 1 ) / 2;
+
+ contour_list = shape->contours;
+
+ /* iterate over all contours manually */
+ while ( contour_list )
+ {
+ SDF_Signed_Distance current_dist = max_sdf;
+
+
+ FT_CALL( sdf_contour_get_min_distance( contour_list,
+ grid_point,
+ &current_dist ) );
+
+ if ( current_dist.distance < min_dist.distance )
+ min_dist = current_dist;
+
+ contour_list = contour_list->next;
+ }
+
+ /* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */
+ /* the value to spread to avoid square_root */
+
+ /* clamp the values to spread */
+ if ( min_dist.distance > sp_sq )
+ min_dist.distance = sp_sq;
+
+ /* square_root the values and fit in a 6.10 fixed-point */
+ if ( USE_SQUARED_DISTANCES )
+ min_dist.distance = square_root( min_dist.distance );
+
+ if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ min_dist.sign = -min_dist.sign;
+ if ( internal_params.flip_sign )
+ min_dist.sign = -min_dist.sign;
+
+ min_dist.distance /= 64; /* convert from 16.16 to 22.10 */
+
+ value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */
+ value *= min_dist.sign;
+
+ if ( internal_params.flip_y )
+ index = y * width + x;
+ else
+ index = ( rows - y - 1 ) * width + x;
+
+ buffer[index] = value;
+ }
+ }
+
+ Exit:
+ return error;
+ }
+
+#endif /* 0 */
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate_bounding_box
+ *
+ * @Description:
+ * This function does basically the same thing as `sdf_generate` above
+ * but more efficiently.
+ *
+ * Instead of checking all pixels against all edges, we loop over all
+ * edges and only check pixels around the control box of the edge; the
+ * control box is increased by the spread in all directions. Anything
+ * outside of the control box that exceeds `spread` doesn't need to be
+ * computed.
+ *
+ * Lastly, to determine the sign of unchecked pixels, we do a single
+ * pass of all rows starting with a '+' sign and flipping when we come
+ * across a '-' sign and continue. This also eliminates the possibility
+ * of overflow because we only check the proximity of the curve.
+ * Therefore we can use squared distanced safely.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer.
+ * See @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed in the output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_generate_bounding_box( const SDF_Params internal_params,
+ const SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = NULL;
+
+ FT_Int width, rows, i, j;
+ FT_Int sp_sq; /* max value to check */
+
+ SDF_Contour* contours; /* list of all contours */
+ FT_SDFFormat* buffer; /* the bitmap buffer */
+
+ /* This buffer has the same size in indices as the */
+ /* bitmap buffer. When we check a pixel position for */
+ /* a shortest distance we keep it in this buffer. */
+ /* This way we can find out which pixel is set, */
+ /* and also determine the signs properly. */
+ SDF_Signed_Distance* dists = NULL;
+
+ const FT_16D16 fixed_spread = (FT_16D16)FT_INT_16D16( spread );
+
+
+ if ( !shape || !bitmap )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ memory = shape->memory;
+ if ( !memory )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( FT_ALLOC( dists,
+ bitmap->width * bitmap->rows * sizeof ( *dists ) ) )
+ goto Exit;
+
+ contours = shape->contours;
+ width = (FT_Int)bitmap->width;
+ rows = (FT_Int)bitmap->rows;
+ buffer = (FT_SDFFormat*)bitmap->buffer;
+
+ if ( USE_SQUARED_DISTANCES )
+ sp_sq = FT_INT_16D16( (FT_Int)( spread * spread ) );
+ else
+ sp_sq = fixed_spread;
+
+ if ( width == 0 || rows == 0 )
+ {
+ FT_TRACE0(( "sdf_generate:"
+ " Cannot render glyph with width/height == 0\n" ));
+ FT_TRACE0(( " "
+ " (width, height provided [%d, %d])", width, rows ));
+
+ error = FT_THROW( Cannot_Render_Glyph );
+ goto Exit;
+ }
+
+ /* loop over all contours */
+ while ( contours )
+ {
+ SDF_Edge* edges = contours->edges;
+
+
+ /* loop over all edges */
+ while ( edges )
+ {
+ FT_CBox cbox;
+ FT_Int x, y;
+
+
+ /* get the control box and increase it by `spread' */
