summaryrefslogtreecommitdiffstats
path: root/tests/arthur/common/lookup3.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tests/arthur/common/lookup3.cpp')
-rw-r--r--tests/arthur/common/lookup3.cpp786
1 files changed, 0 insertions, 786 deletions
diff --git a/tests/arthur/common/lookup3.cpp b/tests/arthur/common/lookup3.cpp
deleted file mode 100644
index 1ad2d371c4..0000000000
--- a/tests/arthur/common/lookup3.cpp
+++ /dev/null
@@ -1,786 +0,0 @@
-/****************************************************************************
-**
-** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
-** All rights reserved.
-** Contact: Nokia Corporation (qt-info@nokia.com)
-**
-** This file is part of the test suite of the Qt Toolkit.
-**
-** $QT_BEGIN_LICENSE:LGPL$
-** GNU Lesser General Public License Usage
-** This file may be used under the terms of the GNU Lesser General Public
-** License version 2.1 as published by the Free Software Foundation and
-** appearing in the file LICENSE.LGPL included in the packaging of this
-** file. Please review the following information to ensure the GNU Lesser
-** General Public License version 2.1 requirements will be met:
-** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
-**
-** In addition, as a special exception, Nokia gives you certain additional
-** rights. These rights are described in the Nokia Qt LGPL Exception
-** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
-**
-** GNU General Public License Usage
-** Alternatively, this file may be used under the terms of the GNU General
-** Public License version 3.0 as published by the Free Software Foundation
-** and appearing in the file LICENSE.GPL included in the packaging of this
-** file. Please review the following information to ensure the GNU General
-** Public License version 3.0 requirements will be met:
-** http://www.gnu.org/copyleft/gpl.html.
-**
-** Other Usage
-** Alternatively, this file may be used in accordance with the terms and
-** conditions contained in a signed written agreement between you and Nokia.
-**
-**
-**
-**
-**
-** $QT_END_LICENSE$
-**
-****************************************************************************/
-
-
-/*
-These functions are based on:
-
--------------------------------------------------------------------------------
-lookup3.c, by Bob Jenkins, May 2006, Public Domain.
-
-These are functions for producing 32-bit hashes for hash table lookup.
-hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
-are externally useful functions. Routines to test the hash are included
-if SELF_TEST is defined. You can use this free for any purpose. It's in
-the public domain. It has no warranty.
-
-You probably want to use hashlittle(). hashlittle() and hashbig()
-hash byte arrays. hashlittle() is is faster than hashbig() on
-little-endian machines. Intel and AMD are little-endian machines.
-On second thought, you probably want hashlittle2(), which is identical to
-hashlittle() except it returns two 32-bit hashes for the price of one.
-You could implement hashbig2() if you wanted but I haven't bothered here.
-
-If you want to find a hash of, say, exactly 7 integers, do
- a = i1; b = i2; c = i3;
- mix(a,b,c);
- a += i4; b += i5; c += i6;
- mix(a,b,c);
- a += i7;
- final(a,b,c);
-then use c as the hash value. If you have a variable length array of
-4-byte integers to hash, use hashword(). If you have a byte array (like
-a character string), use hashlittle(). If you have several byte arrays, or
-a mix of things, see the comments above hashlittle().
-
-Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
-then mix those integers. This is fast (you can do a lot more thorough
-mixing with 12*3 instructions on 3 integers than you can with 3 instructions
-on 1 byte), but shoehorning those bytes into integers efficiently is messy.
--------------------------------------------------------------------------------
-*/
-
-#include <QtGlobal>
-
-#if Q_BYTE_ORDER == Q_BIG_ENDIAN
-# define HASH_LITTLE_ENDIAN 0
-# define HASH_BIG_ENDIAN 1
-#else
-# define HASH_LITTLE_ENDIAN 1
-# define HASH_BIG_ENDIAN 0
-#endif
-
-#define hashsize(n) ((quint32)1<<(n))
-#define hashmask(n) (hashsize(n)-1)
-#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
-
-/*
--------------------------------------------------------------------------------
-mix -- mix 3 32-bit values reversibly.
-
-This is reversible, so any information in (a,b,c) before mix() is
-still in (a,b,c) after mix().
-
-If four pairs of (a,b,c) inputs are run through mix(), or through
-mix() in reverse, there are at least 32 bits of the output that
-are sometimes the same for one pair and different for another pair.
-This was tested for:
-* pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
-* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
-* the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
-Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
-satisfy this are
- 4 6 8 16 19 4
- 9 15 3 18 27 15
- 14 9 3 7 17 3
-Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
-for "differ" defined as + with a one-bit base and a two-bit delta. I
-used http://burtleburtle.net/bob/hash/avalanche.html to choose
-the operations, constants, and arrangements of the variables.
