summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/freetype/src/sdf
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/freetype/src/sdf')
-rw-r--r--src/3rdparty/freetype/src/sdf/ftbsdf.c1350
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdf.c3932
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdf.h97
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdfcommon.c147
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdfcommon.h141
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdferrs.h37
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdfrend.c603
-rw-r--r--src/3rdparty/freetype/src/sdf/ftsdfrend.h118
-rw-r--r--src/3rdparty/freetype/src/sdf/module.mk29
-rw-r--r--src/3rdparty/freetype/src/sdf/rules.mk78
-rw-r--r--src/3rdparty/freetype/src/sdf/sdf.c29
11 files changed, 6561 insertions, 0 deletions
diff --git a/src/3rdparty/freetype/src/sdf/ftbsdf.c b/src/3rdparty/freetype/src/sdf/ftbsdf.c
new file mode 100644
index 0000000000..e472738339
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftbsdf.c
@@ -0,0 +1,1350 @@
+/****************************************************************************
+ *
+ * ftbsdf.c
+ *
+ * Signed Distance Field support for bitmap fonts (body only).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#include <freetype/internal/ftobjs.h>
+#include <freetype/internal/ftdebug.h>
+#include <freetype/internal/ftmemory.h>
+#include <freetype/fttrigon.h>
+
+#include "ftsdf.h"
+#include "ftsdferrs.h"
+#include "ftsdfcommon.h"
+
+
+ /**************************************************************************
+ *
+ * A brief technical overview of how the BSDF rasterizer works
+ * -----------------------------------------------------------
+ *
+ * [Notes]:
+ * * SDF stands for Signed Distance Field everywhere.
+ *
+ * * BSDF stands for Bitmap to Signed Distance Field rasterizer.
+ *
+ * * This renderer converts rasterized bitmaps to SDF. There is another
+ * renderer called 'sdf', which generates SDF directly from outlines;
+ * see file `ftsdf.c` for more.
+ *
+ * * The idea of generating SDF from bitmaps is taken from two research
+ * papers, where one is dependent on the other:
+ *
+ * - Per-Erik Danielsson: Euclidean Distance Mapping
+ * http://webstaff.itn.liu.se/~stegu/JFA/Danielsson.pdf
+ *
+ * From this paper we use the eight-point sequential Euclidean
+ * distance mapping (8SED). This is the heart of the process used
+ * in this rasterizer.
+ *
+ * - Stefan Gustavson, Robin Strand: Anti-aliased Euclidean distance transform.
+ * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf
+ *
+ * The original 8SED algorithm discards the pixels' alpha values,
+ * which can contain information about the actual outline of the
+ * glyph. This paper takes advantage of those alpha values and
+ * approximates outline pretty accurately.
+ *
+ * * This rasterizer also works for monochrome bitmaps. However, the
+ * result is not as accurate since we don't have any way to
+ * approximate outlines from binary bitmaps.
+ *
+ * ========================================================================
+ *
+ * Generating SDF from bitmap is done in several steps.
+ *
+ * (1) The only information we have is the bitmap itself. It can
+ * be monochrome or anti-aliased. If it is anti-aliased, pixel values
+ * are nothing but coverage values. These coverage values can be used
+ * to extract information about the outline of the image. For
+ * example, if the pixel's alpha value is 0.5, then we can safely
+ * assume that the outline passes through the center of the pixel.
+ *
+ * (2) Find edge pixels in the bitmap (see `bsdf_is_edge` for more). For
+ * all edge pixels we use the Anti-aliased Euclidean distance
+ * transform algorithm and compute approximate edge distances (see
+ * `compute_edge_distance` and/or the second paper for more).
+ *
+ * (3) Now that we have computed approximate distances for edge pixels we
+ * use the 8SED algorithm to basically sweep the entire bitmap and
+ * compute distances for the rest of the pixels. (Since the algorithm
+ * is pretty convoluted it is only explained briefly in a comment to
+ * function `edt8`. To see the actual algorithm refer to the first
+ * paper.)
+ *
+ * (4) Finally, compute the sign for each pixel. This is done in function
+ * `finalize_sdf`. The basic idea is that if a pixel's original
+ * alpha/coverage value is greater than 0.5 then it is 'inside' (and
+ * 'outside' otherwise).
+ *
+ * Pseudo Code:
+ *
+ * ```
+ * b = source bitmap;
+ * t = target bitmap;
+ * dm = list of distances; // dimension equal to b
+ *
+ * foreach grid_point (x, y) in b:
+ * {
+ * if (is_edge(x, y)):
+ * dm = approximate_edge_distance(b, x, y);
+ *
+ * // do the 8SED on the distances
+ * edt8(dm);
+ *
+ * // determine the signs
+ * determine_signs(dm):
+ *
+ * // copy SDF data to the target bitmap
+ * copy(dm to t);
+ * }
+ *
+ */
+
+
+ /**************************************************************************
+ *
+ * The macro FT_COMPONENT is used in trace mode. It is an implicit
+ * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
+ * messages during execution.
+ */
+#undef FT_COMPONENT
+#define FT_COMPONENT bsdf
+
+
+ /**************************************************************************
+ *
+ * useful macros
+ *
+ */
+
+#define ONE 65536 /* 1 in 16.16 */
+
+
+ /**************************************************************************
+ *
+ * structs
+ *
+ */
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * BSDF_TRaster
+ *
+ * @Description:
+ * This struct is used in place of @FT_Raster and is stored within the
+ * internal FreeType renderer struct. While rasterizing this is passed
+ * to the @FT_Raster_RenderFunc function, which then can be used however
+ * we want.
+ *
+ * @Fields:
+ * memory ::
+ * Used internally to allocate intermediate memory while raterizing.
+ *
+ */
+ typedef struct BSDF_TRaster_
+ {
+ FT_Memory memory;
+
+ } BSDF_TRaster, *BSDF_PRaster;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * ED
+ *
+ * @Description:
+ * Euclidean distance. It gets used for Euclidean distance transforms;
+ * it can also be interpreted as an edge distance.
+ *
+ * @Fields:
+ * dist ::
+ * Vector length of the `prox` parameter. Can be squared or absolute
+ * depending on the `USE_SQUARED_DISTANCES` macro defined in file
+ * `ftsdfcommon.h`.
+ *
+ * prox ::
+ * Vector to the nearest edge. Can also be interpreted as shortest
+ * distance of a point.
+ *
+ * alpha ::
+ * Alpha value of the original bitmap from which we generate SDF.
+ * Needed for computing the gradient and determining the proper sign
+ * of a pixel.
+ *
+ */
+ typedef struct ED_
+ {
+ FT_16D16 dist;
+ FT_16D16_Vec prox;
+ FT_Byte alpha;
+
+ } ED;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * BSDF_Worker
+ *
+ * @Description:
+ * A convenience struct that is passed to functions while generating
+ * SDF; most of those functions require the same parameters.
+ *
+ * @Fields:
+ * distance_map ::
+ * A one-dimensional array that gets interpreted as two-dimensional
+ * one. It contains the Euclidean distances of all points of the
+ * bitmap.
+ *
+ * width ::
+ * Width of the above `distance_map`.
+ *
+ * rows ::
+ * Number of rows in the above `distance_map`.
+ *
+ * params ::
+ * Internal parameters and properties required by the rasterizer. See
+ * file `ftsdf.h` for more.
+ *
+ */
+ typedef struct BSDF_Worker_
+ {
+ ED* distance_map;
+
+ FT_Int width;
+ FT_Int rows;
+
+ SDF_Raster_Params params;
+
+ } BSDF_Worker;
+
+
+ /**************************************************************************
+ *
+ * initializer
+ *
+ */
+
+ static const ED zero_ed = { 0, { 0, 0 }, 0 };
+
+
+ /**************************************************************************
+ *
+ * rasterizer functions
+ *
+ */
+
+ /**************************************************************************
+ *
+ * @Function:
+ * bsdf_is_edge
+ *
+ * @Description:
+ * Check whether a pixel is an edge pixel, i.e., whether it is
+ * surrounded by a completely black pixel (zero alpha), and the current
+ * pixel is not a completely black pixel.
+ *
+ * @Input:
+ * dm ::
+ * Array of distances. The parameter must point to the current
+ * pixel, i.e., the pixel that is to be checked for being an edge.
+ *
+ * x ::
+ * The x position of the current pixel.
+ *
+ * y ::
+ * The y position of the current pixel.
+ *
+ * w ::
+ * Width of the bitmap.
+ *
+ * r ::
+ * Number of rows in the bitmap.
+ *
+ * @Return:
+ * 1~if the current pixel is an edge pixel, 0~otherwise.
+ *
+ */
+
+#ifdef CHECK_NEIGHBOR
+#undef CHECK_NEIGHBOR
+#endif
+
+#define CHECK_NEIGHBOR( x_offset, y_offset ) \
+ do \
+ { \
+ if ( x + x_offset >= 0 && x + x_offset < w && \
+ y + y_offset >= 0 && y + y_offset < r ) \
+ { \
+ num_neighbors++; \
+ \
+ to_check = dm + y_offset * w + x_offset; \
+ if ( to_check->alpha == 0 ) \
+ { \
+ is_edge = 1; \
+ goto Done; \
+ } \
+ } \
+ } while ( 0 )
+
+ static FT_Bool
+ bsdf_is_edge( ED* dm, /* distance map */
+ FT_Int x, /* x index of point to check */
+ FT_Int y, /* y index of point to check */
+ FT_Int w, /* width */
+ FT_Int r ) /* rows */
+ {
+ FT_Bool is_edge = 0;
+ ED* to_check = NULL;
+ FT_Int num_neighbors = 0;
+
+
+ if ( dm->alpha == 0 )
+ goto Done;
+
+ if ( dm->alpha > 0 && dm->alpha < 255 )
+ {
+ is_edge = 1;
+ goto Done;
+ }
+
+ /* up */
+ CHECK_NEIGHBOR( 0, -1 );
+
+ /* down */
+ CHECK_NEIGHBOR( 0, 1 );
+
+ /* left */
+ CHECK_NEIGHBOR( -1, 0 );
+
+ /* right */
+ CHECK_NEIGHBOR( 1, 0 );
+
+ /* up left */
+ CHECK_NEIGHBOR( -1, -1 );
+
+ /* up right */
+ CHECK_NEIGHBOR( 1, -1 );
+
+ /* down left */
+ CHECK_NEIGHBOR( -1, 1 );
+
+ /* down right */
+ CHECK_NEIGHBOR( 1, 1 );
+
+ if ( num_neighbors != 8 )
+ is_edge = 1;
+
+ Done:
+ return is_edge;
+ }
+
+#undef CHECK_NEIGHBOR
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * compute_edge_distance
+ *
+ * @Description:
+ * Approximate the outline and compute the distance from `current`
+ * to the approximated outline.
+ *
+ * @Input:
+ * current ::
+ * Array of Euclidean distances. `current` must point to the position
+ * for which the distance is to be caculated. We treat this array as
+ * a two-dimensional array mapped to a one-dimensional array.
+ *
+ * x ::
+ * The x coordinate of the `current` parameter in the array.
+ *
+ * y ::
+ * The y coordinate of the `current` parameter in the array.
+ *
+ * w ::
+ * The width of the distances array.
+ *
+ * r ::
+ * Number of rows in the distances array.
+ *
+ * @Return:
+ * A vector pointing to the approximate edge distance.
+ *
+ * @Note:
+ * This is a computationally expensive function. Try to reduce the
+ * number of calls to this function. Moreover, this must only be used
+ * for edge pixel positions.
+ *
+ */
+ static FT_16D16_Vec
+ compute_edge_distance( ED* current,
+ FT_Int x,
+ FT_Int y,
+ FT_Int w,
+ FT_Int r )
+ {
+ /*
+ * This function, based on the paper presented by Stefan Gustavson and
+ * Robin Strand, gets used to approximate edge distances from
+ * anti-aliased bitmaps.
+ *
+ * The algorithm is as follows.
+ *
+ * (1) In anti-aliased images, the pixel's alpha value is the coverage
+ * of the pixel by the outline. For example, if the alpha value is
+ * 0.5f we can assume that the outline passes through the center of
+ * the pixel.
+ *
+ * (2) For this reason we can use that alpha value to approximate the real
+ * distance of the pixel to edge pretty accurately. A simple
+ * approximation is `(0.5f - alpha)`, assuming that the outline is
+ * parallel to the x or y~axis. However, in this algorithm we use a
+ * different approximation which is quite accurate even for
+ * non-axis-aligned edges.
+ *
+ * (3) The only remaining piece of information that we cannot
+ * approximate directly from the alpha is the direction of the edge.
+ * This is where we use Sobel's operator to compute the gradient of
+ * the pixel. The gradient give us a pretty good approximation of
+ * the edge direction. We use a 3x3 kernel filter to compute the
+ * gradient.
+ *
+ * (4) After the above two steps we have both the direction and the
+ * distance to the edge which is used to generate the Signed
+ * Distance Field.
+ *
+ * References:
+ *
+ * - Anti-Aliased Euclidean Distance Transform:
+ * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf
+ * - Sobel Operator:
+ * https://en.wikipedia.org/wiki/Sobel_operator
+ */
+
+ FT_16D16_Vec g = { 0, 0 };
+ FT_16D16 dist, current_alpha;
+ FT_16D16 a1, temp;
+ FT_16D16 gx, gy;
+ FT_16D16 alphas[9];
+
+
+ /* Since our spread cannot be 0, this condition */
+ /* can never be true. */
+ if ( x <= 0 || x >= w - 1 ||
+ y <= 0 || y >= r - 1 )
+ return g;
+
+ /* initialize the alphas */
+ alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha;
+ alphas[1] = 256 * (FT_16D16)current[-w ].alpha;
+ alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha;
+ alphas[3] = 256 * (FT_16D16)current[ -1].alpha;
+ alphas[4] = 256 * (FT_16D16)current[ 0].alpha;
+ alphas[5] = 256 * (FT_16D16)current[ 1].alpha;
+ alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha;
+ alphas[7] = 256 * (FT_16D16)current[ w ].alpha;
+ alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha;
+
+ current_alpha = alphas[4];
+
+ /* Compute the gradient using the Sobel operator. */
+ /* In this case we use the following 3x3 filters: */
+ /* */
+ /* For x: | -1 0 -1 | */
+ /* | -root(2) 0 root(2) | */
+ /* | -1 0 1 | */
+ /* */
+ /* For y: | -1 -root(2) -1 | */
+ /* | 0 0 0 | */
+ /* | 1 root(2) 1 | */
+ /* */
+ /* [Note]: 92681 is root(2) in 16.16 format. */
+ g.x = -alphas[0] -
+ FT_MulFix( alphas[3], 92681 ) -
+ alphas[6] +
+ alphas[2] +
+ FT_MulFix( alphas[5], 92681 ) +
+ alphas[8];
+
+ g.y = -alphas[0] -
+ FT_MulFix( alphas[1], 92681 ) -
+ alphas[2] +
+ alphas[6] +
+ FT_MulFix( alphas[7], 92681 ) +
+ alphas[8];
+
+ FT_Vector_NormLen( &g );
+
+ /* The gradient gives us the direction of the */
+ /* edge for the current pixel. Once we have the */
+ /* approximate direction of the edge, we can */
+ /* approximate the edge distance much better. */
+
+ if ( g.x == 0 || g.y == 0 )
+ dist = ONE / 2 - alphas[4];
+ else
+ {
+ gx = g.x;
+ gy = g.y;
+
+ gx = FT_ABS( gx );
+ gy = FT_ABS( gy );
+
+ if ( gx < gy )
+ {
+ temp = gx;
+ gx = gy;
+ gy = temp;
+ }
+
+ a1 = FT_DivFix( gy, gx ) / 2;
+
+ if ( current_alpha < a1 )
+ dist = ( gx + gy ) / 2 -
+ square_root( 2 * FT_MulFix( gx,
+ FT_MulFix( gy,
+ current_alpha ) ) );
+
+ else if ( current_alpha < ( ONE - a1 ) )
+ dist = FT_MulFix( ONE / 2 - current_alpha, gx );
+
+ else
+ dist = -( gx + gy ) / 2 +
+ square_root( 2 * FT_MulFix( gx,
+ FT_MulFix( gy,
+ ONE - current_alpha ) ) );
+ }
+
+ g.x = FT_MulFix( g.x, dist );
+ g.y = FT_MulFix( g.y, dist );
+
+ return g;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * bsdf_approximate_edge
+ *
+ * @Description:
+ * Loops over all the pixels and call `compute_edge_distance` only for
+ * edge pixels. This maked the process a lot faster since
+ * `compute_edge_distance` uses functions such as `FT_Vector_NormLen',
+ * which are quite slow.
+ *
+ * @InOut:
+ * worker ::
+ * Contains the distance map as well as all the relevant parameters
+ * required by the function.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function directly manipulates `worker->distance_map`.
+ *
+ */
+ static FT_Error
+ bsdf_approximate_edge( BSDF_Worker* worker )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Int i, j;
+ FT_Int index;
+ ED* ed;
+
+
+ if ( !worker || !worker->distance_map )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ ed = worker->distance_map;
+
+ for ( j = 0; j < worker->rows; j++ )
+ {
+ for ( i = 0; i < worker->width; i++ )
+ {
+ index = j * worker->width + i;
+
+ if ( bsdf_is_edge( worker->distance_map + index,
+ i, j,
+ worker->width,
+ worker->rows ) )
+ {
+ /* approximate the edge distance for edge pixels */
+ ed[index].prox = compute_edge_distance( ed + index,
+ i, j,
+ worker->width,
+ worker->rows );
+ ed[index].dist = VECTOR_LENGTH_16D16( ed[index].prox );
+ }
+ else
+ {
+ /* for non-edge pixels assign far away distances */
+ ed[index].dist = 400 * ONE;
+ ed[index].prox.x = 200 * ONE;
+ ed[index].prox.y = 200 * ONE;
+ }
+ }
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * bsdf_init_distance_map
+ *
+ * @Description:
+ * Initialize the distance map according to the '8-point sequential
+ * Euclidean distance mapping' (8SED) algorithm. Basically it copies
+ * the `source` bitmap alpha values to the `distance_map->alpha`
+ * parameter of `worker`.
+ *
+ * @Input:
+ * source ::
+ * Source bitmap to copy the data from.
+ *
+ * @Output:
+ * worker ::
+ * Target distance map to copy the data to.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ bsdf_init_distance_map( const FT_Bitmap* source,
+ BSDF_Worker* worker )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ FT_Int x_diff, y_diff;
+ FT_Int t_i, t_j, s_i, s_j;
+ FT_Byte* s;
+ ED* t;
+
+
+ /* again check the parameters (probably unnecessary) */
+ if ( !source || !worker )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* Because of the way we convert a bitmap to SDF, */
+ /* i.e., aligning the source to the center of the */
+ /* target, the target's width and rows must be */
+ /* checked before copying. */
+ if ( worker->width < (FT_Int)source->width ||
+ worker->rows < (FT_Int)source->rows )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* check pixel mode */
+ if ( source->pixel_mode == FT_PIXEL_MODE_NONE )
+ {
+ FT_ERROR(( "bsdf_copy_source_to_target:"
+ " Invalid pixel mode of source bitmap" ));
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+ if ( source->pixel_mode == FT_PIXEL_MODE_MONO )
+ {
+ FT_TRACE0(( "bsdf_copy_source_to_target:"
+ " The `bsdf' renderer can convert monochrome\n" ));
+ FT_TRACE0(( " "
+ " bitmaps to SDF but the results are not perfect\n" ));
+ FT_TRACE0(( " "
+ " because there is no way to approximate actual\n" ));
+ FT_TRACE0(( " "
+ " outlines from monochrome bitmaps. Consider\n" ));
+ FT_TRACE0(( " "
+ " using an anti-aliased bitmap instead.\n" ));
+ }
+#endif
+
+ /* Calculate the width and row differences */
+ /* between target and source. */
+ x_diff = worker->width - (int)source->width;
+ y_diff = worker->rows - (int)source->rows;
+
+ x_diff /= 2;
+ y_diff /= 2;
+
+ t = (ED*)worker->distance_map;
+ s = source->buffer;
+
+ /* For now we only support pixel mode `FT_PIXEL_MODE_MONO` */
+ /* and `FT_PIXEL_MODE_GRAY`. More will be added later. */
+ /* */
+ /* [NOTE]: We can also use @FT_Bitmap_Convert to convert */
+ /* bitmap to 8bpp. To avoid extra allocation and */
+ /* since the target bitmap can be 16bpp we manually */
+ /* convert the source bitmap to the desired bpp. */
+
+ switch ( source->pixel_mode )
+ {
+ case FT_PIXEL_MODE_MONO:
+ {
+ FT_Int t_width = worker->width;
+ FT_Int t_rows = worker->rows;
+ FT_Int s_width = (int)source->width;
+ FT_Int s_rows = (int)source->rows;
+
+
+ for ( t_j = 0; t_j < t_rows; t_j++ )
+ {
+ for ( t_i = 0; t_i < t_width; t_i++ )
+ {
+ FT_Int t_index = t_j * t_width + t_i;
+ FT_Int s_index;
+ FT_Int div, mod;
+ FT_Byte pixel, byte;
+
+
+ t[t_index] = zero_ed;
+
+ s_i = t_i - x_diff;
+ s_j = t_j - y_diff;
+
+ /* Assign 0 to padding similar to */
+ /* the source bitmap. */
+ if ( s_i < 0 || s_i >= s_width ||
+ s_j < 0 || s_j >= s_rows )
+ continue;
+
+ if ( worker->params.flip_y )
+ s_index = ( s_rows - s_j - 1 ) * source->pitch;
+ else
+ s_index = s_j * source->pitch;
+
+ div = s_index + s_i / 8;
+ mod = 7 - s_i % 8;
+
+ pixel = s[div];
+ byte = (FT_Byte)( 1 << mod );
+
+ t[t_index].alpha = pixel & byte ? 255 : 0;
+ }
+ }
+ }
+ break;
+
+ case FT_PIXEL_MODE_GRAY:
+ {
+ FT_Int t_width = worker->width;
+ FT_Int t_rows = worker->rows;
+ FT_Int s_width = (int)source->width;
+ FT_Int s_rows = (int)source->rows;
+
+
+ /* loop over all pixels and assign pixel values from source */
+ for ( t_j = 0; t_j < t_rows; t_j++ )
+ {
+ for ( t_i = 0; t_i < t_width; t_i++ )
+ {
+ FT_Int t_index = t_j * t_width + t_i;
+ FT_Int s_index;
+
+
+ t[t_index] = zero_ed;
+
+ s_i = t_i - x_diff;
+ s_j = t_j - y_diff;
+
+ /* Assign 0 to padding similar to */
+ /* the source bitmap. */
+ if ( s_i < 0 || s_i >= s_width ||
+ s_j < 0 || s_j >= s_rows )
+ continue;
+
+ if ( worker->params.flip_y )
+ s_index = ( s_rows - s_j - 1 ) * s_width + s_i;
+ else
+ s_index = s_j * s_width + s_i;
+
+ /* simply copy the alpha values */
+ t[t_index].alpha = s[s_index];
+ }
+ }
+ }
+ break;
+
+ default:
+ FT_ERROR(( "bsdf_copy_source_to_target:"
+ " unsopported pixel mode of source bitmap\n" ));
+
+ error = FT_THROW( Unimplemented_Feature );
+ break;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * compare_neighbor
+ *
+ * @Description:
+ * Compare neighbor pixel (which is defined by the offset) and update
+ * `current` distance if the new distance is shorter than the original.