+ cbox = get_control_box( *edges );
+
+ cbox.xMin = ( cbox.xMin - 63 ) / 64 - ( FT_Pos )spread;
+ cbox.xMax = ( cbox.xMax + 63 ) / 64 + ( FT_Pos )spread;
+ cbox.yMin = ( cbox.yMin - 63 ) / 64 - ( FT_Pos )spread;
+ cbox.yMax = ( cbox.yMax + 63 ) / 64 + ( FT_Pos )spread;
+
+ /* now loop over the pixels in the control box. */
+ for ( y = cbox.yMin; y < cbox.yMax; y++ )
+ {
+ for ( x = cbox.xMin; x < cbox.xMax; x++ )
+ {
+ FT_26D6_Vec grid_point = zero_vector;
+ SDF_Signed_Distance dist = max_sdf;
+ FT_UInt index = 0;
+ FT_16D16 diff = 0;
+
+
+ if ( x < 0 || x >= width )
+ continue;
+ if ( y < 0 || y >= rows )
+ continue;
+
+ grid_point.x = FT_INT_26D6( x );
+ grid_point.y = FT_INT_26D6( y );
+
+ /* This `grid_point` is at the corner, but we */
+ /* use the center of the pixel. */
+ grid_point.x += FT_INT_26D6( 1 ) / 2;
+ grid_point.y += FT_INT_26D6( 1 ) / 2;
+
+ FT_CALL( sdf_edge_get_min_distance( edges,
+ grid_point,
+ &dist ) );
+
+ if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ dist.sign = -dist.sign;
+
+ /* ignore if the distance is greater than spread; */
+ /* otherwise it creates artifacts due to the wrong sign */
+ if ( dist.distance > sp_sq )
+ continue;
+
+ /* take the square root of the distance if required */
+ if ( USE_SQUARED_DISTANCES )
+ dist.distance = square_root( dist.distance );
+
+ if ( internal_params.flip_y )
+ index = (FT_UInt)( y * width + x );
+ else
+ index = (FT_UInt)( ( rows - y - 1 ) * width + x );
+
+ /* check whether the pixel is set or not */
+ if ( dists[index].sign == 0 )
+ dists[index] = dist;
+ else
+ {
+ diff = FT_ABS( dists[index].distance - dist.distance );
+
+ if ( diff <= CORNER_CHECK_EPSILON )
+ dists[index] = resolve_corner( dists[index], dist );
+ else if ( dists[index].distance > dist.distance )
+ dists[index] = dist;
+ }
+ }
+ }
+
+ edges = edges->next;
+ }
+
+ contours = contours->next;
+ }
+
+ /* final pass */
+ for ( j = 0; j < rows; j++ )
+ {
+ /* We assume the starting pixel of each row is outside. */
+ FT_Char current_sign = -1;
+ FT_UInt index;
+
+
+ if ( internal_params.overload_sign != 0 )
+ current_sign = internal_params.overload_sign < 0 ? -1 : 1;
+
+ for ( i = 0; i < width; i++ )
+ {
+ index = (FT_UInt)( j * width + i );
+
+ /* if the pixel is not set */
+ /* its shortest distance is more than `spread` */
+ if ( dists[index].sign == 0 )
+ dists[index].distance = fixed_spread;
+ else
+ current_sign = dists[index].sign;
+
+ /* clamp the values */
+ if ( dists[index].distance > fixed_spread )
+ dists[index].distance = fixed_spread;
+
+ /* flip sign if required */
+ dists[index].distance *= internal_params.flip_sign ? -current_sign
+ : current_sign;
+
+ /* concatenate to appropriate format */
+ buffer[index] = map_fixed_to_sdf( dists[index].distance,
+ fixed_spread );
+ }
+ }
+
+ Exit:
+ FT_FREE( dists );
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate_subdivision
+ *
+ * @Description:
+ * Subdivide the shape into a number of straight lines, then use the
+ * above `sdf_generate_bounding_box` function to generate the SDF.
+ *
+ * Note: After calling this function `shape` no longer has the original
+ * edges, it only contains lines.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer.
+ * See @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed inthe output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_generate_subdivision( const SDF_Params internal_params,
+ SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ /*
+ * Thanks to Alexei for providing the idea of this optimization.
+ *
+ * We take advantage of two facts.
+ *
+ * (1) Computing the shortest distance from a point to a line segment is
+ * very fast.
+ * (2) We don't have to compute the shortest distance for the entire
+ * two-dimensional grid.
+ *
+ * Both ideas lead to the following optimization.
+ *
+ * (1) Split the outlines into a number of line segments.
+ *
+ * (2) For each line segment, only process its neighborhood.
