summaryrefslogtreecommitdiffstats
path: root/src/gui/painting/qbezier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gui/painting/qbezier.cpp')
-rw-r--r--src/gui/painting/qbezier.cpp702
1 files changed, 702 insertions, 0 deletions
diff --git a/src/gui/painting/qbezier.cpp b/src/gui/painting/qbezier.cpp
new file mode 100644
index 0000000000..a2f0edd397
--- /dev/null
+++ b/src/gui/painting/qbezier.cpp
@@ -0,0 +1,702 @@
+/****************************************************************************
+**
+** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file. Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights. These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include "qbezier_p.h"
+#include <qdebug.h>
+#include <qline.h>
+#include <qpolygon.h>
+#include <qvector.h>
+#include <qlist.h>
+#include <qmath.h>
+
+#include <private/qnumeric_p.h>
+#include <private/qmath_p.h>
+
+QT_BEGIN_NAMESPACE
+
+//#define QDEBUG_BEZIER
+
+#ifdef FLOAT_ACCURACY
+#define INV_EPS (1L<<23)
+#else
+/* The value of 1.0 / (1L<<14) is enough for most applications */
+#define INV_EPS (1L<<14)
+#endif
+
+#ifndef M_SQRT2
+#define M_SQRT2 1.41421356237309504880
+#endif
+
+/*!
+ \internal
+*/
+QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
+ const QPointF &p3, const QPointF &p4)
+{
+ QBezier b;
+ b.x1 = p1.x();
+ b.y1 = p1.y();
+ b.x2 = p2.x();
+ b.y2 = p2.y();
+ b.x3 = p3.x();
+ b.y3 = p3.y();
+ b.x4 = p4.x();
+ b.y4 = p4.y();
+ return b;
+}
+
+/*!
+ \internal
+*/
+QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const
+{
+ // flattening is done by splitting the bezier until we can replace the segment by a straight
+ // line. We split further until the control points are close enough to the line connecting the
+ // boundary points.
+ //
+ // the Distance of a point p from a line given by the points (a,b) is given by:
+ //
+ // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
+ //
+ // We can stop splitting if both control points are close enough to the line.
+ // To make the algorithm faster we use the manhattan length of the line.
+
+ QPolygonF polygon;
+ polygon.append(QPointF(x1, y1));
+ addToPolygon(&polygon, bezier_flattening_threshold);
+ return polygon;
+}
+
+QBezier QBezier::mapBy(const QTransform &transform) const
+{
+ return QBezier::fromPoints(transform.map(pt1()), transform.map(pt2()), transform.map(pt3()), transform.map(pt4()));
+}
+
+QBezier QBezier::getSubRange(qreal t0, qreal t1) const
+{
+ QBezier result;
+ QBezier temp;
+
+ // cut at t1
+ if (qFuzzyIsNull(t1 - qreal(1.))) {
+ result = *this;
+ } else {
+ temp = *this;
+ temp.parameterSplitLeft(t1, &result);
+ }
+
+ // cut at t0
+ if (!qFuzzyIsNull(t0))
+ result.parameterSplitLeft(t0 / t1, &temp);
+
+ return result;
+}
+
+static inline int quadraticRoots(qreal a, qreal b, qreal c,
+ qreal *x1, qreal *x2)
+{
+ if (qFuzzyIsNull(a)) {
+ if (qFuzzyIsNull(b))
+ return 0;
+ *x1 = *x2 = (-c / b);
+ return 1;
+ } else {
+ const qreal det = b * b - 4 * a * c;
+ if (qFuzzyIsNull(det)) {
+ *x1 = *x2 = -b / (2 * a);
+ return 1;
+ }
+ if (det > 0) {
+ if (qFuzzyIsNull(b)) {
+ *x2 = qSqrt(-c / a);
+ *x1 = -(*x2);
+ return 2;
+ }
+ const qreal stableA = b / (2 * a);
+ const qreal stableB = c / (a * stableA * stableA);
+ const qreal stableC = -1 - qSqrt(1 - stableB);
+ *x2 = stableA * stableC;
+ *x1 = (stableA * stableB) / stableC;
+ return 2;
+ } else
+ return 0;
+ }
+}
+
+static inline bool findInflections(qreal a, qreal b, qreal c,
+ qreal *t1 , qreal *t2, qreal *tCups)
+{
+ qreal r1 = 0, r2 = 0;
+
+ short rootsCount = quadraticRoots(a, b, c, &r1, &r2);
+
+ if (rootsCount >= 1) {
+ if (r1 < r2) {
+ *t1 = r1;
+ *t2 = r2;
+ } else {
+ *t1 = r2;
+ *t2 = r1;
+ }
+ if (!qFuzzyIsNull(a))
+ *tCups = qreal(0.5) * (-b / a);
+ else
+ *tCups = 2;
+
+ return true;
+ }
+
+ return false;
+}
+
+
+void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const
+{
+ QBezier beziers[32];
+ beziers[0] = *this;
+ QBezier *b = beziers;
+
+ while (b >= beziers) {
+ // check if we can pop the top bezier curve from the stack
+ qreal y4y1 = b->y4 - b->y1;
+ qreal x4x1 = b->x4 - b->x1;
+ qreal l = qAbs(x4x1) + qAbs(y4y1);
+ qreal d;
+ if (l > 1.) {
+ d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
+ + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
+ } else {
+ d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
+ qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
+ l = 1.;
+ }
+ if (d < bezier_flattening_threshold*l || b == beziers + 31) {
+ // good enough, we pop it off and add the endpoint
+ polygon->append(QPointF(b->x4, b->y4));
+ --b;
+ } else {
+ // split, second half of the polygon goes lower into the stack
+ b->split(b+1, b);
+ ++b;
+ }
+ }
+}
+
+QRectF QBezier::bounds() const
+{
+ qreal xmin = x1;
+ qreal xmax = x1;
+ if (x2 < xmin)
+ xmin = x2;
+ else if (x2 > xmax)
+ xmax = x2;
+ if (x3 < xmin)
+ xmin = x3;
+ else if (x3 > xmax)
+ xmax = x3;
+ if (x4 < xmin)
+ xmin = x4;
+ else if (x4 > xmax)
+ xmax = x4;
+
+ qreal ymin = y1;
+ qreal ymax = y1;
+ if (y2 < ymin)
+ ymin = y2;
+ else if (y2 > ymax)
+ ymax = y2;
+ if (y3 < ymin)
+ ymin = y3;
+ else if (y3 > ymax)
+ ymax = y3;
+ if (y4 < ymin)
+ ymin = y4;
+ else if (y4 > ymax)
+ ymax = y4;
+ return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
+}
+
+
+enum ShiftResult {
+ Ok,
+ Discard,
+ Split,
+ Circle
+};
+
+static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
+{
+ const qreal o2 = offset*offset;
+ const qreal max_dist_line = threshold*offset*offset;
+ const qreal max_dist_normal = threshold*offset;
+ const qreal spacing = qreal(0.25);
+ for (qreal i = spacing; i < qreal(0.99); i += spacing) {
+ QPointF p1 = b1->pointAt(i);
+ QPointF p2 = b2->pointAt(i);
+ qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
+ if (qAbs(d - o2) > max_dist_line)
+ return Split;
+
+ QPointF normalPoint = b1->normalVector(i);
+ qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
+ if (l != qreal(0.0)) {
+ d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
+ if (d > max_dist_normal)
+ return Split;
+ }
+ }
+ return Ok;
+}
+
+static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
+{
+ int map[4];
+ bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
+ bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
+ bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
+
+ QPointF points[4];
+ int np = 0;
+ points[np] = QPointF(orig->x1, orig->y1);
+ map[0] = 0;
+ ++np;
+ if (!p1_p2_equal) {
+ points[np] = QPointF(orig->x2, orig->y2);
+ ++np;
+ }
+ map[1] = np - 1;
+ if (!p2_p3_equal) {
+ points[np] = QPointF(orig->x3, orig->y3);
+ ++np;
+ }
+ map[2] = np - 1;
+ if (!p3_p4_equal) {
+ points[np] = QPointF(orig->x4, orig->y4);
+ ++np;
+ }
+ map[3] = np - 1;
+ if (np == 1)
+ return Discard;
+
+ QRectF b = orig->bounds();
+ if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
+ qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
+ (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
+ (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
+ (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
+ qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
+ (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
+ if (dot < 0 && dot*dot < 0.8*l)
+ // the points are close and reverse dirction. Approximate the whole
+ // thing by a semi circle
+ return Circle;
+ }
+
+ QPointF points_shifted[4];
+
+ QLineF prev = QLineF(QPointF(), points[1] - points[0]);
+ QPointF prev_normal = prev.normalVector().unitVector().p2();
+
+ points_shifted[0] = points[0] + offset * prev_normal;
+
+ for (int i = 1; i < np - 1; ++i) {
+ QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
+ QPointF next_normal = next.normalVector().unitVector().p2();
+
+ QPointF normal_sum = prev_normal + next_normal;
+
+ qreal r = qreal(1.0) + prev_normal.x() * next_normal.x()
+ + prev_normal.y() * next_normal.y();
+
+ if (qFuzzyIsNull(r)) {
+ points_shifted[i] = points[i] + offset * prev_normal;
+ } else {
+ qreal k = offset / r;
+ points_shifted[i] = points[i] + k * normal_sum;
+ }
+
+ prev_normal = next_normal;
+ }
+
+ points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
+
+ *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
+ points_shifted[map[2]], points_shifted[map[3]]);
+
+ return good_offset(orig, shifted, offset, threshold);
+}
+
+// This value is used to determine the length of control point vectors
+// when approximating arc segments as curves. The factor is multiplied
+// with the radius of the circle.