+ *
+ * @Input:
+ * x_offset ::
+ * X offset of the neighbor to be checked. The offset is relative to
+ * the `current`.
+ *
+ * y_offset ::
+ * Y offset of the neighbor to be checked. The offset is relative to
+ * the `current`.
+ *
+ * width ::
+ * Width of the `current` array.
+ *
+ * @InOut:
+ * current ::
+ * Pointer into array of distances. This parameter must point to the
+ * position whose neighbor is to be checked. The array is treated as
+ * a two-dimensional array.
+ *
+ */
+ static void
+ compare_neighbor( ED* current,
+ FT_Int x_offset,
+ FT_Int y_offset,
+ FT_Int width )
+ {
+ ED* to_check;
+ FT_16D16 dist;
+ FT_16D16_Vec dist_vec;
+
+
+ to_check = current + ( y_offset * width ) + x_offset;
+
+ /*
+ * While checking for the nearest point we first approximate the
+ * distance of `current` by adding the deviation (which is sqrt(2) at
+ * most). Only if the new value is less than the current value we
+ * calculate the actual distances using `FT_Vector_Length`. This last
+ * step can be omitted by using squared distances.
+ */
+
+ /*
+ * Approximate the distance. We subtract 1 to avoid precision errors,
+ * which could happen because the two directions can be opposite.
+ */
+ dist = to_check->dist - ONE;
+
+ if ( dist < current->dist )
+ {
+ dist_vec = to_check->prox;
+
+ dist_vec.x += x_offset * ONE;
+ dist_vec.y += y_offset * ONE;
+ dist = VECTOR_LENGTH_16D16( dist_vec );
+
+ if ( dist < current->dist )
+ {
+ current->dist = dist;
+ current->prox = dist_vec;
+ }
+ }
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * first_pass
+ *
+ * @Description:
+ * First pass of the 8SED algorithm. Loop over the bitmap from top to
+ * bottom and scan each row left to right, updating the distances in
+ * `worker->distance_map`.
+ *
+ * @InOut:
+ * worker::
+ * Contains all the relevant parameters.
+ *
+ */
+ static void
+ first_pass( BSDF_Worker* worker )
+ {
+ FT_Int i, j; /* iterators */
+ FT_Int w, r; /* width, rows */
+ ED* dm; /* distance map */
+
+
+ dm = worker->distance_map;
+ w = worker->width;
+ r = worker->rows;
+
+ /* Start scanning from top to bottom and sweep each */
+ /* row back and forth comparing the distances of the */
+ /* neighborhood. Leave the first row as it has no top */
+ /* neighbor; it will be covered in the second scan of */
+ /* the image (from bottom to top). */
+ for ( j = 1; j < r; j++ )
+ {
+ FT_Int index;
+ ED* current;
+
+
+ /* Forward pass of rows (left -> right). Leave the first */
+ /* column, which gets covered in the backward pass. */
+ for ( i = 1; i < w - 1; i++ )
+ {
+ index = j * w + i;
+ current = dm + index;
+
+ /* left-up */
+ compare_neighbor( current, -1, -1, w );
+ /* up */
+ compare_neighbor( current, 0, -1, w );
+ /* up-right */
+ compare_neighbor( current, 1, -1, w );
+ /* left */
+ compare_neighbor( current, -1, 0, w );
+ }
+
+ /* Backward pass of rows (right -> left). Leave the last */
+ /* column, which was already covered in the forward pass. */
+ for ( i = w - 2; i >= 0; i-- )
+ {
+ index = j * w + i;
+ current = dm + index;
+
+ /* right */
+ compare_neighbor( current, 1, 0, w );
+ }
+ }
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * second_pass
+ *
+ * @Description:
+ * Second pass of the 8SED algorithm. Loop over the bitmap from bottom
+ * to top and scan each row left to right, updating the distances in
+ * `worker->distance_map`.
+ *
+ * @InOut:
+ * worker::
+ * Contains all the relevant parameters.
+ *
+ */
+ static void
+ second_pass( BSDF_Worker* worker )
+ {
+ FT_Int i, j; /* iterators */
+ FT_Int w, r; /* width, rows */
+ ED* dm; /* distance map */
+
+
+ dm = worker->distance_map;
+ w = worker->width;
+ r = worker->rows;
+
+ /* Start scanning from bottom to top and sweep each */
+ /* row back and forth comparing the distances of the */
+ /* neighborhood. Leave the last row as it has no down */
+ /* neighbor; it is already covered in the first scan */
+ /* of the image (from top to bottom). */
+ for ( j = r - 2; j >= 0; j-- )
+ {
+ FT_Int index;
+ ED* current;
+
+
+ /* Forward pass of rows (left -> right). Leave the first */
+ /* column, which gets covered in the backward pass. */
+ for ( i = 1; i < w - 1; i++ )
+ {
+ index = j * w + i;
+ current = dm + index;
+
+ /* left-up */
+ compare_neighbor( current, -1, 1, w );
+ /* up */
+ compare_neighbor( current, 0, 1, w );
+ /* up-right */
+ compare_neighbor( current, 1, 1, w );
+ /* left */
+ compare_neighbor( current, -1, 0, w );
+ }
+
+ /* Backward pass of rows (right -> left). Leave the last */
+ /* column, which was already covered in the forward pass. */
+ for ( i = w - 2; i >= 0; i-- )
+ {
+ index = j * w + i;
+ current = dm + index;
+
+ /* right */
+ compare_neighbor( current, 1, 0, w );
+ }
+ }
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * edt8
+ *
+ * @Description:
+ * Compute the distance map of the a bitmap. Execute both first and
+ * second pass of the 8SED algorithm.
+ *
+ * @InOut:
+ * worker::
+ * Contains all the relevant parameters.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ edt8( BSDF_Worker* worker )
+ {
+ FT_Error error = FT_Err_Ok;
+
+
+ if ( !worker || !worker->distance_map )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* first scan of the image */
+ first_pass( worker );
+
+ /* second scan of the image */
+ second_pass( worker );
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * finalize_sdf
+ *
+ * @Description:
+ * Copy the SDF data from `worker->distance_map` to the `target` bitmap.
+ * Also transform the data to output format, (which is 6.10 fixed-point
+ * format at the moment).
+ *
+ * @Input:
+ * worker ::
+ * Contains source distance map and other SDF data.
+ *
+ * @Output:
+ * target ::
+ * Target bitmap to which the SDF data is copied to.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ finalize_sdf( BSDF_Worker* worker,
+ const FT_Bitmap* target )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ FT_Int w, r;
+ FT_Int i, j;
+
+ FT_SDFFormat* t_buffer;
+ FT_16D16 sp_sq, spread;
+
+
+ if ( !worker || !target )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ w = (int)target->width;
+ r = (int)target->rows;
+ t_buffer = (FT_SDFFormat*)target->buffer;
+
+ if ( w != worker->width ||
+ r != worker->rows )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ spread = (FT_16D16)FT_INT_16D16( worker->params.spread );
+
+#if USE_SQUARED_DISTANCES
+ sp_sq = (FT_16D16)FT_INT_16D16( worker->params.spread *
+ worker->params.spread );
+#else
+ sp_sq = (FT_16D16)FT_INT_16D16( worker->params.spread );
+#endif
+
+ for ( j = 0; j < r; j++ )
+ {
+ for ( i = 0; i < w; i++ )
+ {
+ FT_Int index;
+ FT_16D16 dist;
+ FT_SDFFormat final_dist;
+ FT_Char sign;
+
+
+ index = j * w + i;
+ dist = worker->distance_map[index].dist;
+
+ if ( dist < 0 || dist > sp_sq )
+ dist = sp_sq;
+
+#if USE_SQUARED_DISTANCES
+ dist = square_root( dist );
+#endif
+
+ /* We assume that if the pixel is inside a contour */
+ /* its coverage value must be > 127. */
+ sign = worker->distance_map[index].alpha < 127 ? -1 : 1;
+
+ /* flip the sign according to the property */
+ if ( worker->params.flip_sign )
+ sign = -sign;
+
+ /* concatenate from 16.16 to appropriate format */
+ final_dist = map_fixed_to_sdf( dist * sign, spread );
+
+ t_buffer[index] = final_dist;
+ }
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * interface functions
+ *
+ */
+
+ /* called when adding a new module through @FT_Add_Module */
+ static FT_Error
+ bsdf_raster_new( void* memory_, /* FT_Memory */
+ FT_Raster* araster_ ) /* BSDF_PRaster* */
+ {
+ FT_Memory memory = (FT_Memory)memory_;
+ BSDF_PRaster* araster = (BSDF_PRaster*)araster_;
+
+ FT_Error error;
+ BSDF_PRaster raster = NULL;
+
+
+ if ( !FT_NEW( raster ) )
+ raster->memory = memory;
+
+ *araster = raster;
+
+ return error;
+ }
+
+
+ /* unused */
+ static void
+ bsdf_raster_reset( FT_Raster raster,
+ unsigned char* pool_base,
+ unsigned long pool_size )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( pool_base );
+ FT_UNUSED( pool_size );
+ }
+
+
+ /* unused */
+ static FT_Error
+ bsdf_raster_set_mode( FT_Raster raster,
+ unsigned long mode,
+ void* args )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( mode );
+ FT_UNUSED( args );
+
+ return FT_Err_Ok;
+ }
+
+
+ /* called while rendering through @FT_Render_Glyph */
+ static FT_Error
+ bsdf_raster_render( FT_Raster raster,
+ const FT_Raster_Params* params )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = NULL;
+
+ const FT_Bitmap* source = NULL;
+ const FT_Bitmap* target = NULL;
+
+ BSDF_TRaster* bsdf_raster = (BSDF_TRaster*)raster;
+ BSDF_Worker worker;
+
+ const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params;
+
+
+ worker.distance_map = NULL;
+
+ /* check for valid parameters */
+ if ( !raster || !params )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* check whether the flag is set */
+ if ( sdf_params->root.flags != FT_RASTER_FLAG_SDF )
+ {
+ error = FT_THROW( Raster_Corrupted );
+ goto Exit;
+ }
+
+ source = (const FT_Bitmap*)sdf_params->root.source;
+ target = (const FT_Bitmap*)sdf_params->root.target;
+
+ /* check source and target bitmap */
+ if ( !source || !target )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ memory = bsdf_raster->memory;
+ if ( !memory )
+ {
+ FT_TRACE0(( "bsdf_raster_render: Raster not set up properly,\n" ));
+ FT_TRACE0(( " unable to find memory handle.\n" ));
+
+ error = FT_THROW( Invalid_Handle );
+ goto Exit;
+ }
+
+ /* check whether spread is set properly */
+ if ( sdf_params->spread > MAX_SPREAD ||
+ sdf_params->spread < MIN_SPREAD )
+ {
+ FT_TRACE0(( "bsdf_raster_render:"
+ " The `spread' field of `SDF_Raster_Params'\n" ));
+ FT_TRACE0(( " "
+ " is invalid; the value of this field must be\n" ));
+ FT_TRACE0(( " "
+ " within [%d, %d].\n",
+ MIN_SPREAD, MAX_SPREAD ));
+ FT_TRACE0(( " "
+ " Also, you must pass `SDF_Raster_Params'\n" ));
+ FT_TRACE0(( " "
+ " instead of the default `FT_Raster_Params'\n" ));
+ FT_TRACE0(( " "
+ " while calling this function and set the fields\n" ));
+ FT_TRACE0(( " "
+ " accordingly.\n" ));
+
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* set up the worker */
+
+ /* allocate the distance map */
+ if ( FT_QALLOC_MULT( worker.distance_map, target->rows,
+ target->width * sizeof ( *worker.distance_map ) ) )
+ goto Exit;
+
+ worker.width = (int)target->width;
+ worker.rows = (int)target->rows;
+ worker.params = *sdf_params;
+
+ FT_CALL( bsdf_init_distance_map( source, &worker ) );
+ FT_CALL( bsdf_approximate_edge( &worker ) );
+ FT_CALL( edt8( &worker ) );
+ FT_CALL( finalize_sdf( &worker, target ) );
+
+ FT_TRACE0(( "bsdf_raster_render: Total memory used = %ld\n",
+ worker.width * worker.rows *
+ (long)sizeof ( *worker.distance_map ) ));
+
+ Exit:
+ if ( worker.distance_map )
+ FT_FREE( worker.distance_map );
+
+ return error;
+ }
+
+
+ /* called while deleting `FT_Library` only if the module is added */
+ static void
+ bsdf_raster_done( FT_Raster raster )
+ {
+ FT_Memory memory = (FT_Memory)((BSDF_TRaster*)raster)->memory;
+
+
+ FT_FREE( raster );
+ }
+
+
+ FT_DEFINE_RASTER_FUNCS(
+ ft_bitmap_sdf_raster,
+
+ FT_GLYPH_FORMAT_BITMAP,
+
+ (FT_Raster_New_Func) bsdf_raster_new, /* raster_new */
+ (FT_Raster_Reset_Func) bsdf_raster_reset, /* raster_reset */
+ (FT_Raster_Set_Mode_Func)bsdf_raster_set_mode, /* raster_set_mode */
+ (FT_Raster_Render_Func) bsdf_raster_render, /* raster_render */
+ (FT_Raster_Done_Func) bsdf_raster_done /* raster_done */
+ )
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdf.c b/src/3rdparty/freetype/src/sdf/ftsdf.c
new file mode 100644
index 0000000000..bc4625d984
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdf.c
@@ -0,0 +1,3932 @@
+/****************************************************************************
+ *
+ * ftsdf.c
+ *
+ * Signed Distance Field support for outline fonts (body).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#include <freetype/internal/ftobjs.h>
+#include <freetype/internal/ftdebug.h>
+#include <freetype/ftoutln.h>
+#include <freetype/fttrigon.h>
+#include <freetype/ftbitmap.h>
+#include "ftsdf.h"
+
+#include "ftsdferrs.h"
+
+
+ /**************************************************************************
+ *
+ * A brief technical overview of how the SDF rasterizer works
+ * ----------------------------------------------------------
+ *
+ * [Notes]:
+ * * SDF stands for Signed Distance Field everywhere.
+ *
+ * * This renderer generates SDF directly from outlines. There is
+ * another renderer called 'bsdf', which converts bitmaps to SDF; see
+ * file `ftbsdf.c` for more.
+ *
+ * * The basic idea of generating the SDF is taken from Viktor Chlumsky's
+ * research paper. The paper explains both single and multi-channel
+ * SDF, however, this implementation only generates single-channel SDF.
+ *
+ * Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance
+ * Fields. Master's thesis. Czech Technical University in Prague,
+ * Faculty of InformationTechnology, 2015.
+ *
+ * For more information: https://github.com/Chlumsky/msdfgen
+ *
+ * ========================================================================
+ *
+ * Generating SDF from outlines is pretty straightforward.
+ *
+ * (1) We have a set of contours that make the outline of a shape/glyph.
+ * Each contour comprises of several edges, with three types of edges.
+ *
+ * * line segments
+ * * conic Bezier curves
+ * * cubic Bezier curves
+ *
+ * (2) Apart from the outlines we also have a two-dimensional grid, namely
+ * the bitmap that is used to represent the final SDF data.
+ *
+ * (3) In order to generate SDF, our task is to find shortest signed
+ * distance from each grid point to the outline. The 'signed
+ * distance' means that if the grid point is filled by any contour
+ * then its sign is positive, otherwise it is negative. The pseudo
+ * code is as follows.
+ *
+ * ```
+ * foreach grid_point (x, y):
+ * {
+ * int min_dist = INT_MAX;
+ *
+ * foreach contour in outline:
+ * {
+ * foreach edge in contour:
+ * {
+ * // get shortest distance from point (x, y) to the edge
+ * d = get_min_dist(x, y, edge);
+ *
+ * if (d < min_dist)
+ * min_dist = d;
+ * }
+ *
+ * bitmap[x, y] = min_dist;
+ * }
+ * }
+ * ```
+ *
+ * (4) After running this algorithm the bitmap contains information about
+ * the shortest distance from each point to the outline of the shape.
+ * Of course, while this is the most straightforward way of generating
+ * SDF, we use various optimizations in our implementation. See the
+ * `sdf_generate_*' functions in this file for all details.
+ *
+ * The optimization currently used by default is subdivision; see
+ * function `sdf_generate_subdivision` for more.
+ *
+ * Also, to see how we compute the shortest distance from a point to
+ * each type of edge, check out the `get_min_distance_*' functions.
+ *
+ */
+
+
+ /**************************************************************************
+ *
+ * The macro FT_COMPONENT is used in trace mode. It is an implicit
+ * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
+ * messages during execution.
+ */
+#undef FT_COMPONENT
+#define FT_COMPONENT sdf
+
+
+ /**************************************************************************
+ *
+ * definitions
+ *
+ */
+
+ /*
+ * If set to 1, the rasterizer uses Newton-Raphson's method for finding
+ * the shortest distance from a point to a conic curve.
+ *
+ * If set to 0, an analytical method gets used instead, which computes the
+ * roots of a cubic polynomial to find the shortest distance. However,
+ * the analytical method can currently underflow; we thus use Newton's
+ * method by default.
+ */
+#ifndef USE_NEWTON_FOR_CONIC
+#define USE_NEWTON_FOR_CONIC 1
+#endif
+
+ /*
+ * The number of intervals a Bezier curve gets sampled and checked to find
+ * the shortest distance.
+ */
+#define MAX_NEWTON_DIVISIONS 4
+
+ /*
+ * The number of steps of Newton's iterations in each interval of the
+ * Bezier curve. Basically, we run Newton's approximation
+ *
+ * x -= Q(t) / Q'(t)
+ *
+ * for each division to get the shortest distance.
+ */
+#define MAX_NEWTON_STEPS 4
+
+ /*
+ * The epsilon distance (in 16.16 fractional units) used for corner
+ * resolving. If the difference of two distances is less than this value
+ * they will be checked for a corner if they are ambiguous.
+ */
+#define CORNER_CHECK_EPSILON 32
+
+#if 0
+ /*
+ * Coarse grid dimension. Will probably be removed in the future because
+ * coarse grid optimization is the slowest algorithm.
+ */
+#define CG_DIMEN 8
+#endif
+
+
+ /**************************************************************************
+ *
+ * macros
+ *
+ */
+
+#define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 )
+#define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \
+ MUL_26D6( p.y, q.y ) )
+
+
+ /**************************************************************************
+ *
+ * structures and enums
+ *
+ */
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_TRaster
+ *
+ * @Description:
+ * This struct is used in place of @FT_Raster and is stored within the
+ * internal FreeType renderer struct. While rasterizing it is passed to
+ * the @FT_Raster_RenderFunc function, which then can be used however we
+ * want.
+ *
+ * @Fields:
+ * memory ::
+ * Used internally to allocate intermediate memory while raterizing.
+ *
+ */
+ typedef struct SDF_TRaster_
+ {
+ FT_Memory memory;
+
+ } SDF_TRaster, *SDF_PRaster;
+
+
+ /**************************************************************************
+ *
+ * @Enum:
+ * SDF_Edge_Type
+ *
+ * @Description:
+ * Enumeration of all curve types present in fonts.