+ *
+ * (3) Compute the closest distance to the line only for neighborhood
+ * grid points.
+ *
+ * This greatly reduces the number of grid points to check.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+
+ FT_CALL( split_sdf_shape( shape ) );
+ FT_CALL( sdf_generate_bounding_box( internal_params,
+ shape, spread, bitmap ) );
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate_with_overlaps
+ *
+ * @Description:
+ * This function can be used to generate SDF for glyphs with overlapping
+ * contours. The function generates SDF for contours separately on
+ * separate bitmaps (to generate SDF it uses
+ * `sdf_generate_subdivision`). At the end it simply combines all the
+ * SDF into the output bitmap; this fixes all the signs and removes
+ * overlaps.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer. See
+ * @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed in the output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function cannot generate a proper SDF for glyphs with
+ * self-intersecting contours because we cannot separate them into two
+ * separate bitmaps. In case of self-intersecting contours it is
+ * necessary to remove the overlaps before generating the SDF.
+ *
+ */
+ static FT_Error
+ sdf_generate_with_overlaps( SDF_Params internal_params,
+ SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ FT_Int num_contours; /* total number of contours */
+ FT_Int i, j; /* iterators */
+ FT_Int width, rows; /* width and rows of the bitmap */
+ FT_Bitmap* bitmaps; /* separate bitmaps for contours */
+
+ SDF_Contour* contour; /* temporary variable to iterate */
+ SDF_Contour* temp_contour; /* temporary contour */
+ SDF_Contour* head; /* head of the contour list */
+ SDF_Shape temp_shape; /* temporary shape */
+
+ FT_Memory memory; /* to allocate memory */
+ FT_SDFFormat* t; /* target bitmap buffer */
+ FT_Bool flip_sign; /* flip sign? */
+
+ /* orientation of all the separate contours */
+ SDF_Contour_Orientation* orientations;
+
+
+ bitmaps = NULL;
+ orientations = NULL;
+ head = NULL;
+
+ if ( !shape || !bitmap || !shape->memory )
+ return FT_THROW( Invalid_Argument );
+
+ /* Disable `flip_sign` to avoid extra complication */
+ /* during the combination phase. */
+ flip_sign = internal_params.flip_sign;
+ internal_params.flip_sign = 0;
+
+ contour = shape->contours;
+ memory = shape->memory;
+ temp_shape.memory = memory;
+ width = (FT_Int)bitmap->width;
+ rows = (FT_Int)bitmap->rows;
+ num_contours = 0;
+
+ /* find the number of contours in the shape */
+ while ( contour )
+ {
+ num_contours++;
+ contour = contour->next;
+ }
+
+ /* allocate the bitmaps to generate SDF for separate contours */
+ if ( FT_ALLOC( bitmaps,
+ (FT_UInt)num_contours * sizeof ( *bitmaps ) ) )
+ goto Exit;
+
+ /* allocate array to hold orientation for all contours */
+ if ( FT_ALLOC( orientations,
+ (FT_UInt)num_contours * sizeof ( *orientations ) ) )
+ goto Exit;
+
+ contour = shape->contours;
+
+ /* Iterate over all contours and generate SDF separately. */
+ for ( i = 0; i < num_contours; i++ )
+ {
+ /* initialize the corresponding bitmap */
+ FT_Bitmap_Init( &bitmaps[i] );
+
+ bitmaps[i].width = bitmap->width;
+ bitmaps[i].rows = bitmap->rows;
+ bitmaps[i].pitch = bitmap->pitch;
+ bitmaps[i].num_grays = bitmap->num_grays;
+ bitmaps[i].pixel_mode = bitmap->pixel_mode;
+
+ /* allocate memory for the buffer */
+ if ( FT_ALLOC( bitmaps[i].buffer,
+ bitmap->rows * (FT_UInt)bitmap->pitch ) )
+ goto Exit;
+
+ /* determine the orientation */
+ orientations[i] = get_contour_orientation( contour );
+
+ /* The `overload_sign` property is specific to */
+ /* `sdf_generate_bounding_box`. This basically */
+ /* overloads the default sign of the outside */