+#define KAPPA qreal(0.5522847498)
+
+
+static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
+{
+ QPointF normals[3];
+
+ normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
+ qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
+ if (qFuzzyIsNull(dist))
+ return false;
+ normals[0] /= dist;
+ normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
+ dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
+ if (qFuzzyIsNull(dist))
+ return false;
+ normals[2] /= dist;
+
+ normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
+ normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
+
+ qreal angles[2];
+ qreal sign = 1.;
+ for (int i = 0; i < 2; ++i) {
+ qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
+ if (cos_a > 1.)
+ cos_a = 1.;
+ if (cos_a < -1.)
+ cos_a = -1;
+ angles[i] = qAcos(cos_a)/Q_PI;
+ }
+
+ if (angles[0] + angles[1] > 1.) {
+ // more than 180 degrees
+ normals[1] = -normals[1];
+ angles[0] = 1. - angles[0];
+ angles[1] = 1. - angles[1];
+ sign = -1.;
+
+ }
+
+ QPointF circle[3];
+ circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
+ circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset;
+ circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
+
+ for (int i = 0; i < 2; ++i) {
+ qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i];
+
+ o->x1 = circle[i].x();
+ o->y1 = circle[i].y();
+ o->x2 = circle[i].x() - normals[i].y()*kappa;
+ o->y2 = circle[i].y() + normals[i].x()*kappa;
+ o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
+ o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
+ o->x4 = circle[i+1].x();
+ o->y4 = circle[i+1].y();
+
+ ++o;
+ }
+ return true;
+}
+
+int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
+{
+ Q_ASSERT(curveSegments);
+ Q_ASSERT(maxSegments > 0);
+
+ if (x1 == x2 && x1 == x3 && x1 == x4 &&
+ y1 == y2 && y1 == y3 && y1 == y4)
+ return 0;
+
+ --maxSegments;
+ QBezier beziers[10];
+redo:
+ beziers[0] = *this;
+ QBezier *b = beziers;
+ QBezier *o = curveSegments;
+
+ while (b >= beziers) {
+ int stack_segments = b - beziers + 1;
+ if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
+ threshold *= qreal(1.5);
+ if (threshold > qreal(2.0))
+ goto give_up;
+ goto redo;
+ }
+ ShiftResult res = shift(b, o, offset, threshold);
+ if (res == Discard) {
+ --b;
+ } else if (res == Ok) {
+ ++o;
+ --b;
+ continue;
+ } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
+ // add semi circle
+ if (addCircle(b, offset, o))
+ o += 2;
+ --b;
+ } else {
+ b->split(b+1, b);
+ ++b;
+ }
+ }
+
+give_up:
+ while (b >= beziers) {
+ ShiftResult res = shift(b, o, offset, threshold);
+
+ // if res isn't Ok or Split then *o is undefined
+ if (res == Ok || res == Split)
+ ++o;
+
+ --b;
+ }
+
+ Q_ASSERT(o - curveSegments <= maxSegments);
+ return o - curveSegments;
+}
+
+#ifdef QDEBUG_BEZIER
+static QDebug operator<<(QDebug dbg, const QBezier &bz)
+{
+ dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
+ << '[' << bz.x2 <<", " << bz.y2 << "], "
+ << '[' << bz.x3 <<", " << bz.y3 << "], "
+ << '[' << bz.x4 <<", " << bz.y4 << ']';
+ return dbg;
+}
+#endif
+
+static inline void splitBezierAt(const QBezier &bez, qreal t,
+ QBezier *left, QBezier *right)
+{
+ left->x1 = bez.x1;
+ left->y1 = bez.y1;
+
+ left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
+ left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );
+
+ left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
+ left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot
+
+ right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
+ right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );
+
+ right->x2 = left->x3 + t * ( right->x3 - left->x3);
+ right->y2 = left->y3 + t * ( right->y3 - left->y3);