+ *
+ * @Fields:
+ * SDF_EDGE_UNDEFINED ::
+ * Undefined edge, simply used to initialize and detect errors.
+ *
+ * SDF_EDGE_LINE ::
+ * Line segment with start and end point.
+ *
+ * SDF_EDGE_CONIC ::
+ * A conic/quadratic Bezier curve with start, end, and one control
+ * point.
+ *
+ * SDF_EDGE_CUBIC ::
+ * A cubic Bezier curve with start, end, and two control points.
+ *
+ */
+ typedef enum SDF_Edge_Type_
+ {
+ SDF_EDGE_UNDEFINED = 0,
+ SDF_EDGE_LINE = 1,
+ SDF_EDGE_CONIC = 2,
+ SDF_EDGE_CUBIC = 3
+
+ } SDF_Edge_Type;
+
+
+ /**************************************************************************
+ *
+ * @Enum:
+ * SDF_Contour_Orientation
+ *
+ * @Description:
+ * Enumeration of all orientation values of a contour. We determine the
+ * orientation by calculating the area covered by a contour. Contrary
+ * to values returned by @FT_Outline_Get_Orientation,
+ * `SDF_Contour_Orientation` is independent of the fill rule, which can
+ * be different for different font formats.
+ *
+ * @Fields:
+ * SDF_ORIENTATION_NONE ::
+ * Undefined orientation, used for initialization and error detection.
+ *
+ * SDF_ORIENTATION_CW ::
+ * Clockwise orientation (positive area covered).
+ *
+ * SDF_ORIENTATION_CCW ::
+ * Counter-clockwise orientation (negative area covered).
+ *
+ * @Note:
+ * See @FT_Outline_Get_Orientation for more details.
+ *
+ */
+ typedef enum SDF_Contour_Orientation_
+ {
+ SDF_ORIENTATION_NONE = 0,
+ SDF_ORIENTATION_CW = 1,
+ SDF_ORIENTATION_CCW = 2
+
+ } SDF_Contour_Orientation;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Edge
+ *
+ * @Description:
+ * Represent an edge of a contour.
+ *
+ * @Fields:
+ * start_pos ::
+ * Start position of an edge. Valid for all types of edges.
+ *
+ * end_pos ::
+ * Etart position of an edge. Valid for all types of edges.
+ *
+ * control_a ::
+ * A control point of the edge. Valid only for `SDF_EDGE_CONIC`
+ * and `SDF_EDGE_CUBIC`.
+ *
+ * control_b ::
+ * Another control point of the edge. Valid only for
+ * `SDF_EDGE_CONIC`.
+ *
+ * edge_type ::
+ * Type of the edge, see @SDF_Edge_Type for all possible edge types.
+ *
+ * next ::
+ * Used to create a singly linked list, which can be interpreted
+ * as a contour.
+ *
+ */
+ typedef struct SDF_Edge_
+ {
+ FT_26D6_Vec start_pos;
+ FT_26D6_Vec end_pos;
+ FT_26D6_Vec control_a;
+ FT_26D6_Vec control_b;
+
+ SDF_Edge_Type edge_type;
+
+ struct SDF_Edge_* next;
+
+ } SDF_Edge;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Contour
+ *
+ * @Description:
+ * Represent a complete contour, which contains a list of edges.
+ *
+ * @Fields:
+ * last_pos ::
+ * Contains the value of `end_pos' of the last edge in the list of
+ * edges. Useful while decomposing the outline with
+ * @FT_Outline_Decompose.
+ *
+ * edges ::
+ * Linked list of all the edges that make the contour.
+ *
+ * next ::
+ * Used to create a singly linked list, which can be interpreted as a
+ * complete shape or @FT_Outline.
+ *
+ */
+ typedef struct SDF_Contour_
+ {
+ FT_26D6_Vec last_pos;
+ SDF_Edge* edges;
+
+ struct SDF_Contour_* next;
+
+ } SDF_Contour;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Shape
+ *
+ * @Description:
+ * Represent a complete shape, which is the decomposition of
+ * @FT_Outline.
+ *
+ * @Fields:
+ * memory ::
+ * Used internally to allocate memory.
+ *
+ * contours ::
+ * Linked list of all the contours that make the shape.
+ *
+ */
+ typedef struct SDF_Shape_
+ {
+ FT_Memory memory;
+ SDF_Contour* contours;
+
+ } SDF_Shape;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Signed_Distance
+ *
+ * @Description:
+ * Represent signed distance of a point, i.e., the distance of the edge
+ * nearest to the point.
+ *
+ * @Fields:
+ * distance ::
+ * Distance of the point from the nearest edge. Can be squared or
+ * absolute depending on the `USE_SQUARED_DISTANCES` macro defined in
+ * file `ftsdfcommon.h`.
+ *
+ * cross ::
+ * Cross product of the shortest distance vector (i.e., the vector
+ * from the point to the nearest edge) and the direction of the edge
+ * at the nearest point. This is used to resolve ambiguities of
+ * `sign`.
+ *
+ * sign ::
+ * A value used to indicate whether the distance vector is outside or
+ * inside the contour corresponding to the edge.
+ *
+ * @Note:
+ * `sign` may or may not be correct, therefore it must be checked
+ * properly in case there is an ambiguity.
+ *
+ */
+ typedef struct SDF_Signed_Distance_
+ {
+ FT_16D16 distance;
+ FT_16D16 cross;
+ FT_Char sign;
+
+ } SDF_Signed_Distance;
+
+
+ /**************************************************************************
+ *
+ * @Struct:
+ * SDF_Params
+ *
+ * @Description:
+ * Yet another internal parameters required by the rasterizer.
+ *
+ * @Fields:
+ * orientation ::
+ * This is not the @SDF_Contour_Orientation value but @FT_Orientation,
+ * which determines whether clockwise-oriented outlines are to be
+ * filled or counter-clockwise-oriented ones.
+ *
+ * flip_sign ::
+ * If set to true, flip the sign. By default the points filled by the
+ * outline are positive.
+ *
+ * flip_y ::
+ * If set to true the output bitmap is upside-down. Can be useful
+ * because OpenGL and DirectX use different coordinate systems for
+ * textures.
+ *
+ * overload_sign ::
+ * In the subdivision and bounding box optimization, the default
+ * outside sign is taken as -1. This parameter can be used to modify
+ * that behaviour. For example, while generating SDF for a single
+ * counter-clockwise contour, the outside sign should be 1.
+ *
+ */
+ typedef struct SDF_Params_
+ {
+ FT_Orientation orientation;
+ FT_Bool flip_sign;
+ FT_Bool flip_y;
+
+ FT_Int overload_sign;
+
+ } SDF_Params;
+
+
+ /**************************************************************************
+ *
+ * constants, initializer, and destructor
+ *
+ */
+
+ static
+ const FT_Vector zero_vector = { 0, 0 };
+
+ static
+ const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 },
+ { 0, 0 }, { 0, 0 },
+ SDF_EDGE_UNDEFINED, NULL };
+
+ static
+ const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL };
+
+ static
+ const SDF_Shape null_shape = { NULL, NULL };
+
+ static
+ const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 };
+
+
+ /* Create a new @SDF_Edge on the heap and assigns the `edge` */
+ /* pointer to the newly allocated memory. */
+ static FT_Error
+ sdf_edge_new( FT_Memory memory,
+ SDF_Edge** edge )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Edge* ptr = NULL;
+
+
+ if ( !memory || !edge )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( !FT_QNEW( ptr ) )
+ {
+ *ptr = null_edge;
+ *edge = ptr;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* Free the allocated `edge` variable. */
+ static void
+ sdf_edge_done( FT_Memory memory,
+ SDF_Edge** edge )
+ {
+ if ( !memory || !edge || !*edge )
+ return;
+
+ FT_FREE( *edge );
+ }
+
+
+ /* Create a new @SDF_Contour on the heap and assign */
+ /* the `contour` pointer to the newly allocated memory. */
+ static FT_Error
+ sdf_contour_new( FT_Memory memory,
+ SDF_Contour** contour )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Contour* ptr = NULL;
+
+
+ if ( !memory || !contour )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( !FT_QNEW( ptr ) )
+ {
+ *ptr = null_contour;
+ *contour = ptr;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* Free the allocated `contour` variable. */
+ /* Also free the list of edges. */
+ static void
+ sdf_contour_done( FT_Memory memory,
+ SDF_Contour** contour )
+ {
+ SDF_Edge* edges;
+ SDF_Edge* temp;
+
+
+ if ( !memory || !contour || !*contour )
+ return;
+
+ edges = (*contour)->edges;
+
+ /* release all edges */
+ while ( edges )
+ {
+ temp = edges;
+ edges = edges->next;
+
+ sdf_edge_done( memory, &temp );
+ }
+
+ FT_FREE( *contour );
+ }
+
+
+ /* Create a new @SDF_Shape on the heap and assign */
+ /* the `shape` pointer to the newly allocated memory. */
+ static FT_Error
+ sdf_shape_new( FT_Memory memory,
+ SDF_Shape** shape )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Shape* ptr = NULL;
+
+
+ if ( !memory || !shape )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( !FT_QNEW( ptr ) )
+ {
+ *ptr = null_shape;
+ ptr->memory = memory;
+ *shape = ptr;
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* Free the allocated `shape` variable. */
+ /* Also free the list of contours. */
+ static void
+ sdf_shape_done( SDF_Shape** shape )
+ {
+ FT_Memory memory;
+ SDF_Contour* contours;
+ SDF_Contour* temp;
+
+
+ if ( !shape || !*shape )
+ return;
+
+ memory = (*shape)->memory;
+ contours = (*shape)->contours;
+
+ if ( !memory )
+ return;
+
+ /* release all contours */
+ while ( contours )
+ {
+ temp = contours;
+ contours = contours->next;
+
+ sdf_contour_done( memory, &temp );
+ }
+
+ /* release the allocated shape struct */
+ FT_FREE( *shape );
+ }
+
+
+ /**************************************************************************
+ *
+ * shape decomposition functions
+ *
+ */
+
+ /* This function is called when starting a new contour at `to`, */
+ /* which gets added to the shape's list. */
+ static FT_Error
+ sdf_move_to( const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ FT_CALL( sdf_contour_new( memory, &contour ) );
+
+ contour->last_pos = *to;
+ contour->next = shape->contours;
+ shape->contours = contour;
+
+ Exit:
+ return error;
+ }
+
+
+ /* This function is called when there is a line in the */
+ /* contour. The line starts at the previous edge point and */
+ /* stops at `to`. */
+ static FT_Error
+ sdf_line_to( const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Edge* edge = NULL;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contour = shape->contours;
+
+ if ( contour->last_pos.x == to->x &&
+ contour->last_pos.y == to->y )
+ goto Exit;
+
+ FT_CALL( sdf_edge_new( memory, &edge ) );
+
+ edge->edge_type = SDF_EDGE_LINE;
+ edge->start_pos = contour->last_pos;
+ edge->end_pos = *to;
+
+ edge->next = contour->edges;
+ contour->edges = edge;
+ contour->last_pos = *to;
+
+ Exit:
+ return error;
+ }
+
+
+ /* This function is called when there is a conic Bezier curve */
+ /* in the contour. The curve starts at the previous edge point */
+ /* and stops at `to`, with control point `control_1`. */
+ static FT_Error
+ sdf_conic_to( const FT_26D6_Vec* control_1,
+ const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Edge* edge = NULL;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !control_1 || !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contour = shape->contours;
+
+ /* If the control point coincides with any of the end points */
+ /* then it is a line and should be treated as one to avoid */
+ /* unnecessary complexity later in the algorithm. */
+ if ( ( contour->last_pos.x == control_1->x &&
+ contour->last_pos.y == control_1->y ) ||
+ ( control_1->x == to->x &&
+ control_1->y == to->y ) )
+ {
+ sdf_line_to( to, user );
+ goto Exit;
+ }
+
+ FT_CALL( sdf_edge_new( memory, &edge ) );
+
+ edge->edge_type = SDF_EDGE_CONIC;
+ edge->start_pos = contour->last_pos;
+ edge->control_a = *control_1;
+ edge->end_pos = *to;
+
+ edge->next = contour->edges;
+ contour->edges = edge;
+ contour->last_pos = *to;
+
+ Exit:
+ return error;
+ }
+
+
+ /* This function is called when there is a cubic Bezier curve */
+ /* in the contour. The curve starts at the previous edge point */
+ /* and stops at `to`, with two control points `control_1` and */
+ /* `control_2`. */
+ static FT_Error
+ sdf_cubic_to( const FT_26D6_Vec* control_1,
+ const FT_26D6_Vec* control_2,
+ const FT_26D6_Vec* to,
+ void* user )
+ {
+ SDF_Shape* shape = ( SDF_Shape* )user;
+ SDF_Edge* edge = NULL;
+ SDF_Contour* contour = NULL;
+
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = shape->memory;
+
+
+ if ( !control_2 || !control_1 || !to || !user )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contour = shape->contours;
+
+ FT_CALL( sdf_edge_new( memory, &edge ) );
+
+ edge->edge_type = SDF_EDGE_CUBIC;
+ edge->start_pos = contour->last_pos;
+ edge->control_a = *control_1;
+ edge->control_b = *control_2;
+ edge->end_pos = *to;
+
+ edge->next = contour->edges;
+ contour->edges = edge;
+ contour->last_pos = *to;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Construct the structure to hold all four outline */
+ /* decomposition functions. */
+ FT_DEFINE_OUTLINE_FUNCS(
+ sdf_decompose_funcs,
+
+ (FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */
+ (FT_Outline_LineTo_Func) sdf_line_to, /* line_to */
+ (FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */
+ (FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */
+
+ 0, /* shift */
+ 0 /* delta */
+ )
+
+
+ /* Decompose `outline` and put it into the `shape` structure. */
+ static FT_Error
+ sdf_outline_decompose( FT_Outline* outline,
+ SDF_Shape* shape )
+ {
+ FT_Error error = FT_Err_Ok;
+
+
+ if ( !outline || !shape )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ error = FT_Outline_Decompose( outline,
+ &sdf_decompose_funcs,
+ (void*)shape );
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * utility functions
+ *
+ */
+
+ /* Return the control box of an edge. The control box is a rectangle */
+ /* in which all the control points can fit tightly. */
+ static FT_CBox
+ get_control_box( SDF_Edge edge )
+ {
+ FT_CBox cbox = { 0, 0, 0, 0 };
+ FT_Bool is_set = 0;
+
+
+ switch ( edge.edge_type )
+ {
+ case SDF_EDGE_CUBIC:
+ cbox.xMin = edge.control_b.x;
+ cbox.xMax = edge.control_b.x;
+ cbox.yMin = edge.control_b.y;
+ cbox.yMax = edge.control_b.y;
+
+ is_set = 1;
+ FALL_THROUGH;
+
+ case SDF_EDGE_CONIC:
+ if ( is_set )
+ {
+ cbox.xMin = edge.control_a.x < cbox.xMin
+ ? edge.control_a.x
+ : cbox.xMin;
+ cbox.xMax = edge.control_a.x > cbox.xMax
+ ? edge.control_a.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.control_a.y < cbox.yMin
+ ? edge.control_a.y
+ : cbox.yMin;
+ cbox.yMax = edge.control_a.y > cbox.yMax
+ ? edge.control_a.y
+ : cbox.yMax;
+ }
+ else
+ {
+ cbox.xMin = edge.control_a.x;
+ cbox.xMax = edge.control_a.x;
+ cbox.yMin = edge.control_a.y;
+ cbox.yMax = edge.control_a.y;
+
+ is_set = 1;
+ }
+ FALL_THROUGH;
+
+ case SDF_EDGE_LINE:
+ if ( is_set )
+ {
+ cbox.xMin = edge.start_pos.x < cbox.xMin
+ ? edge.start_pos.x
+ : cbox.xMin;
+ cbox.xMax = edge.start_pos.x > cbox.xMax
+ ? edge.start_pos.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.start_pos.y < cbox.yMin
+ ? edge.start_pos.y
+ : cbox.yMin;
+ cbox.yMax = edge.start_pos.y > cbox.yMax
+ ? edge.start_pos.y
+ : cbox.yMax;
+ }
+ else
+ {
+ cbox.xMin = edge.start_pos.x;
+ cbox.xMax = edge.start_pos.x;
+ cbox.yMin = edge.start_pos.y;
+ cbox.yMax = edge.start_pos.y;
+ }
+
+ cbox.xMin = edge.end_pos.x < cbox.xMin
+ ? edge.end_pos.x
+ : cbox.xMin;
+ cbox.xMax = edge.end_pos.x > cbox.xMax
+ ? edge.end_pos.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.end_pos.y < cbox.yMin
+ ? edge.end_pos.y
+ : cbox.yMin;
+ cbox.yMax = edge.end_pos.y > cbox.yMax
+ ? edge.end_pos.y
+ : cbox.yMax;
+
+ break;
+
+ default:
+ break;
+ }
+
+ return cbox;
+ }
+
+
+ /* Return orientation of a single contour. */
+ /* Note that the orientation is independent of the fill rule! */
+ /* So, for TTF a clockwise-oriented contour has to be filled */
+ /* and the opposite for OTF fonts. */
+ static SDF_Contour_Orientation
+ get_contour_orientation ( SDF_Contour* contour )
+ {
+ SDF_Edge* head = NULL;
+ FT_26D6 area = 0;
+
+
+ /* return none if invalid parameters */
+ if ( !contour || !contour->edges )
+ return SDF_ORIENTATION_NONE;
+
+ head = contour->edges;
+
+ /* Calculate the area of the control box for all edges. */
+ while ( head )
+ {
+ switch ( head->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
+ ( head->end_pos.y + head->start_pos.y ) );
+ break;
+
+ case SDF_EDGE_CONIC:
+ area += MUL_26D6( head->control_a.x - head->start_pos.x,
+ head->control_a.y + head->start_pos.y );
+ area += MUL_26D6( head->end_pos.x - head->control_a.x,
+ head->end_pos.y + head->control_a.y );
+ break;
+
+ case SDF_EDGE_CUBIC:
+ area += MUL_26D6( head->control_a.x - head->start_pos.x,
+ head->control_a.y + head->start_pos.y );
+ area += MUL_26D6( head->control_b.x - head->control_a.x,
+ head->control_b.y + head->control_a.y );
+ area += MUL_26D6( head->end_pos.x - head->control_b.x,
+ head->end_pos.y + head->control_b.y );
+ break;
+
+ default:
+ return SDF_ORIENTATION_NONE;
+ }
+
+ head = head->next;
+ }
+
+ /* Clockwise contours cover a positive area, and counter-clockwise */
+ /* contours cover a negative area. */
+ if ( area > 0 )
+ return SDF_ORIENTATION_CW;
+ else
+ return SDF_ORIENTATION_CCW;
+ }
+
+
+ /* This function is exactly the same as the one */
+ /* in the smooth renderer. It splits a conic */
+ /* into two conics exactly half way at t = 0.5. */
+ static void
+ split_conic( FT_26D6_Vec* base )
+ {
+ FT_26D6 a, b;
+
+
+ base[4].x = base[2].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ base[3].x = b / 2;
+ base[2].x = ( a + b ) / 4;
+ base[1].x = a / 2;
+
+ base[4].y = base[2].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ base[3].y = b / 2;
+ base[2].y = ( a + b ) / 4;
+ base[1].y = a / 2;
+ }
+
+
+ /* This function is exactly the same as the one */
+ /* in the smooth renderer. It splits a cubic */
+ /* into two cubics exactly half way at t = 0.5. */
+ static void
+ split_cubic( FT_26D6_Vec* base )
+ {
+ FT_26D6 a, b, c;
+
+
+ base[6].x = base[3].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ c = base[2].x + base[3].x;
+ base[5].x = c / 2;
+ c += b;
+ base[4].x = c / 4;
+ base[1].x = a / 2;
+ a += b;
+ base[2].x = a / 4;
+ base[3].x = ( a + c ) / 8;
+
+ base[6].y = base[3].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ c = base[2].y + base[3].y;
+ base[5].y = c / 2;
+ c += b;
+ base[4].y = c / 4;
+ base[1].y = a / 2;
+ a += b;
+ base[2].y = a / 4;
+ base[3].y = ( a + c ) / 8;
+ }
+
+
+ /* Split a conic Bezier curve into a number of lines */
+ /* and add them to `out'. */
+ /* */
+ /* This function uses recursion; we thus need */
+ /* parameter `max_splits' for stopping. */
+ static FT_Error
+ split_sdf_conic( FT_Memory memory,
+ FT_26D6_Vec* control_points,
+ FT_UInt max_splits,
+ SDF_Edge** out )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_26D6_Vec cpos[5];
+ SDF_Edge* left,* right;
+
+
+ if ( !memory || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* split conic outline */
+ cpos[0] = control_points[0];
+ cpos[1] = control_points[1];
+ cpos[2] = control_points[2];
+
+ split_conic( cpos );
+
+ /* If max number of splits is done */
+ /* then stop and add the lines to */
+ /* the list. */
+ if ( max_splits <= 2 )
+ goto Append;
+
+ /* Otherwise keep splitting. */
+ FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
+ FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );
+
+ /* [NOTE]: This is not an efficient way of */
+ /* splitting the curve. Check the deviation */
+ /* instead and stop if the deviation is less */
+ /* than a pixel. */