+ /* pixels, which is necessary for */
+ /* counter-clockwise contours. */
+ if ( orientations[i] == SDF_ORIENTATION_CCW &&
+ internal_params.orientation == FT_ORIENTATION_FILL_RIGHT )
+ internal_params.overload_sign = 1;
+ else if ( orientations[i] == SDF_ORIENTATION_CW &&
+ internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ internal_params.overload_sign = 1;
+ else
+ internal_params.overload_sign = 0;
+
+ /* Make `contour->next` NULL so that there is */
+ /* one contour in the list. Also hold the next */
+ /* contour in a temporary variable so as to */
+ /* restore the original value. */
+ temp_contour = contour->next;
+ contour->next = NULL;
+
+ /* Use `temp_shape` to hold the new contour. */
+ /* Now, `temp_shape` has only one contour. */
+ temp_shape.contours = contour;
+
+ /* finally generate the SDF */
+ FT_CALL( sdf_generate_subdivision( internal_params,
+ &temp_shape,
+ spread,
+ &bitmaps[i] ) );
+
+ /* Restore the original `next` variable. */
+ contour->next = temp_contour;
+
+ /* Since `split_sdf_shape` deallocated the original */
+ /* contours list we need to assign the new value to */
+ /* the shape's contour. */
+ temp_shape.contours->next = head;
+ head = temp_shape.contours;
+
+ /* Simply flip the orientation in case of post-script fonts */
+ /* so as to avoid modificatons in the combining phase. */
+ if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ {
+ if ( orientations[i] == SDF_ORIENTATION_CW )
+ orientations[i] = SDF_ORIENTATION_CCW;
+ else if ( orientations[i] == SDF_ORIENTATION_CCW )
+ orientations[i] = SDF_ORIENTATION_CW;
+ }
+
+ contour = contour->next;
+ }
+
+ /* assign the new contour list to `shape->contours` */
+ shape->contours = head;
+
+ /* cast the output bitmap buffer */
+ t = (FT_SDFFormat*)bitmap->buffer;
+
+ /* Iterate over all pixels and combine all separate */
+ /* contours. These are the rules for combining: */
+ /* */
+ /* (1) For all clockwise contours, compute the largest */
+ /* value. Name this as `val_c`. */
+ /* (2) For all counter-clockwise contours, compute the */
+ /* smallest value. Name this as `val_ac`. */
+ /* (3) Now, finally use the smaller value of `val_c' */
+ /* and `val_ac'. */
+ for ( j = 0; j < rows; j++ )
+ {
+ for ( i = 0; i < width; i++ )
+ {
+ FT_Int id = j * width + i; /* index of current pixel */
+ FT_Int c; /* contour iterator */
+
+ FT_SDFFormat val_c = 0; /* max clockwise value */
+ FT_SDFFormat val_ac = UCHAR_MAX; /* min counter-clockwise val */
+
+
+ /* iterate through all the contours */
+ for ( c = 0; c < num_contours; c++ )
+ {
+ /* current contour value */
+ FT_SDFFormat temp = ( (FT_SDFFormat*)bitmaps[c].buffer )[id];
+
+
+ if ( orientations[c] == SDF_ORIENTATION_CW )
+ val_c = FT_MAX( val_c, temp ); /* clockwise */
+ else
+ val_ac = FT_MIN( val_ac, temp ); /* counter-clockwise */
+ }
+
+ /* Finally find the smaller of the two and assign to output. */
+ /* Also apply `flip_sign` if set. */
+ t[id] = FT_MIN( val_c, val_ac );
+
+ if ( flip_sign )
+ t[id] = invert_sign( t[id] );
+ }
+ }
+
+ Exit:
+ /* deallocate orientations array */
+ if ( orientations )
+ FT_FREE( orientations );
+
+ /* deallocate temporary bitmaps */
+ if ( bitmaps )
+ {
+ if ( num_contours == 0 )
+ error = FT_THROW( Raster_Corrupted );
+ else
+ {
+ for ( i = 0; i < num_contours; i++ )
+ FT_FREE( bitmaps[i].buffer );
+
+ FT_FREE( bitmaps );
+ }
+ }
+
+ /* restore the `flip_sign` property */
+ internal_params.flip_sign = flip_sign;
+
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * interface functions
+ *
+ */
+
+ static FT_Error
+ sdf_raster_new( void* memory_, /* FT_Memory */
+ FT_Raster* araster_ ) /* SDF_PRaster* */
+ {