+
+ left->x3 = left->x2 + t * ( left->x3 - left->x2 );
+ left->y3 = left->y2 + t * ( left->y3 - left->y2 );
+
+ left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
+ left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);
+
+ right->x4 = bez.x4;
+ right->y4 = bez.y4;
+}
+
+qreal QBezier::length(qreal error) const
+{
+ qreal length = qreal(0.0);
+
+ addIfClose(&length, error);
+
+ return length;
+}
+
+void QBezier::addIfClose(qreal *length, qreal error) const
+{
+ QBezier left, right; /* bez poly splits */
+
+ qreal len = qreal(0.0); /* arc length */
+ qreal chord; /* chord length */
+
+ len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
+ len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
+ len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
+
+ chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
+
+ if((len-chord) > error) {
+ split(&left, &right); /* split in two */
+ left.addIfClose(length, error); /* try left side */
+ right.addIfClose(length, error); /* try right side */
+ return;
+ }
+
+ *length = *length + len;
+
+ return;
+}
+
+qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
+{
+ qreal py0 = pointAt(t0).y();
+ qreal py1 = pointAt(t1).y();
+
+ if (py0 > py1) {
+ qSwap(py0, py1);
+ qSwap(t0, t1);
+ }
+
+ Q_ASSERT(py0 <= py1);
+
+ if (py0 >= y)
+ return t0;
+ else if (py1 <= y)
+ return t1;
+
+ Q_ASSERT(py0 < y && y < py1);
+
+ qreal lt = t0;
+ qreal dt;
+ do {
+ qreal t = qreal(0.5) * (t0 + t1);
+
+ qreal a, b, c, d;
+ QBezier::coefficients(t, a, b, c, d);
+ qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
+
+ if (yt < y) {
+ t0 = t;
+ py0 = yt;
+ } else {
+ t1 = t;
+ py1 = yt;
+ }
+ dt = lt - t;
+ lt = t;
+ } while (qAbs(dt) > qreal(1e-7));
+
+ return t0;
+}
+
+int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
+{
+ // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
+ // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
+ // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
+
+ const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
+ const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
+ const qreal c = -y1 + y2;
+
+ if (qFuzzyIsNull(a)) {
+ if (qFuzzyIsNull(b))
+ return 0;
+
+ t0 = -c / b;
+ return t0 > 0 && t0 < 1;
+ }
+
+ qreal reciprocal = b * b - 4 * a * c;
+
+ if (qFuzzyIsNull(reciprocal)) {
+ t0 = -b / (2 * a);
+ return t0 > 0 && t0 < 1;
+ } else if (reciprocal > 0) {
+ qreal temp = qSqrt(reciprocal);
+
+ t0 = (-b - temp)/(2*a);
+ t1 = (-b + temp)/(2*a);
+
+ if (t1 < t0)
+ qSwap(t0, t1);
+
+ int count = 0;
+ qreal t[2] = { 0, 1 };
+
+ if (t0 > 0 && t0 < 1)
+ t[count++] = t0;
+ if (t1 > 0 && t1 < 1)
+ t[count++] = t1;
+
+ t0 = t[0];
+ t1 = t[1];
+
+ return count;
+ }
+
+ return 0;
+}
+
+qreal QBezier::tAtLength(qreal l) const
+{
+ qreal len = length();
+ qreal t = qreal(1.0);
+ const qreal error = qreal(0.01);
+ if (l > len || qFuzzyCompare(l, len))
+ return t;
+
+ t *= qreal(0.5);
+ //int iters = 0;
+ //qDebug()<<"LEN is "<<l<<len;
+ qreal lastBigger = qreal(1.0);
+ while (1) {
+ //qDebug()<<"\tt is "<<t;
+ QBezier right = *this;
+ QBezier left;
+ right.parameterSplitLeft(t, &left);
+ qreal lLen = left.length();
+ if (qAbs(lLen - l) < error)
+ break;
+
+ if (lLen < l) {
+ t += (lastBigger - t) * qreal(0.5);
+ } else {
+ lastBigger = t;
+ t -= t * qreal(0.5);
+ }
+ //++iters;
+ }
+ //qDebug()<<"number of iters is "<<iters;
+ return t;
+}
+
+QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
+{
+ if (t0 == 0 && t1 == 1)
+ return *this;
+
+ QBezier bezier = *this;
+
+ QBezier result;
+ bezier.parameterSplitLeft(t0, &result);
+ qreal trueT = (t1-t0)/(1-t0);
+ bezier.parameterSplitLeft(trueT, &result);
+
+ return result;
+}
+
+QT_END_NAMESPACE