-
-This does not achieve avalanche. There are input bits of (a,b,c)
-that fail to affect some output bits of (a,b,c), especially of a. The
-most thoroughly mixed value is c, but it doesn't really even achieve
-avalanche in c.
-
-This allows some parallelism. Read-after-writes are good at doubling
-the number of bits affected, so the goal of mixing pulls in the opposite
-direction as the goal of parallelism. I did what I could. Rotates
-seem to cost as much as shifts on every machine I could lay my hands
-on, and rotates are much kinder to the top and bottom bits, so I used
-rotates.
--------------------------------------------------------------------------------
-*/
-#define mix(a,b,c) \
-{ \
- a -= c; a ^= rot(c, 4); c += b; \
- b -= a; b ^= rot(a, 6); a += c; \
- c -= b; c ^= rot(b, 8); b += a; \
- a -= c; a ^= rot(c,16); c += b; \
- b -= a; b ^= rot(a,19); a += c; \
- c -= b; c ^= rot(b, 4); b += a; \
-}
-
-/*
--------------------------------------------------------------------------------
-final -- final mixing of 3 32-bit values (a,b,c) into c
-
-Pairs of (a,b,c) values differing in only a few bits will usually
-produce values of c that look totally different. This was tested for
-* pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
-* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
-* the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
-These constants passed:
- 14 11 25 16 4 14 24
- 12 14 25 16 4 14 24
-and these came close:
- 4 8 15 26 3 22 24
- 10 8 15 26 3 22 24
- 11 8 15 26 3 22 24
--------------------------------------------------------------------------------
-*/
-#define final(a,b,c) \
-{ \
- c ^= b; c -= rot(b,14); \
- a ^= c; a -= rot(c,11); \
- b ^= a; b -= rot(a,25); \
- c ^= b; c -= rot(b,16); \
- a ^= c; a -= rot(c,4); \
- b ^= a; b -= rot(a,14); \
- c ^= b; c -= rot(b,24); \
-}
-
-/*
---------------------------------------------------------------------
- This works on all machines. To be useful, it requires
- -- that the key be an array of quint32's, and
- -- that the length be the number of quint32's in the key
-
- The function hashword() is identical to hashlittle() on little-endian
- machines, and identical to hashbig() on big-endian machines,
- except that the length has to be measured in quint32s rather than in
- bytes. hashlittle() is more complicated than hashword() only because
- hashlittle() has to dance around fitting the key bytes into registers.
---------------------------------------------------------------------
-*/
-quint32 hashword(
-const quint32 *k, /* the key, an array of quint32 values */
-size_t length, /* the length of the key, in quint32s */
-quint32 initval) /* the previous hash, or an arbitrary value */
-{
- quint32 a,b,c;
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + (((quint32)length)<<2) + initval;
-
- /*------------------------------------------------- handle most of the key */
- while (length > 3)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 3;
- k += 3;
- }
-
- /*------------------------------------------- handle the last 3 quint32's */
- switch(length) /* all the case statements fall through */
- {
- case 3 : c+=k[2];
- case 2 : b+=k[1];
- case 1 : a+=k[0];
- final(a,b,c);
- case 0: /* case 0: nothing left to add */
- break;
- }
- /*------------------------------------------------------ report the result */
- return c;
-}
-
-
-/*
---------------------------------------------------------------------
-hashword2() -- same as hashword(), but take two seeds and return two
-32-bit values. pc and pb must both be nonnull, and *pc and *pb must
-both be initialized with seeds. If you pass in (*pb)==0, the output
-(*pc) will be the same as the return value from hashword().
---------------------------------------------------------------------
-*/
-void hashword2 (
-const quint32 *k, /* the key, an array of quint32 values */
-size_t length, /* the length of the key, in quint32s */
-quint32 *pc, /* IN: seed OUT: primary hash value */
-quint32 *pb) /* IN: more seed OUT: secondary hash value */
-{
- quint32 a,b,c;
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((quint32)(length<<2)) + *pc;
- c += *pb;
-
- /*------------------------------------------------- handle most of the key */
- while (length > 3)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 3;
- k += 3;
- }
-
- /*------------------------------------------- handle the last 3 quint32's */
- switch(length) /* all the case statements fall through */
- {
- case 3 : c+=k[2];
- case 2 : b+=k[1];
- case 1 : a+=k[0];
- final(a,b,c);
- case 0: /* case 0: nothing left to add */
- break;
- }
- /*------------------------------------------------------ report the result */
- *pc=c; *pb=b;
-}
-
-
-/*
--------------------------------------------------------------------------------
-hashlittle() -- hash a variable-length key into a 32-bit value
- k : the key (the unaligned variable-length array of bytes)
- length : the length of the key, counting by bytes
- initval : can be any 4-byte value
-Returns a 32-bit value. Every bit of the key affects every bit of
-the return value. Two keys differing by one or two bits will have
-totally different hash values.