+ FT_Memory memory = (FT_Memory)memory_;
+ SDF_PRaster* araster = (SDF_PRaster*)araster_;
+
+
+ FT_Error error;
+ SDF_PRaster raster = NULL;
+
+
+ if ( !FT_NEW( raster ) )
+ raster->memory = memory;
+
+ *araster = raster;
+
+ return error;
+ }
+
+
+ static void
+ sdf_raster_reset( FT_Raster raster,
+ unsigned char* pool_base,
+ unsigned long pool_size )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( pool_base );
+ FT_UNUSED( pool_size );
+ }
+
+
+ static FT_Error
+ sdf_raster_set_mode( FT_Raster raster,
+ unsigned long mode,
+ void* args )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( mode );
+ FT_UNUSED( args );
+
+ return FT_Err_Ok;
+ }
+
+
+ static FT_Error
+ sdf_raster_render( FT_Raster raster,
+ const FT_Raster_Params* params )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_TRaster* sdf_raster = (SDF_TRaster*)raster;
+ FT_Outline* outline = NULL;
+ const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params;
+
+ FT_Memory memory = NULL;
+ SDF_Shape* shape = NULL;
+ SDF_Params internal_params;
+
+
+ /* check for valid arguments */
+ if ( !sdf_raster || !sdf_params )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ outline = (FT_Outline*)sdf_params->root.source;
+
+ /* check whether outline is valid */
+ if ( !outline )
+ {
+ error = FT_THROW( Invalid_Outline );
+ goto Exit;
+ }
+
+ /* if the outline is empty, return */
+ if ( outline->n_points <= 0 || outline->n_contours <= 0 )
+ goto Exit;
+
+ /* check whether the outline has valid fields */
+ if ( !outline->contours || !outline->points )
+ {
+ error = FT_THROW( Invalid_Outline );
+ goto Exit;
+ }
+
+ /* check whether spread is set properly */
+ if ( sdf_params->spread > MAX_SPREAD ||
+ sdf_params->spread < MIN_SPREAD )
+ {
+ FT_TRACE0(( "sdf_raster_render:"
+ " The `spread' field of `SDF_Raster_Params' is invalid,\n" ));
+ FT_TRACE0(( " "
+ " the value of this field must be within [%d, %d].\n",
+ MIN_SPREAD, MAX_SPREAD ));
+ FT_TRACE0(( " "
+ " Also, you must pass `SDF_Raster_Params' instead of\n" ));
+ FT_TRACE0(( " "
+ " the default `FT_Raster_Params' while calling\n" ));
+ FT_TRACE0(( " "
+ " this function and set the fields properly.\n" ));
+
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ memory = sdf_raster->memory;
+ if ( !memory )
+ {
+ FT_TRACE0(( "sdf_raster_render:"
+ " Raster not setup properly,\n" ));
+ FT_TRACE0(( " "
+ " unable to find memory handle.\n" ));
+
+ error = FT_THROW( Invalid_Handle );
+ goto Exit;
+ }
+
+ /* set up the parameters */
+ internal_params.orientation = FT_Outline_Get_Orientation( outline );
+ internal_params.flip_sign = sdf_params->flip_sign;
+ internal_params.flip_y = sdf_params->flip_y;
+ internal_params.overload_sign = 0;
+
+ FT_CALL( sdf_shape_new( memory, &shape ) );
+
+ FT_CALL( sdf_outline_decompose( outline, shape ) );
+
+ if ( sdf_params->overlaps )
+ FT_CALL( sdf_generate_with_overlaps( internal_params,
+ shape, sdf_params->spread,
+ sdf_params->root.target ) );
+ else
+ FT_CALL( sdf_generate_subdivision( internal_params,
+ shape, sdf_params->spread,
+ sdf_params->root.target ) );
+
+ if ( shape )
+ sdf_shape_done( &shape );
+
+ Exit:
+ return error;
+ }
+
+
+ static void
+ sdf_raster_done( FT_Raster raster )
+ {
+ FT_Memory memory = (FT_Memory)((SDF_TRaster*)raster)->memory;
+
+
+ FT_FREE( raster );
+ }
+
+
+ FT_DEFINE_RASTER_FUNCS(
+ ft_sdf_raster,
+
+ FT_GLYPH_FORMAT_OUTLINE,
+
+ (FT_Raster_New_Func) sdf_raster_new, /* raster_new */
+ (FT_Raster_Reset_Func) sdf_raster_reset, /* raster_reset */
+ (FT_Raster_Set_Mode_Func)sdf_raster_set_mode, /* raster_set_mode */
+ (FT_Raster_Render_Func) sdf_raster_render, /* raster_render */
+ (FT_Raster_Done_Func) sdf_raster_done /* raster_done */
+ )
+
+
+/* END */