+
+ goto Exit;
+
+ Append:
+ /* Do allocation and add the lines to the list. */
+
+ FT_CALL( sdf_edge_new( memory, &left ) );
+ FT_CALL( sdf_edge_new( memory, &right ) );
+
+ left->start_pos = cpos[0];
+ left->end_pos = cpos[2];
+ left->edge_type = SDF_EDGE_LINE;
+
+ right->start_pos = cpos[2];
+ right->end_pos = cpos[4];
+ right->edge_type = SDF_EDGE_LINE;
+
+ left->next = right;
+ right->next = (*out);
+ *out = left;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Split a cubic Bezier curve into a number of lines */
+ /* and add them to `out`. */
+ /* */
+ /* This function uses recursion; we thus need */
+ /* parameter `max_splits' for stopping. */
+ static FT_Error
+ split_sdf_cubic( FT_Memory memory,
+ FT_26D6_Vec* control_points,
+ FT_UInt max_splits,
+ SDF_Edge** out )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_26D6_Vec cpos[7];
+ SDF_Edge* left, *right;
+ const FT_26D6 threshold = ONE_PIXEL / 4;
+
+
+ if ( !memory || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* split the cubic */
+ cpos[0] = control_points[0];
+ cpos[1] = control_points[1];
+ cpos[2] = control_points[2];
+ cpos[3] = control_points[3];
+
+ /* If the segment is flat enough we won't get any benefit by */
+ /* splitting it further, so we can just stop splitting. */
+ /* */
+ /* Check the deviation of the Bezier curve and stop if it is */
+ /* smaller than the pre-defined `threshold` value. */
+ if ( FT_ABS( 2 * cpos[0].x - 3 * cpos[1].x + cpos[3].x ) < threshold &&
+ FT_ABS( 2 * cpos[0].y - 3 * cpos[1].y + cpos[3].y ) < threshold &&
+ FT_ABS( cpos[0].x - 3 * cpos[2].x + 2 * cpos[3].x ) < threshold &&
+ FT_ABS( cpos[0].y - 3 * cpos[2].y + 2 * cpos[3].y ) < threshold )
+ {
+ split_cubic( cpos );
+ goto Append;
+ }
+
+ split_cubic( cpos );
+
+ /* If max number of splits is done */
+ /* then stop and add the lines to */
+ /* the list. */
+ if ( max_splits <= 2 )
+ goto Append;
+
+ /* Otherwise keep splitting. */
+ FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
+ FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );
+
+ /* [NOTE]: This is not an efficient way of */
+ /* splitting the curve. Check the deviation */
+ /* instead and stop if the deviation is less */
+ /* than a pixel. */
+
+ goto Exit;
+
+ Append:
+ /* Do allocation and add the lines to the list. */
+
+ FT_CALL( sdf_edge_new( memory, &left) );
+ FT_CALL( sdf_edge_new( memory, &right) );
+
+ left->start_pos = cpos[0];
+ left->end_pos = cpos[3];
+ left->edge_type = SDF_EDGE_LINE;
+
+ right->start_pos = cpos[3];
+ right->end_pos = cpos[6];
+ right->edge_type = SDF_EDGE_LINE;
+
+ left->next = right;
+ right->next = (*out);
+ *out = left;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Subdivide an entire shape into line segments */
+ /* such that it doesn't look visually different */
+ /* from the original curve. */
+ static FT_Error
+ split_sdf_shape( SDF_Shape* shape )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory;
+
+ SDF_Contour* contours;
+ SDF_Contour* new_contours = NULL;
+
+
+ if ( !shape || !shape->memory )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contours = shape->contours;
+ memory = shape->memory;
+
+ /* for each contour */
+ while ( contours )
+ {
+ SDF_Edge* edges = contours->edges;
+ SDF_Edge* new_edges = NULL;
+
+ SDF_Contour* tempc;
+
+
+ /* for each edge */
+ while ( edges )
+ {
+ SDF_Edge* edge = edges;
+ SDF_Edge* temp;
+
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ /* Just create a duplicate edge in case */
+ /* it is a line. We can use the same edge. */
+ FT_CALL( sdf_edge_new( memory, &temp ) );
+
+ ft_memcpy( temp, edge, sizeof ( *edge ) );
+
+ temp->next = new_edges;
+ new_edges = temp;
+ break;
+
+ case SDF_EDGE_CONIC:
+ /* Subdivide the curve and add it to the list. */
+ {
+ FT_26D6_Vec ctrls[3];
+ FT_26D6 dx, dy;
+ FT_UInt num_splits;
+
+
+ ctrls[0] = edge->start_pos;
+ ctrls[1] = edge->control_a;
+ ctrls[2] = edge->end_pos;
+
+ dx = FT_ABS( ctrls[2].x + ctrls[0].x - 2 * ctrls[1].x );
+ dy = FT_ABS( ctrls[2].y + ctrls[0].y - 2 * ctrls[1].y );
+ if ( dx < dy )
+ dx = dy;
+
+ /* Calculate the number of necessary bisections. Each */
+ /* bisection causes a four-fold reduction of the deviation, */
+ /* hence we bisect the Bezier curve until the deviation */
+ /* becomes less than 1/8 of a pixel. For more details */
+ /* check file `ftgrays.c`. */
+ num_splits = 1;
+ while ( dx > ONE_PIXEL / 8 )
+ {
+ dx >>= 2;
+ num_splits <<= 1;
+ }
+
+ error = split_sdf_conic( memory, ctrls, num_splits, &new_edges );
+ }
+ break;
+
+ case SDF_EDGE_CUBIC:
+ /* Subdivide the curve and add it to the list. */
+ {
+ FT_26D6_Vec ctrls[4];
+
+
+ ctrls[0] = edge->start_pos;
+ ctrls[1] = edge->control_a;
+ ctrls[2] = edge->control_b;
+ ctrls[3] = edge->end_pos;
+
+ error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
+ }
+ break;
+
+ default:
+ error = FT_THROW( Invalid_Argument );
+ }
+
+ if ( error != FT_Err_Ok )
+ goto Exit;
+
+ edges = edges->next;
+ }
+
+ /* add to the contours list */
+ FT_CALL( sdf_contour_new( memory, &tempc ) );
+
+ tempc->next = new_contours;
+ tempc->edges = new_edges;
+ new_contours = tempc;
+ new_edges = NULL;
+
+ /* deallocate the contour */
+ tempc = contours;
+ contours = contours->next;
+
+ sdf_contour_done( memory, &tempc );
+ }
+
+ shape->contours = new_contours;
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * for debugging
+ *
+ */
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+
+ static void
+ sdf_shape_dump( SDF_Shape* shape )
+ {
+ FT_UInt num_contours = 0;
+
+ FT_UInt total_edges = 0;
+ FT_UInt total_lines = 0;
+ FT_UInt total_conic = 0;
+ FT_UInt total_cubic = 0;
+
+ SDF_Contour* contour_list;
+
+
+ if ( !shape )
+ {
+ FT_TRACE5(( "sdf_shape_dump: null shape\n" ));
+ return;
+ }
+
+ contour_list = shape->contours;
+
+ FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" ));
+
+ while ( contour_list )
+ {
+ FT_UInt num_edges = 0;
+ SDF_Edge* edge_list;
+ SDF_Contour* contour = contour_list;
+
+
+ FT_TRACE5(( " Contour %d\n", num_contours ));
+
+ edge_list = contour->edges;
+
+ while ( edge_list )
+ {
+ SDF_Edge* edge = edge_list;
+
+
+ FT_TRACE5(( " %3d: ", num_edges ));
+
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n",
+ edge->start_pos.x, edge->start_pos.y,
+ edge->end_pos.x, edge->end_pos.y ));
+ total_lines++;
+ break;
+
+ case SDF_EDGE_CONIC:
+ FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n",
+ edge->start_pos.x, edge->start_pos.y,
+ edge->control_a.x, edge->control_a.y,
+ edge->end_pos.x, edge->end_pos.y ));
+ total_conic++;
+ break;
+
+ case SDF_EDGE_CUBIC:
+ FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)"
+ " .. (%ld, %ld) .. (%ld %ld)\n",
+ edge->start_pos.x, edge->start_pos.y,
+ edge->control_a.x, edge->control_a.y,
+ edge->control_b.x, edge->control_b.y,
+ edge->end_pos.x, edge->end_pos.y ));
+ total_cubic++;
+ break;
+
+ default:
+ break;
+ }
+
+ num_edges++;
+ total_edges++;
+ edge_list = edge_list->next;
+ }
+
+ num_contours++;
+ contour_list = contour_list->next;
+ }
+
+ FT_TRACE5(( "\n" ));
+ FT_TRACE5(( " total number of contours = %d\n", num_contours ));
+ FT_TRACE5(( " total number of edges = %d\n", total_edges ));
+ FT_TRACE5(( " |__lines = %d\n", total_lines ));
+ FT_TRACE5(( " |__conic = %d\n", total_conic ));
+ FT_TRACE5(( " |__cubic = %d\n", total_cubic ));
+ }
+
+#endif /* FT_DEBUG_LEVEL_TRACE */
+
+
+ /**************************************************************************
+ *
+ * math functions
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /* [NOTE]: All the functions below down until rasterizer */
+ /* can be avoided if we decide to subdivide the */
+ /* curve into lines. */
+
+ /* This function uses Newton's iteration to find */
+ /* the cube root of a fixed-point integer. */
+ static FT_16D16
+ cube_root( FT_16D16 val )
+ {
+ /* [IMPORTANT]: This function is not good as it may */
+ /* not break, so use a lookup table instead. Or we */
+ /* can use an algorithm similar to `square_root`. */
+
+ FT_Int v, g, c;
+
+
+ if ( val == 0 ||
+ val == -FT_INT_16D16( 1 ) ||
+ val == FT_INT_16D16( 1 ) )
+ return val;
+
+ v = val < 0 ? -val : val;
+ g = square_root( v );
+ c = 0;
+
+ while ( 1 )
+ {
+ c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
+ c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
+
+ g -= c;
+
+ if ( ( c < 0 ? -c : c ) < 30 )
+ break;
+ }
+
+ return val < 0 ? -g : g;
+ }
+
+
+ /* Calculate the perpendicular by using '1 - base^2'. */
+ /* Then use arctan to compute the angle. */
+ static FT_16D16
+ arc_cos( FT_16D16 val )
+ {
+ FT_16D16 p;
+ FT_16D16 b = val;
+ FT_16D16 one = FT_INT_16D16( 1 );
+
+
+ if ( b > one )
+ b = one;
+ if ( b < -one )
+ b = -one;
+
+ p = one - FT_MulFix( b, b );
+ p = square_root( p );
+
+ return FT_Atan2( b, p );
+ }
+
+
+ /* Compute roots of a quadratic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/QuadraticFormula.html */
+ static FT_UShort
+ solve_quadratic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_16D16 out[2] )
+ {
+ FT_16D16 discriminant = 0;
+
+
+ a = FT_26D6_16D16( a );
+ b = FT_26D6_16D16( b );
+ c = FT_26D6_16D16( c );
+
+ if ( a == 0 )
+ {
+ if ( b == 0 )
+ return 0;
+ else
+ {
+ out[0] = FT_DivFix( -c, b );
+
+ return 1;
+ }
+ }
+
+ discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
+
+ if ( discriminant < 0 )
+ return 0;
+ else if ( discriminant == 0 )
+ {
+ out[0] = FT_DivFix( -b, 2 * a );
+
+ return 1;
+ }
+ else
+ {
+ discriminant = square_root( discriminant );
+
+ out[0] = FT_DivFix( -b + discriminant, 2 * a );
+ out[1] = FT_DivFix( -b - discriminant, 2 * a );
+
+ return 2;
+ }
+ }
+
+
+ /* Compute roots of a cubic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/CubicFormula.html */
+ static FT_UShort
+ solve_cubic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_26D6 d,
+ FT_16D16 out[3] )
+ {
+ FT_16D16 q = 0; /* intermediate */
+ FT_16D16 r = 0; /* intermediate */
+
+ FT_16D16 a2 = b; /* x^2 coefficients */
+ FT_16D16 a1 = c; /* x coefficients */
+ FT_16D16 a0 = d; /* constant */
+
+ FT_16D16 q3 = 0;
+ FT_16D16 r2 = 0;
+ FT_16D16 a23 = 0;
+ FT_16D16 a22 = 0;
+ FT_16D16 a1x2 = 0;
+
+
+ /* cutoff value for `a` to be a cubic, otherwise solve quadratic */
+ if ( a == 0 || FT_ABS( a ) < 16 )
+ return solve_quadratic_equation( b, c, d, out );
+
+ if ( d == 0 )
+ {
+ out[0] = 0;
+
+ return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
+ }
+
+ /* normalize the coefficients; this also makes them 16.16 */
+ a2 = FT_DivFix( a2, a );
+ a1 = FT_DivFix( a1, a );
+ a0 = FT_DivFix( a0, a );
+
+ /* compute intermediates */
+ a1x2 = FT_MulFix( a1, a2 );
+ a22 = FT_MulFix( a2, a2 );
+ a23 = FT_MulFix( a22, a2 );
+
+ q = ( 3 * a1 - a22 ) / 9;
+ r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
+
+ /* [BUG]: `q3` and `r2` still cause underflow. */
+
+ q3 = FT_MulFix( q, q );
+ q3 = FT_MulFix( q3, q );
+
+ r2 = FT_MulFix( r, r );
+
+ if ( q3 < 0 && r2 < -q3 )
+ {
+ FT_16D16 t = 0;
+
+
+ q3 = square_root( -q3 );
+ t = FT_DivFix( r, q3 );
+
+ if ( t > ( 1 << 16 ) )
+ t = ( 1 << 16 );
+ if ( t < -( 1 << 16 ) )
+ t = -( 1 << 16 );
+
+ t = arc_cos( t );
+ a2 /= 3;
+ q = 2 * square_root( -q );
+
+ out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
+ out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
+ out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
+
+ return 3;
+ }
+
+ else if ( r2 == -q3 )
+ {
+ FT_16D16 s = 0;
+
+
+ s = cube_root( r );
+ a2 /= -3;
+
+ out[0] = a2 + ( 2 * s );
+ out[1] = a2 - s;
+
+ return 2;
+ }
+
+ else
+ {
+ FT_16D16 s = 0;
+ FT_16D16 t = 0;
+ FT_16D16 dis = 0;
+
+
+ if ( q3 == 0 )
+ dis = FT_ABS( r );
+ else
+ dis = square_root( q3 + r2 );
+
+ s = cube_root( r + dis );
+ t = cube_root( r - dis );
+ a2 /= -3;
+ out[0] = ( a2 + ( s + t ) );
+
+ return 1;
+ }
+ }
+
+#endif /* !USE_NEWTON_FOR_CONIC */
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** RASTERIZER **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /**************************************************************************
+ *
+ * @Function:
+ * resolve_corner
+ *
+ * @Description:
+ * At some places on the grid two edges can give opposite directions;
+ * this happens when the closest point is on one of the endpoint. In
+ * that case we need to check the proper sign.
+ *
+ * This can be visualized by an example:
+ *
+ * ```
+ * x
+ *
+ * o
+ * ^ \
+ * / \
+ * / \
+ * (a) / \ (b)
+ * / \
+ * / \
+ * / v
+ * ```
+ *
+ * Suppose `x` is the point whose shortest distance from an arbitrary
+ * contour we want to find out. It is clear that `o` is the nearest
+ * point on the contour. Now to determine the sign we do a cross
+ * product of the shortest distance vector and the edge direction, i.e.,
+ *
+ * ```
+ * => sign = cross(x - o, direction(a))
+ * ```
+ *
+ * Using the right hand thumb rule we can see that the sign will be
+ * positive.
+ *
+ * If we use `b', however, we have
+ *
+ * ```
+ * => sign = cross(x - o, direction(b))
+ * ```
+ *
+ * In this case the sign will be negative. To determine the correct
+ * sign we thus divide the plane in two halves and check which plane the
+ * point lies in.
+ *
+ * ```
+ * |
+ * x |
+ * |
+ * o
+ * ^|\
+ * / | \
+ * / | \
+ * (a) / | \ (b)
+ * / | \
+ * / \
+ * / v
+ * ```
+ *
+ * We can see that `x` lies in the plane of `a`, so we take the sign
+ * determined by `a`. This test can be easily done by calculating the
+ * orthogonality and taking the greater one.
+ *
+ * The orthogonality is simply the sinus of the two vectors (i.e.,
+ * x - o) and the corresponding direction. We efficiently pre-compute
+ * the orthogonality with the corresponding `get_min_distance_*`
+ * functions.
+ *
+ * @Input:
+ * sdf1 ::
+ * First signed distance (can be any of `a` or `b`).
+ *
+ * sdf1 ::
+ * Second signed distance (can be any of `a` or `b`).
+ *
+ * @Return:
+ * The correct signed distance, which is computed by using the above
+ * algorithm.
+ *
+ * @Note:
+ * The function does not care about the actual distance, it simply
+ * returns the signed distance which has a larger cross product. As a
+ * consequence, this function should not be used if the two distances
+ * are fairly apart. In that case simply use the signed distance with
+ * a shorter absolute distance.
+ *
+ */
+ static SDF_Signed_Distance
+ resolve_corner( SDF_Signed_Distance sdf1,
+ SDF_Signed_Distance sdf2 )
+ {
+ return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_line
+ *
+ * @Description:
+ * Find the shortest distance from the `line` segment to a given `point`
+ * and assign it to `out`. Use it for line segments only.
+ *
+ * @Input:
+ * line ::
+ * The line segment to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `line`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The `line' parameter must have an edge type of `SDF_EDGE_LINE`.
+ *
+ */
+ static FT_Error
+ get_min_distance_line( SDF_Edge* line,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * In order to calculate the shortest distance from a point to
+ * a line segment, we do the following. Let's assume that
+ *
+ * ```
+ * a = start point of the line segment
+ * b = end point of the line segment
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) Write the parametric equation of the line.
+ *
+ * ```
+ * point_on_line = a + (b - a) * t (t is the factor)
+ * ```
+ *
+ * (2) Find the projection of point `p` on the line. The projection
+ * will be perpendicular to the line, which allows us to get the
+ * solution by making the dot product zero.
+ *
+ * ```
+ * (point_on_line - a) . (p - point_on_line) = 0
+ *
+ * (point_on_line)
+ * (a) x-------o----------------x (b)
+ * |_|
+ * |
+ * |
+ * (p)
+ * ```
+ *
+ * (3) Simplification of the above equation yields the factor of
+ * `point_on_line`:
+ *
+ * ```
+ * t = ((p - a) . (b - a)) / |b - a|^2
+ * ```
+ *
+ * (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line`
+ * can be outside of the line segment:
+ *
+ * ```
+ * (point_on_line)
+ * (a) x------------------------x (b) -----o---
+ * |_|
+ * |
+ * |
+ * (p)
+ * ```
+ *
+ * (5) Finally, the distance we are interested in is
+ *
+ * ```
+ * |point_on_line - p|
+ * ```
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_Vector a; /* start position */
+ FT_Vector b; /* end position */
+ FT_Vector p; /* current point */
+
+ FT_26D6_Vec line_segment; /* `b` - `a` */
+ FT_26D6_Vec p_sub_a; /* `p` - `a` */
+
+ FT_26D6 sq_line_length; /* squared length of `line_segment` */
+ FT_16D16 factor; /* factor of the nearest point */
+ FT_26D6 cross; /* used to determine sign */
+
+ FT_16D16_Vec nearest_point; /* `point_on_line` */
+ FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */
+
+
+ if ( !line || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( line->edge_type != SDF_EDGE_LINE )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ a = line->start_pos;
+ b = line->end_pos;
+ p = point;
+
+ line_segment.x = b.x - a.x;
+ line_segment.y = b.y - a.y;
+
+ p_sub_a.x = p.x - a.x;
+ p_sub_a.y = p.y - a.y;
+
+ sq_line_length = ( line_segment.x * line_segment.x ) / 64 +
+ ( line_segment.y * line_segment.y ) / 64;
+
+ /* currently factor is 26.6 */
+ factor = ( p_sub_a.x * line_segment.x ) / 64 +
+ ( p_sub_a.y * line_segment.y ) / 64;
+
+ /* now factor is 16.16 */
+ factor = FT_DivFix( factor, sq_line_length );
+
+ /* clamp the factor between 0.0 and 1.0 in fixed-point */
+ if ( factor > FT_INT_16D16( 1 ) )
+ factor = FT_INT_16D16( 1 );
+ if ( factor < 0 )
+ factor = 0;
+
+ nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ),
+ factor );
+ nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ),
+ factor );
+
+ nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x;
+ nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y;
+
+ nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x );
+ nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y );
+
+ cross = FT_MulFix( nearest_vector.x, line_segment.y ) -
+ FT_MulFix( nearest_vector.y, line_segment.x );
+
+ /* assign the output */
+ out->sign = cross < 0 ? 1 : -1;
+ out->distance = VECTOR_LENGTH_16D16( nearest_vector );
+
+ /* Instead of finding `cross` for checking corner we */
+ /* directly set it here. This is more efficient */
+ /* because if the distance is perpendicular we can */
+ /* directly set it to 1. */
+ if ( factor != 0 && factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 );
+ else
+ {
+ /* [OPTIMIZATION]: Pre-compute this direction. */
+ /* If not perpendicular then compute `cross`. */
+ FT_Vector_NormLen( &line_segment );
+ FT_Vector_NormLen( &nearest_vector );
+
+ out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) -
+ FT_MulFix( line_segment.y, nearest_vector.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_conic
+ *
+ * @Description:
+ * Find the shortest distance from the `conic` Bezier curve to a given
+ * `point` and assign it to `out`. Use it for conic/quadratic curves
+ * only.