-
-The best hash table sizes are powers of 2. There is no need to do
-mod a prime (mod is sooo slow!). If you need less than 32 bits,
-use a bitmask. For example, if you need only 10 bits, do
- h = (h & hashmask(10));
-In which case, the hash table should have hashsize(10) elements.
-
-If you are hashing n strings (quint8 **)k, do it like this:
- for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
-
-By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
-code any way you wish, private, educational, or commercial. It's free.
-
-Use for hash table lookup, or anything where one collision in 2^^32 is
-acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------------------
-*/
-
-quint32 hashlittle( const void *key, size_t length, quint32 initval)
-{
- quint32 a,b,c; /* internal state */
- union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((quint32)length) + initval;
-
- u.ptr = key;
- if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
- const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
-
- /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 12;
- k += 3;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- /*
- * "k[2]&0xffffff" actually reads beyond the end of the string, but
- * then masks off the part it's not allowed to read. Because the
- * string is aligned, the masked-off tail is in the same word as the
- * rest of the string. Every machine with memory protection I've seen
- * does it on word boundaries, so is OK with this. But VALGRIND will
- * still catch it and complain. The masking trick does make the hash
- * noticably faster for short strings (like English words).
- */
-#ifndef VALGRIND
-
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
- case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
- case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
- case 6 : b+=k[1]&0xffff; a+=k[0]; break;
- case 5 : b+=k[1]&0xff; a+=k[0]; break;
- case 4 : a+=k[0]; break;
- case 3 : a+=k[0]&0xffffff; break;
- case 2 : a+=k[0]&0xffff; break;
- case 1 : a+=k[0]&0xff; break;
- case 0 : return c; /* zero length strings require no mixing */
- }
-
-#else /* make valgrind happy */
-
- const quint8 *k8 = (const quint8 *)k;
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=((quint32)k8[10])<<16; /* fall through */
- case 10: c+=((quint32)k8[9])<<8; /* fall through */
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=((quint32)k8[6])<<16; /* fall through */
- case 6 : b+=((quint32)k8[5])<<8; /* fall through */
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]; break;
- case 3 : a+=((quint32)k8[2])<<16; /* fall through */
- case 2 : a+=((quint32)k8[1])<<8; /* fall through */
- case 1 : a+=k8[0]; break;
- case 0 : return c;
- }
-
-#endif /* !valgrind */
-
- } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
- const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */
- const quint8 *k8;
-
- /*--------------- all but last block: aligned reads and different mixing */
- while (length > 12)
- {
- a += k[0] + (((quint32)k[1])<<16);
- b += k[2] + (((quint32)k[3])<<16);
- c += k[4] + (((quint32)k[5])<<16);
- mix(a,b,c);
- length -= 12;
- k += 6;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- k8 = (const quint8 *)k;
- switch(length)
- {
- case 12: c+=k[4]+(((quint32)k[5])<<16);
- b+=k[2]+(((quint32)k[3])<<16);
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 11: c+=((quint32)k8[10])<<16; /* fall through */
- case 10: c+=k[4];
- b+=k[2]+(((quint32)k[3])<<16);
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[2]+(((quint32)k[3])<<16);
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 7 : b+=((quint32)k8[6])<<16; /* fall through */
- case 6 : b+=k[2];
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 3 : a+=((quint32)k8[2])<<16; /* fall through */
- case 2 : a+=k[0];
- break;
- case 1 : a+=k8[0];
- break;
- case 0 : return c; /* zero length requires no mixing */
- }
-
- } else { /* need to read the key one byte at a time */
- const quint8 *k = (const quint8 *)key;
-
- /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- a += ((quint32)k[1])<<8;
- a += ((quint32)k[2])<<16;
- a += ((quint32)k[3])<<24;
- b += k[4];
- b += ((quint32)k[5])<<8;
- b += ((quint32)k[6])<<16;
- b += ((quint32)k[7])<<24;
- c += k[8];
- c += ((quint32)k[9])<<8;
- c += ((quint32)k[10])<<16;
- c += ((quint32)k[11])<<24;
- mix(a,b,c);
- length -= 12;
- k += 12;
- }
-
- /*-------------------------------- last block: affect all 32 bits of (c) */
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=((quint32)k[11])<<24;
- case 11: c+=((quint32)k[10])<<16;
- case 10: c+=((quint32)k[9])<<8;
- case 9 : c+=k[8];
- case 8 : b+=((quint32)k[7])<<24;
- case 7 : b+=((quint32)k[6])<<16;
- case 6 : b+=((quint32)k[5])<<8;
- case 5 : b+=k[4];
- case 4 : a+=((quint32)k[3])<<24;
- case 3 : a+=((quint32)k[2])<<16;
- case 2 : a+=((quint32)k[1])<<8;
- case 1 : a+=k[0];
- break;
- case 0 : return c;
- }
- }
-
- final(a,b,c);
- return c;
-}
-
-
-/*
- * hashlittle2: return 2 32-bit hash values
- *
- * This is identical to hashlittle(), except it returns two 32-bit hash