+ *
+ * @Input:
+ * conic ::
+ * The conic Bezier curve to which the shortest distance is to be
+ * computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `conic`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`.
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /*
+ * The function uses an analytical method to find the shortest distance
+ * which is faster than the Newton-Raphson method, but has underflows at
+ * the moment. Use Newton's method if you can see artifacts in the SDF.
+ */
+ static FT_Error
+ get_min_distance_conic( SDF_Edge* conic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * The procedure to find the shortest distance from a point to a
+ * quadratic Bezier curve is similar to the line segment algorithm. The
+ * shortest distance is perpendicular to the Bezier curve; the only
+ * difference from line is that there can be more than one
+ * perpendicular, and we also have to check the endpoints, because the
+ * perpendicular may not be the shortest.
+ *
+ * Let's assume that
+ * ```
+ * p0 = first endpoint
+ * p1 = control point
+ * p2 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a quadratic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
+ * ```
+ *
+ * with `t` a factor in the range [0.0f, 1.0f]. This equation can
+ * be rewritten as
+ *
+ * ```
+ * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = p0 - 2p1 + p2
+ * B = p1 - p0
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^2 * A + 2t * B + p0
+ * ```
+ *
+ * (2) The derivative of the last equation above is
+ *
+ * ```
+ * B'(t) = 2 *(tA + B)
+ * ```
+ *
+ * (3) To find the shortest distance from `p` to `B(t)` we find the
+ * point on the curve at which the shortest distance vector (i.e.,
+ * `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees.
+ * In other words, we make the dot product zero.
+ *
+ * ```
+ * (B(t) - p) . (B'(t)) = 0
+ * (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0
+ * ```
+ *
+ * After simplifying we get a cubic equation
+ *
+ * ```
+ * at^3 + bt^2 + ct + d = 0
+ * ```
+ *
+ * with
+ *
+ * ```
+ * a = A.A
+ * b = 3A.B
+ * c = 2B.B + A.p0 - A.p
+ * d = p0.B - p.B
+ * ```
+ *
+ * (4) Now the roots of the equation can be computed using 'Cardano's
+ * Cubic formula'; we clamp the roots in the range [0.0f, 1.0f].
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB; /* A, B in the above comment */
+ FT_26D6_Vec nearest_point = { 0, 0 };
+ /* point on curve nearest to `point` */
+ FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_26D6 a, b, c, d; /* cubic coefficients */
+
+ FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */
+ FT_16D16 min_factor; /* factor at `nearest_point` */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
+
+ FT_UShort num_roots; /* number of real roots of cubic */
+ FT_UShort i;
+
+
+ if ( !conic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( conic->edge_type != SDF_EDGE_CONIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = conic->start_pos;
+ p1 = conic->control_a;
+ p2 = conic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = p0.x - 2 * p1.x + p2.x;
+ aA.y = p0.y - 2 * p1.y + p2.y;
+
+ bB.x = p1.x - p0.x;
+ bB.y = p1.y - p0.y;
+
+ /* compute cubic coefficients */
+ a = VEC_26D6_DOT( aA, aA );
+
+ b = 3 * VEC_26D6_DOT( aA, bB );
+
+ c = 2 * VEC_26D6_DOT( bB, bB ) +
+ VEC_26D6_DOT( aA, p0 ) -
+ VEC_26D6_DOT( aA, p );
+
+ d = VEC_26D6_DOT( p0, bB ) -
+ VEC_26D6_DOT( p, bB );
+
+ /* find the roots */
+ num_roots = solve_cubic_equation( a, b, c, d, roots );
+
+ if ( num_roots == 0 )
+ {
+ roots[0] = 0;
+ roots[1] = FT_INT_16D16( 1 );
+ num_roots = 2;
+ }
+
+ /* [OPTIMIZATION]: Check the roots, clamp them and discard */
+ /* duplicate roots. */
+
+ /* convert these values to 16.16 for further computation */
+ aA.x = FT_26D6_16D16( aA.x );
+ aA.y = FT_26D6_16D16( aA.y );
+
+ bB.x = FT_26D6_16D16( bB.x );
+ bB.y = FT_26D6_16D16( bB.y );
+
+ p0.x = FT_26D6_16D16( p0.x );
+ p0.y = FT_26D6_16D16( p0.y );
+
+ p.x = FT_26D6_16D16( p.x );
+ p.y = FT_26D6_16D16( p.y );
+
+ for ( i = 0; i < num_roots; i++ )
+ {
+ FT_16D16 t = roots[i];
+ FT_16D16 t2 = 0;
+ FT_16D16 dist = 0;
+
+ FT_16D16_Vec curve_point;
+ FT_16D16_Vec dist_vector;
+
+ /*
+ * Ideally we should discard the roots which are outside the range
+ * [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad
+ * Esfahbod proved the following lemma.
+ *
+ * Lemma:
+ *
+ * (1) If the closest point on the curve [0, 1] is to the endpoint at
+ * `t` = 1 and the cubic has no real roots at `t` = 1 then the
+ * cubic must have a real root at some `t` > 1.
+ *
+ * (2) Similarly, if the closest point on the curve [0, 1] is to the
+ * endpoint at `t` = 0 and the cubic has no real roots at `t` = 0
+ * then the cubic must have a real root at some `t` < 0.
+ *
+ * Now because of this lemma we only need to clamp the roots and that
+ * will take care of the endpoints.
+ *
+ * For more details see
+ *
+ * https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html
+ */
+
+ if ( t < 0 )
+ t = 0;
+ if ( t > FT_INT_16D16( 1 ) )
+ t = FT_INT_16D16( 1 );
+
+ t2 = FT_MulFix( t, t );
+
+ /* B(t) = t^2 * A + 2t * B + p0 - p */
+ curve_point.x = FT_MulFix( aA.x, t2 ) +
+ 2 * FT_MulFix( bB.x, t ) + p0.x;
+ curve_point.y = FT_MulFix( aA.y, t2 ) +
+ 2 * FT_MulFix( bB.y, t ) + p0.y;
+
+ /* `curve_point` - `p` */
+ dist_vector.x = curve_point.x - p.x;
+ dist_vector.y = curve_point.y - p.y;
+
+ dist = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( dist < min )
+ {
+ min = dist;
+ nearest_point = curve_point;
+ min_factor = t;
+ }
+ }
+
+ /* B'(t) = 2 * (tA + B) */
+ direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x;
+ direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - p.x, direction.y ) -
+ FT_MulFix( nearest_point.y - p.y, direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+#else /* USE_NEWTON_FOR_CONIC */
+
+ /*
+ * The function uses Newton's approximation to find the shortest distance,
+ * which is a bit slower than the analytical method but doesn't cause
+ * underflow.
+ */
+ static FT_Error
+ get_min_distance_conic( SDF_Edge* conic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * This method uses Newton-Raphson's approximation to find the shortest
+ * distance from a point to a conic curve. It does not involve solving
+ * any cubic equation, that is why there is no risk of underflow.
+ *
+ * Let's assume that
+ *
+ * ```
+ * p0 = first endpoint
+ * p1 = control point
+ * p3 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a quadratic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
+ * ```
+ *
+ * with `t` the factor in the range [0.0f, 1.0f]. The above
+ * equation can be rewritten as
+ *
+ * ```
+ * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = p0 - 2p1 + p2
+ * B = 2 * (p1 - p0)
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^2 * A + t * B + p0
+ * ```
+ *
+ * (2) The derivative of the above equation is
+ *
+ * ```
+ * B'(t) = 2t * A + B
+ * ```
+ *
+ * (3) The second derivative of the above equation is
+ *
+ * ```
+ * B''(t) = 2A
+ * ```
+ *
+ * (4) The equation `P(t)` of the distance from point `p` to the curve
+ * can be written as
+ *
+ * ```
+ * P(t) = t^2 * A + t^2 * B + p0 - p
+ * ```
+ *
+ * With
+ *
+ * ```
+ * C = p0 - p
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * P(t) = t^2 * A + t * B + C
+ * ```
+ *
+ * (5) Finally, the equation of the angle between `B(t)` and `P(t)` can
+ * be written as
+ *
+ * ```
+ * Q(t) = P(t) . B'(t)
+ * ```
+ *
+ * (6) Our task is to find a value of `t` such that the above equation
+ * `Q(t)` becomes zero, that is, the point-to-curve vector makes
+ * 90~degrees with the curve. We solve this with the Newton-Raphson
+ * method.
+ *
+ * (7) We first assume an arbitrary value of factor `t`, which we then
+ * improve.
+ *
+ * ```
+ * t := Q(t) / Q'(t)
+ * ```
+ *
+ * Putting the value of `Q(t)` from the above equation gives
+ *
+ * ```
+ * t := P(t) . B'(t) / derivative(P(t) . B'(t))
+ * t := P(t) . B'(t) /
+ * (P'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * Note that `P'(t)` is the same as `B'(t)` because the constant is
+ * gone due to the derivative.
+ *
+ * (8) Finally we get the equation to improve the factor as
+ *
+ * ```
+ * t := P(t) . B'(t) /
+ * (B'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
+ FT_26D6_Vec nearest_point = { 0, 0 };
+ /* point on curve nearest to `point` */
+ FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_16D16 min_factor = 0; /* factor at `nearest_point' */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
+
+ FT_UShort iterations;
+ FT_UShort steps;
+
+
+ if ( !conic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( conic->edge_type != SDF_EDGE_CONIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = conic->start_pos;
+ p1 = conic->control_a;
+ p2 = conic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = p0.x - 2 * p1.x + p2.x;
+ aA.y = p0.y - 2 * p1.y + p2.y;
+
+ bB.x = 2 * ( p1.x - p0.x );
+ bB.y = 2 * ( p1.y - p0.y );
+
+ cC.x = p0.x;
+ cC.y = p0.y;
+
+ /* do Newton's iterations */
+ for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
+ {
+ FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
+ FT_16D16 factor2;
+ FT_16D16 length;
+
+ FT_16D16_Vec curve_point; /* point on the curve */
+ FT_16D16_Vec dist_vector; /* `curve_point` - `p` */
+
+ FT_26D6_Vec d1; /* first derivative */
+ FT_26D6_Vec d2; /* second derivative */
+
+ FT_16D16 temp1;
+ FT_16D16 temp2;
+
+
+ for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
+ {
+ factor2 = FT_MulFix( factor, factor );
+
+ /* B(t) = t^2 * A + t * B + p0 */
+ curve_point.x = FT_MulFix( aA.x, factor2 ) +
+ FT_MulFix( bB.x, factor ) + cC.x;
+ curve_point.y = FT_MulFix( aA.y, factor2 ) +
+ FT_MulFix( bB.y, factor ) + cC.y;
+
+ /* convert to 16.16 */
+ curve_point.x = FT_26D6_16D16( curve_point.x );
+ curve_point.y = FT_26D6_16D16( curve_point.y );
+
+ /* P(t) in the comment */
+ dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
+ dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
+
+ length = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( length < min )
+ {
+ min = length;
+ min_factor = factor;
+ nearest_point = curve_point;
+ }
+
+ /* This is Newton's approximation. */
+ /* */
+ /* t := P(t) . B'(t) / */
+ /* (B'(t) . B'(t) + P(t) . B''(t)) */
+
+ /* B'(t) = 2tA + B */
+ d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
+ d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
+
+ /* B''(t) = 2A */
+ d2.x = 2 * aA.x;
+ d2.y = 2 * aA.y;
+
+ dist_vector.x /= 1024;
+ dist_vector.y /= 1024;
+
+ /* temp1 = P(t) . B'(t) */
+ temp1 = VEC_26D6_DOT( dist_vector, d1 );
+
+ /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
+ temp2 = VEC_26D6_DOT( d1, d1 ) +
+ VEC_26D6_DOT( dist_vector, d2 );
+
+ factor -= FT_DivFix( temp1, temp2 );
+
+ if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
+ break;
+ }
+ }
+
+ /* B'(t) = 2t * A + B */
+ direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
+ direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
+ direction.y ) -
+ FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
+ direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+#endif /* USE_NEWTON_FOR_CONIC */
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * get_min_distance_cubic
+ *
+ * @Description:
+ * Find the shortest distance from the `cubic` Bezier curve to a given
+ * `point` and assigns it to `out`. Use it for cubic curves only.
+ *
+ * @Input:
+ * cubic ::
+ * The cubic Bezier curve to which the shortest distance is to be
+ * computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `cubic`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function uses Newton's approximation to find the shortest
+ * distance. Another way would be to divide the cubic into conic or
+ * subdivide the curve into lines, but that is not implemented.
+ *
+ * The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`.
+ *
+ */
+ static FT_Error
+ get_min_distance_cubic( SDF_Edge* cubic,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ /*
+ * The procedure to find the shortest distance from a point to a cubic
+ * Bezier curve is similar to quadratic curve algorithm. The only
+ * difference is that while calculating factor `t`, instead of a cubic
+ * polynomial equation we have to find the roots of a 5th degree
+ * polynomial equation. Solving this would require a significant amount
+ * of time, and still the results may not be accurate. We are thus
+ * going to directly approximate the value of `t` using the Newton-Raphson
+ * method.
+ *
+ * Let's assume that
+ *
+ * ```
+ * p0 = first endpoint
+ * p1 = first control point
+ * p2 = second control point
+ * p3 = second endpoint
+ * p = point from which shortest distance is to be calculated
+ * ```
+ *
+ * (1) The equation of a cubic Bezier curve can be written as
+ *
+ * ```
+ * B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 +
+ * 3(1 - t)t^2 * p2 + t^3 * p3
+ * ```
+ *
+ * The equation can be expanded and written as
+ *
+ * ```
+ * B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) +
+ * 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0
+ * ```
+ *
+ * With
+ *
+ * ```
+ * A = -p0 + 3p1 - 3p2 + p3
+ * B = 3(p0 - 2p1 + p2)
+ * C = 3(-p0 + p1)
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * B(t) = t^3 * A + t^2 * B + t * C + p0
+ * ```
+ *
+ * (2) The derivative of the above equation is
+ *
+ * ```
+ * B'(t) = 3t^2 * A + 2t * B + C
+ * ```
+ *
+ * (3) The second derivative of the above equation is
+ *
+ * ```
+ * B''(t) = 6t * A + 2B
+ * ```
+ *
+ * (4) The equation `P(t)` of the distance from point `p` to the curve
+ * can be written as
+ *
+ * ```
+ * P(t) = t^3 * A + t^2 * B + t * C + p0 - p
+ * ```
+ *
+ * With
+ *
+ * ```
+ * D = p0 - p
+ * ```
+ *
+ * we have
+ *
+ * ```
+ * P(t) = t^3 * A + t^2 * B + t * C + D
+ * ```
+ *
+ * (5) Finally the equation of the angle between `B(t)` and `P(t)` can
+ * be written as
+ *
+ * ```
+ * Q(t) = P(t) . B'(t)
+ * ```
+ *
+ * (6) Our task is to find a value of `t` such that the above equation
+ * `Q(t)` becomes zero, that is, the point-to-curve vector makes
+ * 90~degree with curve. We solve this with the Newton-Raphson
+ * method.
+ *
+ * (7) We first assume an arbitrary value of factor `t`, which we then
+ * improve.
+ *
+ * ```
+ * t := Q(t) / Q'(t)
+ * ```
+ *
+ * Putting the value of `Q(t)` from the above equation gives
+ *
+ * ```
+ * t := P(t) . B'(t) / derivative(P(t) . B'(t))
+ * t := P(t) . B'(t) /
+ * (P'(t) . B'(t) + P(t) . B''(t))
+ * ```
+ *
+ * Note that `P'(t)` is the same as `B'(t)` because the constant is
+ * gone due to the derivative.
+ *
+ * (8) Finally we get the equation to improve the factor as
+ *
+ * ```
+ * t := P(t) . B'(t) /
+ * (B'(t) . B'( t ) + P(t) . B''(t))
+ * ```
+ *
+ * [note]: `B` and `B(t)` are different in the above equations.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+ FT_26D6_Vec aA, bB, cC, dD; /* A, B, C, D in the above comment */
+ FT_16D16_Vec nearest_point = { 0, 0 };
+ /* point on curve nearest to `point` */
+ FT_16D16_Vec direction; /* direction of curve at `nearest_point` */
+
+ FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
+ FT_26D6_Vec p; /* `point` to which shortest distance */
+
+ FT_16D16 min_factor = 0; /* factor at shortest distance */
+ FT_16D16 min_factor_sq = 0; /* factor at shortest distance */
+ FT_16D16 cross; /* to determine the sign */
+ FT_16D16 min = FT_INT_MAX; /* shortest distance */
+
+ FT_UShort iterations;
+ FT_UShort steps;
+
+
+ if ( !cubic || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( cubic->edge_type != SDF_EDGE_CUBIC )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ p0 = cubic->start_pos;
+ p1 = cubic->control_a;
+ p2 = cubic->control_b;
+ p3 = cubic->end_pos;
+ p = point;
+
+ /* compute substitution coefficients */
+ aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
+ aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
+
+ bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
+ bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
+
+ cC.x = 3 * ( p1.x - p0.x );
+ cC.y = 3 * ( p1.y - p0.y );
+
+ dD.x = p0.x;
+ dD.y = p0.y;
+
+ for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
+ {
+ FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
+
+ FT_16D16 factor2; /* factor^2 */
+ FT_16D16 factor3; /* factor^3 */
+ FT_16D16 length;
+
+ FT_16D16_Vec curve_point; /* point on the curve */
+ FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
+
+ FT_26D6_Vec d1; /* first derivative */
+ FT_26D6_Vec d2; /* second derivative */
+
+ FT_16D16 temp1;
+ FT_16D16 temp2;
+
+
+ for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
+ {
+ factor2 = FT_MulFix( factor, factor );
+ factor3 = FT_MulFix( factor2, factor );
+
+ /* B(t) = t^3 * A + t^2 * B + t * C + D */
+ curve_point.x = FT_MulFix( aA.x, factor3 ) +
+ FT_MulFix( bB.x, factor2 ) +
+ FT_MulFix( cC.x, factor ) + dD.x;
+ curve_point.y = FT_MulFix( aA.y, factor3 ) +
+ FT_MulFix( bB.y, factor2 ) +
+ FT_MulFix( cC.y, factor ) + dD.y;
+
+ /* convert to 16.16 */
+ curve_point.x = FT_26D6_16D16( curve_point.x );
+ curve_point.y = FT_26D6_16D16( curve_point.y );
+
+ /* P(t) in the comment */
+ dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
+ dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
+
+ length = VECTOR_LENGTH_16D16( dist_vector );
+
+ if ( length < min )
+ {
+ min = length;
+ min_factor = factor;
+ min_factor_sq = factor2;
+ nearest_point = curve_point;
+ }
+
+ /* This the Newton's approximation. */
+ /* */
+ /* t := P(t) . B'(t) / */
+ /* (B'(t) . B'(t) + P(t) . B''(t)) */
+
+ /* B'(t) = 3t^2 * A + 2t * B + C */
+ d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
+ FT_MulFix( bB.x, 2 * factor ) + cC.x;
+ d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
+ FT_MulFix( bB.y, 2 * factor ) + cC.y;
+
+ /* B''(t) = 6t * A + 2B */
+ d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
+ d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
+
+ dist_vector.x /= 1024;
+ dist_vector.y /= 1024;
+
+ /* temp1 = P(t) . B'(t) */
+ temp1 = VEC_26D6_DOT( dist_vector, d1 );
+
+ /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
+ temp2 = VEC_26D6_DOT( d1, d1 ) +
+ VEC_26D6_DOT( dist_vector, d2 );
+
+ factor -= FT_DivFix( temp1, temp2 );
+
+ if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
+ break;
+ }
+ }
+
+ /* B'(t) = 3t^2 * A + 2t * B + C */
+ direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
+ FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
+ direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
+ FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
+
+ /* determine the sign */
+ cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
+ direction.y ) -
+ FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
+ direction.x );
+
+ /* assign the values */
+ out->distance = min;
+ out->sign = cross < 0 ? 1 : -1;
+
+ if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
+ out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
+ else
+ {
+ /* convert to nearest vector */
+ nearest_point.x -= FT_26D6_16D16( p.x );
+ nearest_point.y -= FT_26D6_16D16( p.y );
+
+ /* compute `cross` if not perpendicular */
+ FT_Vector_NormLen( &direction );
+ FT_Vector_NormLen( &nearest_point );
+
+ out->cross = FT_MulFix( direction.x, nearest_point.y ) -
+ FT_MulFix( direction.y, nearest_point.x );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_edge_get_min_distance
+ *
+ * @Description:
+ * Find shortest distance from `point` to any type of `edge`. It checks
+ * the edge type and then calls the relevant `get_min_distance_*`
+ * function.
+ *
+ * @Input:
+ * edge ::
+ * An edge to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from `point` to `edge`.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_edge_get_min_distance( SDF_Edge* edge,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ FT_Error error = FT_Err_Ok;
+
+
+ if ( !edge || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* edge-specific distance calculation */
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ get_min_distance_line( edge, point, out );
+ break;
+
+ case SDF_EDGE_CONIC:
+ get_min_distance_conic( edge, point, out );
+ break;
+
+ case SDF_EDGE_CUBIC:
+ get_min_distance_cubic( edge, point, out );
+ break;
+
+ default:
+ error = FT_THROW( Invalid_Argument );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* `sdf_generate' is not used at the moment */
+#if 0
+
+ #error "DO NOT USE THIS!"
+ #error "The function still outputs 16-bit data, which might cause memory"
+ #error "corruption. If required I will add this later."
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_contour_get_min_distance
+ *
+ * @Description:
+ * Iterate over all edges that make up the contour, find the shortest
+ * distance from a point to this contour, and assigns result to `out`.
+ *
+ * @Input:
+ * contour ::
+ * A contour to which the shortest distance is to be computed.
+ *
+ * point ::
+ * Point from which the shortest distance is to be computed.
+ *
+ * @Output:
+ * out ::
+ * Signed distance from the `point' to the `contour'.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function does not return a signed distance for each edge which
+ * makes up the contour, it simply returns the shortest of all the
+ * edges.
+ *
+ */
+ static FT_Error
+ sdf_contour_get_min_distance( SDF_Contour* contour,
+ FT_26D6_Vec point,
+ SDF_Signed_Distance* out )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Signed_Distance min_dist = max_sdf;
+ SDF_Edge* edge_list;
+
+
+ if ( !contour || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ edge_list = contour->edges;
+
+ /* iterate over all the edges manually */
+ while ( edge_list )
+ {
+ SDF_Signed_Distance current_dist = max_sdf;
+ FT_16D16 diff;
+
+
+ FT_CALL( sdf_edge_get_min_distance( edge_list,
+ point,
+ &current_dist ) );
+
+ if ( current_dist.distance >= 0 )
+ {
+ diff = current_dist.distance - min_dist.distance;
+
+
+ if ( FT_ABS( diff ) < CORNER_CHECK_EPSILON )
+ min_dist = resolve_corner( min_dist, current_dist );
+ else if ( diff < 0 )
+ min_dist = current_dist;
+ }
+ else
+ FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" ));
+
+ edge_list = edge_list->next;
+ }
+
+ *out = min_dist;
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate
+ *
+ * @Description:
+ * This is the main function that is responsible for generating signed
+ * distance fields. The function does not align or compute the size of
+ * `bitmap`; therefore the calling application must set up `bitmap`
+ * properly and transform the `shape' appropriately in advance.
+ *
+ * Currently we check all pixels against all contours and all edges.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer. See
+ * @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed in the output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_generate( const SDF_Params internal_params,
+ const SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ FT_UInt width = 0;
+ FT_UInt rows = 0;
+ FT_UInt x = 0; /* used to loop in x direction, i.e., width */
+ FT_UInt y = 0; /* used to loop in y direction, i.e., rows */
+ FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */
+
+ FT_Short* buffer;
+
+
+ if ( !shape || !bitmap )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ width = bitmap->width;
+ rows = bitmap->rows;
+ buffer = (FT_Short*)bitmap->buffer;
+
+ if ( USE_SQUARED_DISTANCES )
+ sp_sq = FT_INT_16D16( spread * spread );
+ else
+ sp_sq = FT_INT_16D16( spread );
+
+ if ( width == 0 || rows == 0 )
+ {
+ FT_TRACE0(( "sdf_generate:"
+ " Cannot render glyph with width/height == 0\n" ));
+ FT_TRACE0(( " "
+ " (width, height provided [%d, %d])\n",
+ width, rows ));
+
+ error = FT_THROW( Cannot_Render_Glyph );
+ goto Exit;
+ }
+
+ /* loop over all rows */
+ for ( y = 0; y < rows; y++ )
+ {
+ /* loop over all pixels of a row */
+ for ( x = 0; x < width; x++ )
+ {
+ /* `grid_point` is the current pixel position; */
+ /* our task is to find the shortest distance */
+ /* from this point to the entire shape. */
+ FT_26D6_Vec grid_point = zero_vector;
+ SDF_Signed_Distance min_dist = max_sdf;
+ SDF_Contour* contour_list;
+
+ FT_UInt index;
+ FT_Short value;
+
+
+ grid_point.x = FT_INT_26D6( x );
+ grid_point.y = FT_INT_26D6( y );
+
+ /* This `grid_point' is at the corner, but we */
+ /* use the center of the pixel. */
+ grid_point.x += FT_INT_26D6( 1 ) / 2;
+ grid_point.y += FT_INT_26D6( 1 ) / 2;
+
+ contour_list = shape->contours;
+
+ /* iterate over all contours manually */
+ while ( contour_list )
+ {
+ SDF_Signed_Distance current_dist = max_sdf;
+
+
+ FT_CALL( sdf_contour_get_min_distance( contour_list,
+ grid_point,
+ &current_dist ) );
+
+ if ( current_dist.distance < min_dist.distance )
+ min_dist = current_dist;
+
+ contour_list = contour_list->next;
+ }
+
+ /* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */
+ /* the value to spread to avoid square_root */
+
+ /* clamp the values to spread */
+ if ( min_dist.distance > sp_sq )
+ min_dist.distance = sp_sq;
+
+ /* square_root the values and fit in a 6.10 fixed-point */
+ if ( USE_SQUARED_DISTANCES )
+ min_dist.distance = square_root( min_dist.distance );
+
+ if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ min_dist.sign = -min_dist.sign;
+ if ( internal_params.flip_sign )
+ min_dist.sign = -min_dist.sign;
+
+ min_dist.distance /= 64; /* convert from 16.16 to 22.10 */
+
+ value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */
+ value *= min_dist.sign;
+
+ if ( internal_params.flip_y )
+ index = y * width + x;
+ else
+ index = ( rows - y - 1 ) * width + x;
+
+ buffer[index] = value;
+ }
+ }
+
+ Exit:
+ return error;
+ }
+
+#endif /* 0 */
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate_bounding_box
+ *
+ * @Description:
+ * This function does basically the same thing as `sdf_generate` above
+ * but more efficiently.
+ *
+ * Instead of checking all pixels against all edges, we loop over all
+ * edges and only check pixels around the control box of the edge; the
+ * control box is increased by the spread in all directions. Anything
+ * outside of the control box that exceeds `spread` doesn't need to be
+ * computed.
+ *
+ * Lastly, to determine the sign of unchecked pixels, we do a single
+ * pass of all rows starting with a '+' sign and flipping when we come
+ * across a '-' sign and continue. This also eliminates the possibility
+ * of overflow because we only check the proximity of the curve.
+ * Therefore we can use squared distanced safely.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer.
+ * See @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed in the output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_generate_bounding_box( const SDF_Params internal_params,
+ const SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = NULL;
+
+ FT_Int width, rows, i, j;
+ FT_Int sp_sq; /* max value to check */
+
+ SDF_Contour* contours; /* list of all contours */
+ FT_SDFFormat* buffer; /* the bitmap buffer */
+
+ /* This buffer has the same size in indices as the */
+ /* bitmap buffer. When we check a pixel position for */
+ /* a shortest distance we keep it in this buffer. */
+ /* This way we can find out which pixel is set, */
+ /* and also determine the signs properly. */
+ SDF_Signed_Distance* dists = NULL;
+
+ const FT_16D16 fixed_spread = (FT_16D16)FT_INT_16D16( spread );
+
+
+ if ( !shape || !bitmap )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ memory = shape->memory;
+ if ( !memory )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( FT_ALLOC( dists,
+ bitmap->width * bitmap->rows * sizeof ( *dists ) ) )
+ goto Exit;
+
+ contours = shape->contours;
+ width = (FT_Int)bitmap->width;
+ rows = (FT_Int)bitmap->rows;
+ buffer = (FT_SDFFormat*)bitmap->buffer;
+
+ if ( USE_SQUARED_DISTANCES )
+ sp_sq = FT_INT_16D16( (FT_Int)( spread * spread ) );
+ else
+ sp_sq = fixed_spread;
+
+ if ( width == 0 || rows == 0 )
+ {
+ FT_TRACE0(( "sdf_generate:"
+ " Cannot render glyph with width/height == 0\n" ));
+ FT_TRACE0(( " "
+ " (width, height provided [%d, %d])", width, rows ));
+
+ error = FT_THROW( Cannot_Render_Glyph );
+ goto Exit;
+ }
+
+ /* loop over all contours */
+ while ( contours )
+ {
+ SDF_Edge* edges = contours->edges;
+
+
+ /* loop over all edges */
+ while ( edges )
+ {
+ FT_CBox cbox;
+ FT_Int x, y;
+
+
+ /* get the control box and increase it by `spread' */
+ cbox = get_control_box( *edges );
+
+ cbox.xMin = ( cbox.xMin - 63 ) / 64 - ( FT_Pos )spread;
+ cbox.xMax = ( cbox.xMax + 63 ) / 64 + ( FT_Pos )spread;
+ cbox.yMin = ( cbox.yMin - 63 ) / 64 - ( FT_Pos )spread;
+ cbox.yMax = ( cbox.yMax + 63 ) / 64 + ( FT_Pos )spread;
+
+ /* now loop over the pixels in the control box. */
+ for ( y = cbox.yMin; y < cbox.yMax; y++ )
+ {
+ for ( x = cbox.xMin; x < cbox.xMax; x++ )
+ {
+ FT_26D6_Vec grid_point = zero_vector;
+ SDF_Signed_Distance dist = max_sdf;
+ FT_UInt index = 0;
+ FT_16D16 diff = 0;
+
+
+ if ( x < 0 || x >= width )
+ continue;
+ if ( y < 0 || y >= rows )
+ continue;
+
+ grid_point.x = FT_INT_26D6( x );
+ grid_point.y = FT_INT_26D6( y );
+
+ /* This `grid_point` is at the corner, but we */
+ /* use the center of the pixel. */
+ grid_point.x += FT_INT_26D6( 1 ) / 2;
+ grid_point.y += FT_INT_26D6( 1 ) / 2;
+
+ FT_CALL( sdf_edge_get_min_distance( edges,
+ grid_point,
+ &dist ) );
+
+ if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ dist.sign = -dist.sign;
+
+ /* ignore if the distance is greater than spread; */
+ /* otherwise it creates artifacts due to the wrong sign */
+ if ( dist.distance > sp_sq )
+ continue;
+
+ /* take the square root of the distance if required */
+ if ( USE_SQUARED_DISTANCES )
+ dist.distance = square_root( dist.distance );
+
+ if ( internal_params.flip_y )
+ index = (FT_UInt)( y * width + x );
+ else
+ index = (FT_UInt)( ( rows - y - 1 ) * width + x );
+
+ /* check whether the pixel is set or not */
+ if ( dists[index].sign == 0 )
+ dists[index] = dist;
+ else
+ {
+ diff = FT_ABS( dists[index].distance - dist.distance );
+
+ if ( diff <= CORNER_CHECK_EPSILON )
+ dists[index] = resolve_corner( dists[index], dist );
+ else if ( dists[index].distance > dist.distance )
+ dists[index] = dist;
+ }
+ }
+ }
+
+ edges = edges->next;
+ }
+
+ contours = contours->next;
+ }
+
+ /* final pass */
+ for ( j = 0; j < rows; j++ )
+ {
+ /* We assume the starting pixel of each row is outside. */
+ FT_Char current_sign = -1;
+ FT_UInt index;
+
+
+ if ( internal_params.overload_sign != 0 )
+ current_sign = internal_params.overload_sign < 0 ? -1 : 1;
+
+ for ( i = 0; i < width; i++ )
+ {
+ index = (FT_UInt)( j * width + i );
+
+ /* if the pixel is not set */
+ /* its shortest distance is more than `spread` */
+ if ( dists[index].sign == 0 )
+ dists[index].distance = fixed_spread;
+ else
+ current_sign = dists[index].sign;
+
+ /* clamp the values */
+ if ( dists[index].distance > fixed_spread )
+ dists[index].distance = fixed_spread;
+
+ /* flip sign if required */
+ dists[index].distance *= internal_params.flip_sign ? -current_sign
+ : current_sign;
+
+ /* concatenate to appropriate format */
+ buffer[index] = map_fixed_to_sdf( dists[index].distance,
+ fixed_spread );
+ }
+ }
+
+ Exit:
+ FT_FREE( dists );
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate_subdivision
+ *
+ * @Description:
+ * Subdivide the shape into a number of straight lines, then use the
+ * above `sdf_generate_bounding_box` function to generate the SDF.
+ *
+ * Note: After calling this function `shape` no longer has the original
+ * edges, it only contains lines.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer.
+ * See @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed inthe output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ */
+ static FT_Error
+ sdf_generate_subdivision( const SDF_Params internal_params,
+ SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ /*
+ * Thanks to Alexei for providing the idea of this optimization.
+ *
+ * We take advantage of two facts.
+ *
+ * (1) Computing the shortest distance from a point to a line segment is
+ * very fast.
+ * (2) We don't have to compute the shortest distance for the entire
+ * two-dimensional grid.
+ *
+ * Both ideas lead to the following optimization.
+ *
+ * (1) Split the outlines into a number of line segments.
+ *
+ * (2) For each line segment, only process its neighborhood.
+ *
+ * (3) Compute the closest distance to the line only for neighborhood
+ * grid points.
+ *
+ * This greatly reduces the number of grid points to check.
+ */
+
+ FT_Error error = FT_Err_Ok;
+
+
+ FT_CALL( split_sdf_shape( shape ) );
+ FT_CALL( sdf_generate_bounding_box( internal_params,
+ shape, spread, bitmap ) );
+
+ Exit:
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * sdf_generate_with_overlaps
+ *
+ * @Description:
+ * This function can be used to generate SDF for glyphs with overlapping
+ * contours. The function generates SDF for contours separately on
+ * separate bitmaps (to generate SDF it uses
+ * `sdf_generate_subdivision`). At the end it simply combines all the
+ * SDF into the output bitmap; this fixes all the signs and removes
+ * overlaps.
+ *
+ * @Input:
+ * internal_params ::
+ * Internal parameters and properties required by the rasterizer. See
+ * @SDF_Params for more.
+ *
+ * shape ::
+ * A complete shape which is used to generate SDF.
+ *
+ * spread ::
+ * Maximum distances to be allowed in the output bitmap.
+ *
+ * @Output:
+ * bitmap ::
+ * The output bitmap which will contain the SDF information.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function cannot generate a proper SDF for glyphs with
+ * self-intersecting contours because we cannot separate them into two
+ * separate bitmaps. In case of self-intersecting contours it is
+ * necessary to remove the overlaps before generating the SDF.
+ *
+ */
+ static FT_Error
+ sdf_generate_with_overlaps( SDF_Params internal_params,
+ SDF_Shape* shape,
+ FT_UInt spread,
+ const FT_Bitmap* bitmap )
+ {
+ FT_Error error = FT_Err_Ok;
+
+ FT_Int num_contours; /* total number of contours */
+ FT_Int i, j; /* iterators */
+ FT_Int width, rows; /* width and rows of the bitmap */
+ FT_Bitmap* bitmaps; /* separate bitmaps for contours */
+
+ SDF_Contour* contour; /* temporary variable to iterate */
+ SDF_Contour* temp_contour; /* temporary contour */
+ SDF_Contour* head; /* head of the contour list */
+ SDF_Shape temp_shape; /* temporary shape */
+
+ FT_Memory memory; /* to allocate memory */
+ FT_SDFFormat* t; /* target bitmap buffer */
+ FT_Bool flip_sign; /* flip sign? */
+
+ /* orientation of all the separate contours */
+ SDF_Contour_Orientation* orientations;
+
+
+ bitmaps = NULL;
+ orientations = NULL;
+ head = NULL;
+
+ if ( !shape || !bitmap || !shape->memory )
+ return FT_THROW( Invalid_Argument );
+
+ /* Disable `flip_sign` to avoid extra complication */
+ /* during the combination phase. */
+ flip_sign = internal_params.flip_sign;
+ internal_params.flip_sign = 0;
+
+ contour = shape->contours;
+ memory = shape->memory;
+ temp_shape.memory = memory;
+ width = (FT_Int)bitmap->width;
+ rows = (FT_Int)bitmap->rows;
+ num_contours = 0;
+
+ /* find the number of contours in the shape */
+ while ( contour )
+ {
+ num_contours++;
+ contour = contour->next;
+ }
+
+ /* allocate the bitmaps to generate SDF for separate contours */
+ if ( FT_ALLOC( bitmaps,
+ (FT_UInt)num_contours * sizeof ( *bitmaps ) ) )
+ goto Exit;
+
+ /* allocate array to hold orientation for all contours */
+ if ( FT_ALLOC( orientations,
+ (FT_UInt)num_contours * sizeof ( *orientations ) ) )
+ goto Exit;
+
+ contour = shape->contours;
+
+ /* Iterate over all contours and generate SDF separately. */
+ for ( i = 0; i < num_contours; i++ )
+ {
+ /* initialize the corresponding bitmap */
+ FT_Bitmap_Init( &bitmaps[i] );
+
+ bitmaps[i].width = bitmap->width;
+ bitmaps[i].rows = bitmap->rows;
+ bitmaps[i].pitch = bitmap->pitch;
+ bitmaps[i].num_grays = bitmap->num_grays;
+ bitmaps[i].pixel_mode = bitmap->pixel_mode;
+
+ /* allocate memory for the buffer */
+ if ( FT_ALLOC( bitmaps[i].buffer,
+ bitmap->rows * (FT_UInt)bitmap->pitch ) )
+ goto Exit;
+
+ /* determine the orientation */
+ orientations[i] = get_contour_orientation( contour );
+
+ /* The `overload_sign` property is specific to */
+ /* `sdf_generate_bounding_box`. This basically */
+ /* overloads the default sign of the outside */
+ /* pixels, which is necessary for */
+ /* counter-clockwise contours. */
+ if ( orientations[i] == SDF_ORIENTATION_CCW &&
+ internal_params.orientation == FT_ORIENTATION_FILL_RIGHT )
+ internal_params.overload_sign = 1;
+ else if ( orientations[i] == SDF_ORIENTATION_CW &&
+ internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ internal_params.overload_sign = 1;
+ else
+ internal_params.overload_sign = 0;
+
+ /* Make `contour->next` NULL so that there is */
+ /* one contour in the list. Also hold the next */
+ /* contour in a temporary variable so as to */
+ /* restore the original value. */
+ temp_contour = contour->next;
+ contour->next = NULL;
+
+ /* Use `temp_shape` to hold the new contour. */
+ /* Now, `temp_shape` has only one contour. */
+ temp_shape.contours = contour;
+
+ /* finally generate the SDF */
+ FT_CALL( sdf_generate_subdivision( internal_params,
+ &temp_shape,
+ spread,
+ &bitmaps[i] ) );
+
+ /* Restore the original `next` variable. */
+ contour->next = temp_contour;
+
+ /* Since `split_sdf_shape` deallocated the original */
+ /* contours list we need to assign the new value to */
+ /* the shape's contour. */
+ temp_shape.contours->next = head;
+ head = temp_shape.contours;
+
+ /* Simply flip the orientation in case of post-script fonts */
+ /* so as to avoid modificatons in the combining phase. */
+ if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
+ {
+ if ( orientations[i] == SDF_ORIENTATION_CW )
+ orientations[i] = SDF_ORIENTATION_CCW;
+ else if ( orientations[i] == SDF_ORIENTATION_CCW )
+ orientations[i] = SDF_ORIENTATION_CW;
+ }
+
+ contour = contour->next;
+ }
+
+ /* assign the new contour list to `shape->contours` */
+ shape->contours = head;
+
+ /* cast the output bitmap buffer */
+ t = (FT_SDFFormat*)bitmap->buffer;
+
+ /* Iterate over all pixels and combine all separate */
+ /* contours. These are the rules for combining: */
+ /* */
+ /* (1) For all clockwise contours, compute the largest */
+ /* value. Name this as `val_c`. */
+ /* (2) For all counter-clockwise contours, compute the */
+ /* smallest value. Name this as `val_ac`. */
+ /* (3) Now, finally use the smaller value of `val_c' */
+ /* and `val_ac'. */
+ for ( j = 0; j < rows; j++ )
+ {
+ for ( i = 0; i < width; i++ )
+ {
+ FT_Int id = j * width + i; /* index of current pixel */
+ FT_Int c; /* contour iterator */
+
+ FT_SDFFormat val_c = 0; /* max clockwise value */
+ FT_SDFFormat val_ac = UCHAR_MAX; /* min counter-clockwise val */
+
+
+ /* iterate through all the contours */
+ for ( c = 0; c < num_contours; c++ )
+ {
+ /* current contour value */
+ FT_SDFFormat temp = ( (FT_SDFFormat*)bitmaps[c].buffer )[id];
+
+
+ if ( orientations[c] == SDF_ORIENTATION_CW )
+ val_c = FT_MAX( val_c, temp ); /* clockwise */
+ else
+ val_ac = FT_MIN( val_ac, temp ); /* counter-clockwise */
+ }
+
+ /* Finally find the smaller of the two and assign to output. */
+ /* Also apply `flip_sign` if set. */
+ t[id] = FT_MIN( val_c, val_ac );
+
+ if ( flip_sign )
+ t[id] = invert_sign( t[id] );
+ }
+ }
+
+ Exit:
+ /* deallocate orientations array */
+ if ( orientations )
+ FT_FREE( orientations );
+
+ /* deallocate temporary bitmaps */
+ if ( bitmaps )
+ {
+ if ( num_contours == 0 )
+ error = FT_THROW( Raster_Corrupted );
+ else
+ {
+ for ( i = 0; i < num_contours; i++ )
+ FT_FREE( bitmaps[i].buffer );
+
+ FT_FREE( bitmaps );
+ }
+ }
+
+ /* restore the `flip_sign` property */
+ internal_params.flip_sign = flip_sign;
+
+ return error;
+ }
+
+
+ /**************************************************************************
+ *
+ * interface functions
+ *
+ */
+
+ static FT_Error
+ sdf_raster_new( void* memory_, /* FT_Memory */
+ FT_Raster* araster_ ) /* SDF_PRaster* */
+ {
+ FT_Memory memory = (FT_Memory)memory_;
+ SDF_PRaster* araster = (SDF_PRaster*)araster_;
+
+
+ FT_Error error;
+ SDF_PRaster raster = NULL;
+
+
+ if ( !FT_NEW( raster ) )
+ raster->memory = memory;
+
+ *araster = raster;
+
+ return error;
+ }
+
+
+ static void
+ sdf_raster_reset( FT_Raster raster,
+ unsigned char* pool_base,
+ unsigned long pool_size )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( pool_base );
+ FT_UNUSED( pool_size );
+ }
+
+
+ static FT_Error
+ sdf_raster_set_mode( FT_Raster raster,
+ unsigned long mode,
+ void* args )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( mode );
+ FT_UNUSED( args );
+
+ return FT_Err_Ok;
+ }
+
+
+ static FT_Error
+ sdf_raster_render( FT_Raster raster,
+ const FT_Raster_Params* params )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_TRaster* sdf_raster = (SDF_TRaster*)raster;
+ FT_Outline* outline = NULL;
+ const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params;
+
+ FT_Memory memory = NULL;
+ SDF_Shape* shape = NULL;
+ SDF_Params internal_params;
+
+
+ /* check for valid arguments */
+ if ( !sdf_raster || !sdf_params )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ outline = (FT_Outline*)sdf_params->root.source;
+
+ /* check whether outline is valid */
+ if ( !outline )
+ {
+ error = FT_THROW( Invalid_Outline );
+ goto Exit;
+ }
+
+ /* if the outline is empty, return */
+ if ( outline->n_points <= 0 || outline->n_contours <= 0 )
+ goto Exit;
+
+ /* check whether the outline has valid fields */
+ if ( !outline->contours || !outline->points )
+ {
+ error = FT_THROW( Invalid_Outline );
+ goto Exit;
+ }
+
+ /* check whether spread is set properly */
+ if ( sdf_params->spread > MAX_SPREAD ||
+ sdf_params->spread < MIN_SPREAD )
+ {
+ FT_TRACE0(( "sdf_raster_render:"
+ " The `spread' field of `SDF_Raster_Params' is invalid,\n" ));
+ FT_TRACE0(( " "
+ " the value of this field must be within [%d, %d].\n",
+ MIN_SPREAD, MAX_SPREAD ));
+ FT_TRACE0(( " "
+ " Also, you must pass `SDF_Raster_Params' instead of\n" ));
+ FT_TRACE0(( " "
+ " the default `FT_Raster_Params' while calling\n" ));
+ FT_TRACE0(( " "
+ " this function and set the fields properly.\n" ));
+
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ memory = sdf_raster->memory;
+ if ( !memory )
+ {
+ FT_TRACE0(( "sdf_raster_render:"
+ " Raster not setup properly,\n" ));
+ FT_TRACE0(( " "
+ " unable to find memory handle.\n" ));
+
+ error = FT_THROW( Invalid_Handle );
+ goto Exit;
+ }
+
+ /* set up the parameters */
+ internal_params.orientation = FT_Outline_Get_Orientation( outline );
+ internal_params.flip_sign = sdf_params->flip_sign;
+ internal_params.flip_y = sdf_params->flip_y;
+ internal_params.overload_sign = 0;
+
+ FT_CALL( sdf_shape_new( memory, &shape ) );
+
+ FT_CALL( sdf_outline_decompose( outline, shape ) );
+
+ if ( sdf_params->overlaps )
+ FT_CALL( sdf_generate_with_overlaps( internal_params,
+ shape, sdf_params->spread,
+ sdf_params->root.target ) );
+ else
+ FT_CALL( sdf_generate_subdivision( internal_params,
+ shape, sdf_params->spread,
+ sdf_params->root.target ) );
+
+ if ( shape )
+ sdf_shape_done( &shape );
+
+ Exit:
+ return error;
+ }
+
+
+ static void
+ sdf_raster_done( FT_Raster raster )
+ {
+ FT_Memory memory = (FT_Memory)((SDF_TRaster*)raster)->memory;
+
+
+ FT_FREE( raster );
+ }
+
+
+ FT_DEFINE_RASTER_FUNCS(
+ ft_sdf_raster,
+
+ FT_GLYPH_FORMAT_OUTLINE,
+
+ (FT_Raster_New_Func) sdf_raster_new, /* raster_new */
+ (FT_Raster_Reset_Func) sdf_raster_reset, /* raster_reset */
+ (FT_Raster_Set_Mode_Func)sdf_raster_set_mode, /* raster_set_mode */
+ (FT_Raster_Render_Func) sdf_raster_render, /* raster_render */
+ (FT_Raster_Done_Func) sdf_raster_done /* raster_done */
+ )
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdf.h b/src/3rdparty/freetype/src/sdf/ftsdf.h
new file mode 100644
index 0000000000..234c075b0a
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdf.h
@@ -0,0 +1,97 @@
+/****************************************************************************
+ *
+ * ftsdf.h
+ *
+ * Signed Distance Field support (specification).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#ifndef FTSDF_H_
+#define FTSDF_H_
+
+#include <ft2build.h>
+#include FT_CONFIG_CONFIG_H
+#include <freetype/ftimage.h>
+
+/* common properties and function */
+#include "ftsdfcommon.h"
+
+FT_BEGIN_HEADER
+
+ /**************************************************************************
+ *
+ * @struct:
+ * SDF_Raster_Params
+ *
+ * @description:
+ * This struct must be passed to the raster render function
+ * @FT_Raster_RenderFunc instead of @FT_Raster_Params because the
+ * rasterizer requires some additional information to render properly.