- * values instead of just one. This is good enough for hash table
- * lookup with 2^^64 buckets, or if you want a second hash if you're not
- * happy with the first, or if you want a probably-unique 64-bit ID for
- * the key. *pc is better mixed than *pb, so use *pc first. If you want
- * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
- */
-void hashlittle2(
- const void *key, /* the key to hash */
- size_t length, /* length of the key */
- quint32 *pc, /* IN: primary initval, OUT: primary hash */
- quint32 *pb) /* IN: secondary initval, OUT: secondary hash */
-{
- quint32 a,b,c; /* internal state */
- union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((quint32)length) + *pc;
- c += *pb;
-
- u.ptr = key;
- if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
- const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
-
- /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 12;
- k += 3;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- /*
- * "k[2]&0xffffff" actually reads beyond the end of the string, but
- * then masks off the part it's not allowed to read. Because the
- * string is aligned, the masked-off tail is in the same word as the
- * rest of the string. Every machine with memory protection I've seen
- * does it on word boundaries, so is OK with this. But VALGRIND will
- * still catch it and complain. The masking trick does make the hash
- * noticably faster for short strings (like English words).
- */
-#ifndef VALGRIND
-
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
- case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
- case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
- case 6 : b+=k[1]&0xffff; a+=k[0]; break;
- case 5 : b+=k[1]&0xff; a+=k[0]; break;
- case 4 : a+=k[0]; break;
- case 3 : a+=k[0]&0xffffff; break;
- case 2 : a+=k[0]&0xffff; break;
- case 1 : a+=k[0]&0xff; break;
- case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
- }
-
-#else /* make valgrind happy */
-
- const quint8 *k8 = (const quint8 *)k;
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=((quint32)k8[10])<<16; /* fall through */
- case 10: c+=((quint32)k8[9])<<8; /* fall through */
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=((quint32)k8[6])<<16; /* fall through */
- case 6 : b+=((quint32)k8[5])<<8; /* fall through */
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]; break;
- case 3 : a+=((quint32)k8[2])<<16; /* fall through */
- case 2 : a+=((quint32)k8[1])<<8; /* fall through */
- case 1 : a+=k8[0]; break;
- case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
- }
-
-#endif /* !valgrind */
-
- } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
- const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */
- const quint8 *k8;
-
- /*--------------- all but last block: aligned reads and different mixing */
- while (length > 12)
- {
- a += k[0] + (((quint32)k[1])<<16);
- b += k[2] + (((quint32)k[3])<<16);
- c += k[4] + (((quint32)k[5])<<16);
- mix(a,b,c);
- length -= 12;
- k += 6;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- k8 = (const quint8 *)k;
- switch(length)
- {
- case 12: c+=k[4]+(((quint32)k[5])<<16);
- b+=k[2]+(((quint32)k[3])<<16);
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 11: c+=((quint32)k8[10])<<16; /* fall through */
- case 10: c+=k[4];
- b+=k[2]+(((quint32)k[3])<<16);
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[2]+(((quint32)k[3])<<16);
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 7 : b+=((quint32)k8[6])<<16; /* fall through */
- case 6 : b+=k[2];
- a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]+(((quint32)k[1])<<16);
- break;
- case 3 : a+=((quint32)k8[2])<<16; /* fall through */
- case 2 : a+=k[0];
- break;
- case 1 : a+=k8[0];
- break;
- case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
- }
-
- } else { /* need to read the key one byte at a time */
- const quint8 *k = (const quint8 *)key;
-
- /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- a += ((quint32)k[1])<<8;
- a += ((quint32)k[2])<<16;
- a += ((quint32)k[3])<<24;
- b += k[4];
- b += ((quint32)k[5])<<8;
- b += ((quint32)k[6])<<16;
- b += ((quint32)k[7])<<24;
- c += k[8];
- c += ((quint32)k[9])<<8;
- c += ((quint32)k[10])<<16;
- c += ((quint32)k[11])<<24;
- mix(a,b,c);
- length -= 12;
- k += 12;
- }
-
- /*-------------------------------- last block: affect all 32 bits of (c) */
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=((quint32)k[11])<<24;
- case 11: c+=((quint32)k[10])<<16;
- case 10: c+=((quint32)k[9])<<8;
- case 9 : c+=k[8];
- case 8 : b+=((quint32)k[7])<<24;
- case 7 : b+=((quint32)k[6])<<16;
- case 6 : b+=((quint32)k[5])<<8;
- case 5 : b+=k[4];
- case 4 : a+=((quint32)k[3])<<24;
- case 3 : a+=((quint32)k[2])<<16;
- case 2 : a+=((quint32)k[1])<<8;
- case 1 : a+=k[0];
- break;
- case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
- }
- }
-
- final(a,b,c);
- *pc=c; *pb=b;
-}
-
-
-
-/*
- * hashbig():
- * This is the same as hashword() on big-endian machines. It is different
- * from hashlittle() on all machines. hashbig() takes advantage of
- * big-endian byte ordering.