+ *
+ * @fields:
+ * root ::
+ * The native raster parameters structure.
+ *
+ * spread ::
+ * This is an essential parameter/property required by the renderer.
+ * `spread` defines the maximum unsigned value that is present in the
+ * final SDF output. For the default value check file
+ * `ftsdfcommon.h`.
+ *
+ * flip_sign ::
+ * By default positive values indicate positions inside of contours,
+ * i.e., filled by a contour. If this property is true then that
+ * output will be the opposite of the default, i.e., negative values
+ * indicate positions inside of contours.
+ *
+ * flip_y ::
+ * Setting this parameter to true maked the output image flipped
+ * along the y-axis.
+ *
+ * overlaps ::
+ * Set this to true to generate SDF for glyphs having overlapping
+ * contours. The overlapping support is limited to glyphs that do not
+ * have self-intersecting contours. Also, removing overlaps require a
+ * considerable amount of extra memory; additionally, it will not work
+ * if generating SDF from bitmap.
+ *
+ * @note:
+ * All properties are valid for both the 'sdf' and 'bsdf' renderers; the
+ * exception is `overlaps`, which gets ignored by the 'bsdf' renderer.
+ *
+ */
+ typedef struct SDF_Raster_Params_
+ {
+ FT_Raster_Params root;
+ FT_UInt spread;
+ FT_Bool flip_sign;
+ FT_Bool flip_y;
+ FT_Bool overlaps;
+
+ } SDF_Raster_Params;
+
+
+ /* rasterizer to convert outline to SDF */
+ FT_EXPORT_VAR( const FT_Raster_Funcs ) ft_sdf_raster;
+
+ /* rasterizer to convert bitmap to SDF */
+ FT_EXPORT_VAR( const FT_Raster_Funcs ) ft_bitmap_sdf_raster;
+
+FT_END_HEADER
+
+#endif /* FTSDF_H_ */
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdfcommon.c b/src/3rdparty/freetype/src/sdf/ftsdfcommon.c
new file mode 100644
index 0000000000..5052201e22
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdfcommon.c
@@ -0,0 +1,147 @@
+/****************************************************************************
+ *
+ * ftsdfcommon.c
+ *
+ * Auxiliary data for Signed Distance Field support (body).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#include "ftsdf.h"
+#include "ftsdfcommon.h"
+
+
+ /**************************************************************************
+ *
+ * common functions
+ *
+ */
+
+ /*
+ * Original algorithm:
+ *
+ * https://github.com/chmike/fpsqrt
+ *
+ * Use this to compute the square root of a 16.16 fixed-point number.
+ */
+ FT_LOCAL_DEF( FT_16D16 )
+ square_root( FT_16D16 val )
+ {
+ FT_ULong t, q, b, r;
+
+
+ r = (FT_ULong)val;
+ b = 0x40000000L;
+ q = 0;
+
+ while ( b > 0x40L )
+ {
+ t = q + b;
+
+ if ( r >= t )
+ {
+ r -= t;
+ q = t + b;
+ }
+
+ r <<= 1;
+ b >>= 1;
+ }
+
+ q >>= 8;
+
+ return (FT_16D16)q;
+ }
+
+
+ /**************************************************************************
+ *
+ * format and sign manipulating functions
+ *
+ */
+
+ /*
+ * Convert 16.16 fixed-point values to the desired output format.
+ * In this case we reduce 16.16 fixed-point values to normalized
+ * 8-bit values.
+ *
+ * The `max_value` in the parameter is the maximum value in the
+ * distance field map and is equal to the spread. We normalize
+ * the distances using this value instead of computing the maximum
+ * value for the entire bitmap.
+ *
+ * You can use this function to map the 16.16 signed values to any
+ * format required. Do note that the output buffer is 8-bit, so only
+ * use an 8-bit format for `FT_SDFFormat`, or increase the buffer size in
+ * `ftsdfrend.c`.
+ */
+ FT_LOCAL_DEF( FT_SDFFormat )
+ map_fixed_to_sdf( FT_16D16 dist,
+ FT_16D16 max_value )
+ {
+ FT_SDFFormat out;
+ FT_16D16 udist;
+
+
+ /* normalize the distance values */
+ dist = FT_DivFix( dist, max_value );
+
+ udist = dist < 0 ? -dist : dist;
+
+ /* Reduce the distance values to 8 bits. */
+ /* */
+ /* Since +1/-1 in 16.16 takes the 16th bit, we right-shift */
+ /* the number by 9 to make it fit into the 7-bit range. */
+ /* */
+ /* One bit is reserved for the sign. */
+ udist >>= 9;
+
+ /* Since `char` can only store a maximum positive value */
+ /* of 127 we need to make sure it does not wrap around and */
+ /* give a negative value. */
+ if ( dist > 0 && udist > 127 )
+ udist = 127;
+ if ( dist < 0 && udist > 128 )
+ udist = 128;
+
+ /* Output the data; negative values are from [0, 127] and positive */
+ /* from [128, 255]. One important thing is that negative values */
+ /* are inverted here, that means [0, 128] maps to [-128, 0] linearly. */
+ /* More on that in `freetype.h` near the documentation of */
+ /* `FT_RENDER_MODE_SDF`. */
+ out = dist < 0 ? 128 - (FT_SDFFormat)udist
+ : (FT_SDFFormat)udist + 128;
+
+ return out;
+ }
+
+
+ /*
+ * Invert the signed distance packed into the corresponding format.
+ * So if the values are negative they will become positive in the
+ * chosen format.
+ *
+ * [Note]: This function should only be used after converting the
+ * 16.16 signed distance values to `FT_SDFFormat`. If that
+ * conversion has not been done, then simply invert the sign
+ * and use the above function to pack the values.
+ */
+ FT_LOCAL_DEF( FT_SDFFormat )
+ invert_sign( FT_SDFFormat dist )
+ {
+ return 255 - dist;
+ }
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdfcommon.h b/src/3rdparty/freetype/src/sdf/ftsdfcommon.h
new file mode 100644
index 0000000000..60ca9773e3
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdfcommon.h
@@ -0,0 +1,141 @@
+/****************************************************************************
+ *
+ * ftsdfcommon.h
+ *
+ * Auxiliary data for Signed Distance Field support (specification).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+ /****************************************************
+ *
+ * This file contains common functions and properties
+ * for both the 'sdf' and 'bsdf' renderers.
+ *
+ */
+
+#ifndef FTSDFCOMMON_H_
+#define FTSDFCOMMON_H_
+
+#include <ft2build.h>
+#include FT_CONFIG_CONFIG_H
+#include <freetype/internal/ftobjs.h>
+
+
+FT_BEGIN_HEADER
+
+
+ /**************************************************************************
+ *
+ * default values (cannot be set individually for each renderer)
+ *
+ */
+
+ /* default spread value */
+#define DEFAULT_SPREAD 8
+ /* minimum spread supported by the renderer */
+#define MIN_SPREAD 2
+ /* maximum spread supported by the renderer */
+#define MAX_SPREAD 32
+ /* pixel size in 26.6 */
+#define ONE_PIXEL ( 1 << 6 )
+
+
+ /**************************************************************************
+ *
+ * common definitions (cannot be set individually for each renderer)
+ *
+ */
+
+ /* If this macro is set to 1 the rasterizer uses squared distances for */
+ /* computation. It can greatly improve the performance but there is a */
+ /* chance of overflow and artifacts. You can safely use it up to a */
+ /* pixel size of 128. */
+#ifndef USE_SQUARED_DISTANCES
+#define USE_SQUARED_DISTANCES 0
+#endif
+
+
+ /**************************************************************************
+ *
+ * common macros
+ *
+ */
+
+ /* convert int to 26.6 fixed-point */
+#define FT_INT_26D6( x ) ( x * 64 )
+ /* convert int to 16.16 fixed-point */
+#define FT_INT_16D16( x ) ( x * 65536 )
+ /* convert 26.6 to 16.16 fixed-point */
+#define FT_26D6_16D16( x ) ( x * 1024 )
+
+
+ /* Convenience macro to call a function; it */
+ /* jumps to label `Exit` if an error occurs. */
+#define FT_CALL( x ) do \
+ { \
+ error = ( x ); \
+ if ( error != FT_Err_Ok ) \
+ goto Exit; \
+ } while ( 0 )
+
+
+ /*
+ * The macro `VECTOR_LENGTH_16D16` computes either squared distances or
+ * actual distances, depending on the value of `USE_SQUARED_DISTANCES`.
+ *
+ * By using squared distances the performance can be greatly improved but
+ * there is a risk of overflow.
+ */
+#if USE_SQUARED_DISTANCES
+#define VECTOR_LENGTH_16D16( v ) ( FT_MulFix( v.x, v.x ) + \
+ FT_MulFix( v.y, v.y ) )
+#else
+#define VECTOR_LENGTH_16D16( v ) FT_Vector_Length( &v )
+#endif
+
+
+ /**************************************************************************
+ *
+ * common typedefs
+ *
+ */
+
+ typedef FT_Vector FT_26D6_Vec; /* with 26.6 fixed-point components */
+ typedef FT_Vector FT_16D16_Vec; /* with 16.16 fixed-point components */
+
+ typedef FT_Int32 FT_16D16; /* 16.16 fixed-point representation */
+ typedef FT_Int32 FT_26D6; /* 26.6 fixed-point representation */
+ typedef FT_Byte FT_SDFFormat; /* format to represent SDF data */
+
+ typedef FT_BBox FT_CBox; /* control box of a curve */
+
+
+ FT_LOCAL( FT_16D16 )
+ square_root( FT_16D16 val );
+
+ FT_LOCAL( FT_SDFFormat )
+ map_fixed_to_sdf( FT_16D16 dist,
+ FT_16D16 max_value );
+
+ FT_LOCAL( FT_SDFFormat )
+ invert_sign( FT_SDFFormat dist );
+
+
+FT_END_HEADER
+
+#endif /* FTSDFCOMMON_H_ */
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdferrs.h b/src/3rdparty/freetype/src/sdf/ftsdferrs.h
new file mode 100644
index 0000000000..519db0fc26
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdferrs.h
@@ -0,0 +1,37 @@
+/****************************************************************************
+ *
+ * ftsdferrs.h
+ *
+ * Signed Distance Field error codes (specification only).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#ifndef FTSDFERRS_H_
+#define FTSDFERRS_H_
+
+#include <freetype/ftmoderr.h>
+
+#undef FTERRORS_H_
+
+#undef FT_ERR_PREFIX
+#define FT_ERR_PREFIX Sdf_Err_
+#define FT_ERR_BASE FT_Mod_Err_Sdf
+
+#include <freetype/fterrors.h>
+
+#endif /* FTSDFERRS_H_ */
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdfrend.c b/src/3rdparty/freetype/src/sdf/ftsdfrend.c
new file mode 100644
index 0000000000..5610c119f8
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdfrend.c
@@ -0,0 +1,603 @@
+/****************************************************************************
+ *
+ * ftsdfrend.c
+ *
+ * Signed Distance Field renderer interface (body).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#include <freetype/internal/ftdebug.h>
+#include <freetype/internal/ftobjs.h>
+#include <freetype/internal/services/svprop.h>
+#include <freetype/ftoutln.h>
+#include <freetype/ftbitmap.h>
+#include "ftsdfrend.h"
+#include "ftsdf.h"
+
+#include "ftsdferrs.h"
+
+
+ /**************************************************************************
+ *
+ * The macro FT_COMPONENT is used in trace mode. It is an implicit
+ * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
+ * messages during execution.