- */
-quint32 hashbig( const void *key, size_t length, quint32 initval)
-{
- quint32 a,b,c;
- union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((quint32)length) + initval;
-
- u.ptr = key;
- if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
- const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
-
- /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 12;
- k += 3;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- /*
- * "k[2]<<8" actually reads beyond the end of the string, but
- * then shifts out the part it's not allowed to read. Because the
- * string is aligned, the illegal read is in the same word as the
- * rest of the string. Every machine with memory protection I've seen
- * does it on word boundaries, so is OK with this. But VALGRIND will
- * still catch it and complain. The masking trick does make the hash
- * noticably faster for short strings (like English words).
- */
-#ifndef VALGRIND
-
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
- case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
- case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
- case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
- case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
- case 4 : a+=k[0]; break;
- case 3 : a+=k[0]&0xffffff00; break;
- case 2 : a+=k[0]&0xffff0000; break;
- case 1 : a+=k[0]&0xff000000; break;
- case 0 : return c; /* zero length strings require no mixing */
- }
-
-#else /* make valgrind happy */
-
- const quint8 *k8 = (const quint8 *)k;
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=((quint32)k8[10])<<8; /* fall through */
- case 10: c+=((quint32)k8[9])<<16; /* fall through */
- case 9 : c+=((quint32)k8[8])<<24; /* fall through */
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=((quint32)k8[6])<<8; /* fall through */
- case 6 : b+=((quint32)k8[5])<<16; /* fall through */
- case 5 : b+=((quint32)k8[4])<<24; /* fall through */
- case 4 : a+=k[0]; break;
- case 3 : a+=((quint32)k8[2])<<8; /* fall through */
- case 2 : a+=((quint32)k8[1])<<16; /* fall through */
- case 1 : a+=((quint32)k8[0])<<24; break;
- case 0 : return c;
- }
-
-#endif /* !VALGRIND */
-
- } else { /* need to read the key one byte at a time */
- const quint8 *k = (const quint8 *)key;
-
- /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += ((quint32)k[0])<<24;
- a += ((quint32)k[1])<<16;
- a += ((quint32)k[2])<<8;
- a += ((quint32)k[3]);
- b += ((quint32)k[4])<<24;
- b += ((quint32)k[5])<<16;
- b += ((quint32)k[6])<<8;
- b += ((quint32)k[7]);
- c += ((quint32)k[8])<<24;
- c += ((quint32)k[9])<<16;
- c += ((quint32)k[10])<<8;
- c += ((quint32)k[11]);
- mix(a,b,c);
- length -= 12;
- k += 12;
- }
-
- /*-------------------------------- last block: affect all 32 bits of (c) */
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=k[11];
- case 11: c+=((quint32)k[10])<<8;
- case 10: c+=((quint32)k[9])<<16;
- case 9 : c+=((quint32)k[8])<<24;
- case 8 : b+=k[7];
- case 7 : b+=((quint32)k[6])<<8;
- case 6 : b+=((quint32)k[5])<<16;
- case 5 : b+=((quint32)k[4])<<24;
- case 4 : a+=k[3];
- case 3 : a+=((quint32)k[2])<<8;
- case 2 : a+=((quint32)k[1])<<16;
- case 1 : a+=((quint32)k[0])<<24;
- break;
- case 0 : return c;
- }
- }
-
- final(a,b,c);
- return c;
-}