+ */
+#undef FT_COMPONENT
+#define FT_COMPONENT sdf
+
+
+ /**************************************************************************
+ *
+ * macros and default property values
+ *
+ */
+#define SDF_RENDERER( rend ) ( (SDF_Renderer)rend )
+
+
+ /**************************************************************************
+ *
+ * for setting properties
+ *
+ */
+
+ /* property setter function */
+ static FT_Error
+ sdf_property_set( FT_Module module,
+ const char* property_name,
+ const void* value,
+ FT_Bool value_is_string )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Renderer render = SDF_RENDERER( FT_RENDERER( module ) );
+
+ FT_UNUSED( value_is_string );
+
+
+ if ( ft_strcmp( property_name, "spread" ) == 0 )
+ {
+ FT_Int val = *(const FT_Int*)value;
+
+
+ if ( val > MAX_SPREAD || val < MIN_SPREAD )
+ {
+ FT_TRACE0(( "[sdf] sdf_property_set:"
+ " the `spread' property can have a value\n" ));
+ FT_TRACE0(( " "
+ " within range [%d, %d] (value provided: %d)\n",
+ MIN_SPREAD, MAX_SPREAD, val ));
+
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ render->spread = (FT_UInt)val;
+ FT_TRACE7(( "[sdf] sdf_property_set:"
+ " updated property `spread' to %d\n", val ));
+ }
+
+ else if ( ft_strcmp( property_name, "flip_sign" ) == 0 )
+ {
+ FT_Int val = *(const FT_Int*)value;
+
+
+ render->flip_sign = val ? 1 : 0;
+ FT_TRACE7(( "[sdf] sdf_property_set:"
+ " updated property `flip_sign' to %d\n", val ));
+ }
+
+ else if ( ft_strcmp( property_name, "flip_y" ) == 0 )
+ {
+ FT_Int val = *(const FT_Int*)value;
+
+
+ render->flip_y = val ? 1 : 0;
+ FT_TRACE7(( "[sdf] sdf_property_set:"
+ " updated property `flip_y' to %d\n", val ));
+ }
+
+ else if ( ft_strcmp( property_name, "overlaps" ) == 0 )
+ {
+ FT_Bool val = *(const FT_Bool*)value;
+
+
+ render->overlaps = val;
+ FT_TRACE7(( "[sdf] sdf_property_set:"
+ " updated property `overlaps' to %d\n", val ));
+ }
+
+ else
+ {
+ FT_TRACE0(( "[sdf] sdf_property_set:"
+ " missing property `%s'\n", property_name ));
+ error = FT_THROW( Missing_Property );
+ }
+
+ Exit:
+ return error;
+ }
+
+
+ /* property getter function */
+ static FT_Error
+ sdf_property_get( FT_Module module,
+ const char* property_name,
+ void* value )
+ {
+ FT_Error error = FT_Err_Ok;
+ SDF_Renderer render = SDF_RENDERER( FT_RENDERER( module ) );
+
+
+ if ( ft_strcmp( property_name, "spread" ) == 0 )
+ {
+ FT_UInt* val = (FT_UInt*)value;
+
+
+ *val = render->spread;
+ }
+
+ else if ( ft_strcmp( property_name, "flip_sign" ) == 0 )
+ {
+ FT_Int* val = (FT_Int*)value;
+
+
+ *val = render->flip_sign;
+ }
+
+ else if ( ft_strcmp( property_name, "flip_y" ) == 0 )
+ {
+ FT_Int* val = (FT_Int*)value;
+
+
+ *val = render->flip_y;
+ }
+
+ else if ( ft_strcmp( property_name, "overlaps" ) == 0 )
+ {
+ FT_Int* val = (FT_Int*)value;
+
+
+ *val = render->overlaps;
+ }
+
+ else
+ {
+ FT_TRACE0(( "[sdf] sdf_property_get:"
+ " missing property `%s'\n", property_name ));
+ error = FT_THROW( Missing_Property );
+ }
+
+ return error;
+ }
+
+
+ FT_DEFINE_SERVICE_PROPERTIESREC(
+ sdf_service_properties,
+
+ (FT_Properties_SetFunc)sdf_property_set, /* set_property */
+ (FT_Properties_GetFunc)sdf_property_get ) /* get_property */
+
+
+ FT_DEFINE_SERVICEDESCREC1(
+ sdf_services,
+
+ FT_SERVICE_ID_PROPERTIES, &sdf_service_properties )
+
+
+ static FT_Module_Interface
+ ft_sdf_requester( FT_Module module,
+ const char* module_interface )
+ {
+ FT_UNUSED( module );
+
+ return ft_service_list_lookup( sdf_services, module_interface );
+ }
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** OUTLINE TO SDF CONVERTER **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /**************************************************************************
+ *
+ * interface functions
+ *
+ */
+
+ static FT_Error
+ ft_sdf_init( FT_Module module ) /* SDF_Renderer */
+ {
+ SDF_Renderer sdf_render = SDF_RENDERER( module );
+
+
+ sdf_render->spread = DEFAULT_SPREAD;
+ sdf_render->flip_sign = 0;
+ sdf_render->flip_y = 0;
+ sdf_render->overlaps = 0;
+
+ return FT_Err_Ok;
+ }
+
+
+ static void
+ ft_sdf_done( FT_Module module )
+ {
+ FT_UNUSED( module );
+ }
+
+
+ /* generate signed distance field from a glyph's slot image */
+ static FT_Error
+ ft_sdf_render( FT_Renderer module,
+ FT_GlyphSlot slot,
+ FT_Render_Mode mode,
+ const FT_Vector* origin )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Outline* outline = &slot->outline;
+ FT_Bitmap* bitmap = &slot->bitmap;
+ FT_Memory memory = NULL;
+ FT_Renderer render = NULL;
+
+ FT_Pos x_shift = 0;
+ FT_Pos y_shift = 0;
+
+ FT_Pos x_pad = 0;
+ FT_Pos y_pad = 0;
+
+ SDF_Raster_Params params;
+ SDF_Renderer sdf_module = SDF_RENDERER( module );
+
+
+ render = &sdf_module->root;
+ memory = render->root.memory;
+
+ /* check whether slot format is correct before rendering */
+ if ( slot->format != render->glyph_format )
+ {
+ error = FT_THROW( Invalid_Glyph_Format );
+ goto Exit;
+ }
+
+ /* check whether render mode is correct */
+ if ( mode != FT_RENDER_MODE_SDF )
+ {
+ error = FT_THROW( Cannot_Render_Glyph );
+ goto Exit;
+ }
+
+ /* deallocate the previously allocated bitmap */
+ if ( slot->internal->flags & FT_GLYPH_OWN_BITMAP )
+ {
+ FT_FREE( bitmap->buffer );
+ slot->internal->flags &= ~FT_GLYPH_OWN_BITMAP;
+ }
+
+ /* preset the bitmap using the glyph's outline; */
+ /* the sdf bitmap is similar to an anti-aliased bitmap */
+ /* with a slightly bigger size and different pixel mode */
+ if ( ft_glyphslot_preset_bitmap( slot, FT_RENDER_MODE_NORMAL, origin ) )
+ {
+ error = FT_THROW( Raster_Overflow );
+ goto Exit;
+ }
+
+ /* nothing to render */
+ if ( !bitmap->rows || !bitmap->pitch )
+ goto Exit;
+
+ /* the padding will simply be equal to the `spread' */
+ x_pad = sdf_module->spread;
+ y_pad = sdf_module->spread;
+
+ /* apply the padding; will be in all the directions */
+ bitmap->rows += y_pad * 2;
+ bitmap->width += x_pad * 2;
+
+ /* ignore the pitch, pixel mode and set custom */
+ bitmap->pixel_mode = FT_PIXEL_MODE_GRAY;
+ bitmap->pitch = (int)( bitmap->width );
+ bitmap->num_grays = 255;
+
+ /* allocate new buffer */
+ if ( FT_ALLOC_MULT( bitmap->buffer, bitmap->rows, bitmap->pitch ) )
+ goto Exit;
+
+ slot->internal->flags |= FT_GLYPH_OWN_BITMAP;
+
+ slot->bitmap_top += y_pad;
+ slot->bitmap_left -= x_pad;
+
+ x_shift = 64 * -slot->bitmap_left;
+ y_shift = 64 * -slot->bitmap_top;
+ y_shift += 64 * (FT_Int)bitmap->rows;
+
+ if ( origin )
+ {
+ x_shift += origin->x;
+ y_shift += origin->y;
+ }
+
+ /* translate outline to render it into the bitmap */
+ if ( x_shift || y_shift )
+ FT_Outline_Translate( outline, x_shift, y_shift );
+
+ /* set up parameters */
+ params.root.target = bitmap;
+ params.root.source = outline;
+ params.root.flags = FT_RASTER_FLAG_SDF;
+ params.spread = sdf_module->spread;
+ params.flip_sign = sdf_module->flip_sign;
+ params.flip_y = sdf_module->flip_y;
+ params.overlaps = sdf_module->overlaps;
+
+ /* render the outline */
+ error = render->raster_render( render->raster,
+ (const FT_Raster_Params*)&params );
+
+ /* transform the outline back to the original state */
+ if ( x_shift || y_shift )
+ FT_Outline_Translate( outline, -x_shift, -y_shift );
+
+ Exit:
+ if ( !error )
+ {
+ /* the glyph is successfully rendered to a bitmap */
+ slot->format = FT_GLYPH_FORMAT_BITMAP;
+ }
+ else if ( slot->internal->flags & FT_GLYPH_OWN_BITMAP )
+ {
+ FT_FREE( bitmap->buffer );
+ slot->internal->flags &= ~FT_GLYPH_OWN_BITMAP;
+ }
+
+ return error;
+ }
+
+
+ /* transform the glyph using matrix and/or delta */
+ static FT_Error
+ ft_sdf_transform( FT_Renderer render,
+ FT_GlyphSlot slot,
+ const FT_Matrix* matrix,
+ const FT_Vector* delta )
+ {
+ FT_Error error = FT_Err_Ok;
+
+
+ if ( slot->format != render->glyph_format )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ if ( matrix )
+ FT_Outline_Transform( &slot->outline, matrix );
+
+ if ( delta )
+ FT_Outline_Translate( &slot->outline, delta->x, delta->y );
+
+ Exit:
+ return error;
+ }
+
+
+ /* return the control box of a glyph's outline */
+ static void
+ ft_sdf_get_cbox( FT_Renderer render,
+ FT_GlyphSlot slot,
+ FT_BBox* cbox )
+ {
+ FT_ZERO( cbox );
+
+ if ( slot->format == render->glyph_format )
+ FT_Outline_Get_CBox( &slot->outline, cbox );
+ }
+
+
+ /* set render specific modes or attributes */
+ static FT_Error
+ ft_sdf_set_mode( FT_Renderer render,
+ FT_ULong mode_tag,
+ FT_Pointer data )
+ {
+ /* pass it to the rasterizer */
+ return render->clazz->raster_class->raster_set_mode( render->raster,
+ mode_tag,
+ data );
+ }
+
+
+ FT_DEFINE_RENDERER(
+ ft_sdf_renderer_class,
+
+ FT_MODULE_RENDERER,
+ sizeof ( SDF_Renderer_Module ),
+
+ "sdf",
+ 0x10000L,
+ 0x20000L,
+
+ NULL,
+
+ (FT_Module_Constructor)ft_sdf_init,
+ (FT_Module_Destructor) ft_sdf_done,
+ (FT_Module_Requester) ft_sdf_requester,
+
+ FT_GLYPH_FORMAT_OUTLINE,
+
+ (FT_Renderer_RenderFunc) ft_sdf_render, /* render_glyph */
+ (FT_Renderer_TransformFunc)ft_sdf_transform, /* transform_glyph */
+ (FT_Renderer_GetCBoxFunc) ft_sdf_get_cbox, /* get_glyph_cbox */
+ (FT_Renderer_SetModeFunc) ft_sdf_set_mode, /* set_mode */
+
+ (FT_Raster_Funcs*)&ft_sdf_raster /* raster_class */
+ )
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** BITMAP TO SDF CONVERTER **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /* generate signed distance field from glyph's bitmap */
+ static FT_Error
+ ft_bsdf_render( FT_Renderer module,
+ FT_GlyphSlot slot,
+ FT_Render_Mode mode,
+ const FT_Vector* origin )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory = NULL;
+
+ FT_Bitmap* bitmap = &slot->bitmap;
+ FT_Renderer render = NULL;
+ FT_Bitmap target;
+
+ FT_Pos x_pad = 0;
+ FT_Pos y_pad = 0;
+
+ SDF_Raster_Params params;
+ SDF_Renderer sdf_module = SDF_RENDERER( module );
+
+
+ /* initialize the bitmap in case any error occurs */
+ FT_Bitmap_Init( &target );
+
+ render = &sdf_module->root;
+ memory = render->root.memory;
+
+ /* check whether slot format is correct before rendering */
+ if ( slot->format != render->glyph_format )
+ {
+ error = FT_THROW( Invalid_Glyph_Format );
+ goto Exit;
+ }
+
+ /* check whether render mode is correct */
+ if ( mode != FT_RENDER_MODE_SDF )
+ {
+ error = FT_THROW( Cannot_Render_Glyph );
+ goto Exit;
+ }
+
+ if ( origin )
+ {
+ FT_ERROR(( "ft_bsdf_render: can't translate the bitmap\n" ));
+
+ error = FT_THROW( Unimplemented_Feature );
+ goto Exit;
+ }
+
+ /* nothing to render */
+ if ( !bitmap->rows || !bitmap->pitch )
+ goto Exit;
+
+ /* Do not generate SDF if the bitmap is not owned by the */
+ /* glyph: it might be that the source buffer is already freed. */
+ if ( !( slot->internal->flags & FT_GLYPH_OWN_BITMAP ) )
+ {
+ FT_ERROR(( "ft_bsdf_render: can't generate SDF from"
+ " unowned source bitmap\n" ));
+
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ FT_Bitmap_New( &target );
+
+ /* padding will simply be equal to `spread` */
+ x_pad = sdf_module->spread;
+ y_pad = sdf_module->spread;
+
+ /* apply padding, which extends to all directions */
+ target.rows = bitmap->rows + y_pad * 2;
+ target.width = bitmap->width + x_pad * 2;
+
+ /* set up the target bitmap */
+ target.pixel_mode = FT_PIXEL_MODE_GRAY;
+ target.pitch = (int)( target.width );
+ target.num_grays = 255;
+
+ if ( FT_ALLOC_MULT( target.buffer, target.rows, target.pitch ) )
+ goto Exit;
+
+ /* set up parameters */
+ params.root.target = &target;
+ params.root.source = bitmap;
+ params.root.flags = FT_RASTER_FLAG_SDF;
+ params.spread = sdf_module->spread;
+ params.flip_sign = sdf_module->flip_sign;
+ params.flip_y = sdf_module->flip_y;
+
+ error = render->raster_render( render->raster,
+ (const FT_Raster_Params*)&params );
+
+ Exit:
+ if ( !error )
+ {
+ /* the glyph is successfully converted to a SDF */
+ if ( slot->internal->flags & FT_GLYPH_OWN_BITMAP )
+ FT_FREE( bitmap->buffer );
+
+ slot->bitmap = target;
+ slot->bitmap_top += y_pad;
+ slot->bitmap_left -= x_pad;
+
+ if ( target.buffer )
+ slot->internal->flags |= FT_GLYPH_OWN_BITMAP;
+ }
+ else if ( target.buffer )
+ FT_FREE( target.buffer );
+
+ return error;
+ }
+
+
+ FT_DEFINE_RENDERER(
+ ft_bitmap_sdf_renderer_class,
+
+ FT_MODULE_RENDERER,
+ sizeof ( SDF_Renderer_Module ),
+
+ "bsdf",
+ 0x10000L,
+ 0x20000L,
+
+ NULL,
+
+ (FT_Module_Constructor)ft_sdf_init,
+ (FT_Module_Destructor) ft_sdf_done,
+ (FT_Module_Requester) ft_sdf_requester,
+
+ FT_GLYPH_FORMAT_BITMAP,
+
+ (FT_Renderer_RenderFunc) ft_bsdf_render, /* render_glyph */
+ (FT_Renderer_TransformFunc)ft_sdf_transform, /* transform_glyph */
+ (FT_Renderer_GetCBoxFunc) ft_sdf_get_cbox, /* get_glyph_cbox */
+ (FT_Renderer_SetModeFunc) ft_sdf_set_mode, /* set_mode */
+
+ (FT_Raster_Funcs*)&ft_bitmap_sdf_raster /* raster_class */
+ )
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/ftsdfrend.h b/src/3rdparty/freetype/src/sdf/ftsdfrend.h
new file mode 100644
index 0000000000..571ac833d3
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/ftsdfrend.h
@@ -0,0 +1,118 @@
+/****************************************************************************
+ *
+ * ftsdfrend.h
+ *
+ * Signed Distance Field renderer interface (specification).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#ifndef FTSDFREND_H_
+#define FTSDFREND_H_
+
+#include <freetype/ftrender.h>
+#include <freetype/ftmodapi.h>
+#include <freetype/internal/ftobjs.h>
+
+FT_BEGIN_HEADER
+
+
+ /**************************************************************************
+ *
+ * @struct:
+ * SDF_Renderer_Module
+ *
+ * @description:
+ * This struct extends the native renderer struct `FT_RendererRec`. It
+ * is basically used to store various parameters required by the
+ * renderer and some additional parameters that can be used to tweak the
+ * output of the renderer.
+ *
+ * @fields:
+ * root ::
+ * The native rendere struct.
+ *
+ * spread ::
+ * This is an essential parameter/property required by the renderer.
+ * `spread` defines the maximum unsigned value that is present in the
+ * final SDF output. For the default value check file
+ * `ftsdfcommon.h`.
+ *
+ * flip_sign ::
+ * By default positive values indicate positions inside of contours,
+ * i.e., filled by a contour. If this property is true then that
+ * output will be the opposite of the default, i.e., negative values
+ * indicate positions inside of contours.
+ *
+ * flip_y ::
+ * Setting this parameter to true makes the output image flipped
+ * along the y-axis.
+ *
+ * overlaps ::
+ * Set this to true to generate SDF for glyphs having overlapping
+ * contours. The overlapping support is limited to glyphs that do not
+ * have self-intersecting contours. Also, removing overlaps require a
+ * considerable amount of extra memory; additionally, it will not work
+ * if generating SDF from bitmap.
+ *
+ * @note:
+ * All properties except `overlaps` are valid for both the 'sdf' and
+ * 'bsdf' renderers.
+ *
+ */
+ typedef struct SDF_Renderer_Module_
+ {
+ FT_RendererRec root;
+ FT_UInt spread;
+ FT_Bool flip_sign;
+ FT_Bool flip_y;
+ FT_Bool overlaps;
+
+ } SDF_Renderer_Module, *SDF_Renderer;
+
+
+ /**************************************************************************
+ *
+ * @renderer:
+ * ft_sdf_renderer_class
+ *
+ * @description:
+ * Renderer to convert @FT_Outline to signed distance fields.
+ *
+ */
+ FT_DECLARE_RENDERER( ft_sdf_renderer_class )
+
+
+ /**************************************************************************
+ *
+ * @renderer:
+ * ft_bitmap_sdf_renderer_class
+ *
+ * @description:
+ * This is not exactly a renderer; it is just a converter that
+ * transforms bitmaps to signed distance fields.
+ *
+ * @note:
+ * This is not a separate module, it is part of the 'sdf' module.
+ *
+ */
+ FT_DECLARE_RENDERER( ft_bitmap_sdf_renderer_class )
+
+
+FT_END_HEADER
+
+#endif /* FTSDFREND_H_ */
+
+
+/* END */
diff --git a/src/3rdparty/freetype/src/sdf/module.mk b/src/3rdparty/freetype/src/sdf/module.mk
new file mode 100644
index 0000000000..e896d20e66
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/module.mk
@@ -0,0 +1,29 @@
+#
+# FreeType 2 Signed Distance Field module definition
+#
+
+
+# Copyright (C) 2020-2023 by
+# David Turner, Robert Wilhelm, and Werner Lemberg.
+#
+# This file is part of the FreeType project, and may only be used, modified,
+# and distributed under the terms of the FreeType project license,
+# LICENSE.TXT. By continuing to use, modify, or distribute this file you
+# indicate that you have read the license and understand and accept it
+# fully.
+
+
+FTMODULE_H_COMMANDS += SDF_RENDERER
+FTMODULE_H_COMMANDS += BSDF_RENDERER
+
+define SDF_RENDERER
+$(OPEN_DRIVER) FT_Renderer_Class, ft_sdf_renderer_class $(CLOSE_DRIVER)
+$(ECHO_DRIVER)sdf $(ECHO_DRIVER_DESC)signed distance field renderer$(ECHO_DRIVER_DONE)
+endef
+
+define BSDF_RENDERER
+$(OPEN_DRIVER) FT_Renderer_Class, ft_bitmap_sdf_renderer_class $(CLOSE_DRIVER)
+$(ECHO_DRIVER)bsdf $(ECHO_DRIVER_DESC)bitmap to signed distance field converter$(ECHO_DRIVER_DONE)
+endef
+
+#EOF
diff --git a/src/3rdparty/freetype/src/sdf/rules.mk b/src/3rdparty/freetype/src/sdf/rules.mk
new file mode 100644
index 0000000000..d7742413c3
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/rules.mk
@@ -0,0 +1,78 @@
+#
+# FreeType 2 Signed Distance Field driver configuration rules
+#
+
+
+# Copyright (C) 2020-2023 by
+# David Turner, Robert Wilhelm, and Werner Lemberg.
+#
+# This file is part of the FreeType project, and may only be used, modified,
+# and distributed under the terms of the FreeType project license,
+# LICENSE.TXT. By continuing to use, modify, or distribute this file you
+# indicate that you have read the license and understand and accept it
+# fully.
+
+
+# sdf driver directory
+#
+SDF_DIR := $(SRC_DIR)/sdf
+
+
+# compilation flags for the driver
+#
+SDF_COMPILE := $(CC) $(ANSIFLAGS) \
+ $I$(subst /,$(COMPILER_SEP),$(SDF_DIR)) \
+ $(INCLUDE_FLAGS) \
+ $(FT_CFLAGS)
+
+
+# sdf driver sources (i.e., C files)
+#
+SDF_DRV_SRC := $(SDF_DIR)/ftsdfrend.c \
+ $(SDF_DIR)/ftsdf.c \
+ $(SDF_DIR)/ftbsdf.c \
+ $(SDF_DIR)/ftsdfcommon.c
+
+
+# sdf driver headers
+#
+SDF_DRV_H := $(SDF_DIR)/ftsdfrend.h \
+ $(SDF_DIR)/ftsdf.h \
+ $(SDF_DIR)/ftsdferrs.h \
+ $(SDF_DIR)/ftsdfcommon.h
+
+
+# sdf driver object(s)
+#
+# SDF_DRV_OBJ_M is used during `multi' builds.
+# SDF_DRV_OBJ_S is used during `single' builds.
+#
+SDF_DRV_OBJ_M := $(SDF_DRV_SRC:$(SDF_DIR)/%.c=$(OBJ_DIR)/%.$O)
+SDF_DRV_OBJ_S := $(OBJ_DIR)/sdf.$O
+
+
+# sdf driver source file for single build
+#
+SDF_DRV_SRC_S := $(SDF_DIR)/sdf.c
+
+
+# sdf driver - single object
+#
+$(SDF_DRV_OBJ_S): $(SDF_DRV_SRC_S) $(SDF_DRV_SRC) \
+ $(FREETYPE_H) $(SDF_DRV_H)
+ $(SDF_COMPILE) $T$(subst /,$(COMPILER_SEP),$@ $(SDF_DRV_SRC_S))
+
+
+# sdf driver - multiple objects
+#
+$(OBJ_DIR)/%.$O: $(SDF_DIR)/%.c $(FREETYPE_H) $(SDF_DRV_H)
+ $(SDF_COMPILE) $T$(subst /,$(COMPILER_SEP),$@ $<)
+
+
+# update main driver list
+#
+DRV_OBJS_S += $(SDF_DRV_OBJ_S)
+DRV_OBJS_M += $(SDF_DRV_OBJ_M)
+
+
+# EOF
diff --git a/src/3rdparty/freetype/src/sdf/sdf.c b/src/3rdparty/freetype/src/sdf/sdf.c
new file mode 100644
index 0000000000..c159b08128
--- /dev/null
+++ b/src/3rdparty/freetype/src/sdf/sdf.c
@@ -0,0 +1,29 @@
+/****************************************************************************
+ *
+ * sdf.c
+ *
+ * FreeType Signed Distance Field renderer module component (body only).
+ *
+ * Copyright (C) 2020-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * Written by Anuj Verma.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+
+#define FT_MAKE_OPTION_SINGLE_OBJECT
+
+#include "ftsdfrend.c"
+#include "ftsdfcommon.c"
+#include "ftbsdf.c"
+#include "ftsdf.c"
+
+
+/* END */