summaryrefslogtreecommitdiffstats
path: root/examples/corelib/threads/mandelbrot/renderthread.cpp
blob: 77a14a6ac14af4be7759566336f5baf739aa835b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright (C) 2021 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause

#include "renderthread.h"

#include <QImage>
#include <QElapsedTimer>
#include <QTextStream>

#include <cmath>

int RenderThread::numPasses = 8;

//! [0]
RenderThread::RenderThread(QObject *parent)
    : QThread(parent)
{
    for (int i = 0; i < ColormapSize; ++i)
        colormap[i] = rgbFromWaveLength(380.0 + (i * 400.0 / ColormapSize));
}
//! [0]

//! [1]
RenderThread::~RenderThread()
{
    mutex.lock();
    abort = true;
    condition.wakeOne();
    mutex.unlock();

    wait();
}
//! [1]

//! [2]
void RenderThread::render(double centerX, double centerY, double scaleFactor,
                          QSize resultSize, double devicePixelRatio)
{
    QMutexLocker locker(&mutex);

    this->centerX = centerX;
    this->centerY = centerY;
    this->scaleFactor = scaleFactor;
    this->devicePixelRatio = devicePixelRatio;
    this->resultSize = resultSize;

    if (!isRunning()) {
        start(LowPriority);
    } else {
        restart = true;
        condition.wakeOne();
    }
}
//! [2]

//! [3]
void RenderThread::run()
{
    QElapsedTimer timer;
    forever {
        mutex.lock();
        const double devicePixelRatio = this->devicePixelRatio;
        const QSize resultSize = this->resultSize * devicePixelRatio;
        const double requestedScaleFactor = this->scaleFactor;
        const double scaleFactor = requestedScaleFactor / devicePixelRatio;
        const double centerX = this->centerX;
        const double centerY = this->centerY;
        mutex.unlock();
//! [3]

//! [4]
        const int halfWidth = resultSize.width() / 2;
//! [4] //! [5]
        const int halfHeight = resultSize.height() / 2;
        QImage image(resultSize, QImage::Format_RGB32);
        image.setDevicePixelRatio(devicePixelRatio);

        int pass = 0;
        while (pass < numPasses) {
            const int MaxIterations = (1 << (2 * pass + 6)) + 32;
            constexpr int Limit = 4;
            bool allBlack = true;

            timer.restart();

            for (int y = -halfHeight; y < halfHeight; ++y) {
                if (restart)
                    break;
                if (abort)
                    return;

                auto scanLine =
                        reinterpret_cast<uint *>(image.scanLine(y + halfHeight));
                const double ay = centerY + (y * scaleFactor);

                for (int x = -halfWidth; x < halfWidth; ++x) {
                    const double ax = centerX + (x * scaleFactor);
                    double a1 = ax;
                    double b1 = ay;
                    int numIterations = 0;

                    do {
                        ++numIterations;
                        const double a2 = (a1 * a1) - (b1 * b1) + ax;
                        const double b2 = (2 * a1 * b1) + ay;
                        if ((a2 * a2) + (b2 * b2) > Limit)
                            break;

                        ++numIterations;
                        a1 = (a2 * a2) - (b2 * b2) + ax;
                        b1 = (2 * a2 * b2) + ay;
                        if ((a1 * a1) + (b1 * b1) > Limit)
                            break;
                    } while (numIterations < MaxIterations);

                    if (numIterations < MaxIterations) {
                        *scanLine++ = colormap[numIterations % ColormapSize];
                        allBlack = false;
                    } else {
                        *scanLine++ = qRgb(0, 0, 0);
                    }
                }
            }

            if (allBlack && pass == 0) {
                pass = 4;
            } else {
                if (!restart) {
                    QString message;
                    QTextStream str(&message);
                    str << " Pass " << (pass + 1) << '/' << numPasses
                        << ", max iterations: " << MaxIterations << ", time: ";
                    const auto elapsed = timer.elapsed();
                    if (elapsed > 2000)
                        str << (elapsed / 1000) << 's';
                    else
                        str << elapsed << "ms";
                    image.setText(infoKey(), message);

                    emit renderedImage(image, requestedScaleFactor);
                }
//! [5] //! [6]
                ++pass;
            }
//! [6] //! [7]
        }
//! [7]

//! [8]
        mutex.lock();
//! [8] //! [9]
        if (!restart)
            condition.wait(&mutex);
        restart = false;
        mutex.unlock();
    }
}
//! [9]

//! [10]
uint RenderThread::rgbFromWaveLength(double wave)
{
    double r = 0;
    double g = 0;
    double b = 0;

    if (wave >= 380.0 && wave <= 440.0) {
        r = -1.0 * (wave - 440.0) / (440.0 - 380.0);
        b = 1.0;
    } else if (wave >= 440.0 && wave <= 490.0) {
        g = (wave - 440.0) / (490.0 - 440.0);
        b = 1.0;
    } else if (wave >= 490.0 && wave <= 510.0) {
        g = 1.0;
        b = -1.0 * (wave - 510.0) / (510.0 - 490.0);
    } else if (wave >= 510.0 && wave <= 580.0) {
        r = (wave - 510.0) / (580.0 - 510.0);
        g = 1.0;
    } else if (wave >= 580.0 && wave <= 645.0) {
        r = 1.0;
        g = -1.0 * (wave - 645.0) / (645.0 - 580.0);
    } else if (wave >= 645.0 && wave <= 780.0) {
        r = 1.0;
    }

    double s = 1.0;
    if (wave > 700.0)
        s = 0.3 + 0.7 * (780.0 - wave) / (780.0 - 700.0);
    else if (wave <  420.0)
        s = 0.3 + 0.7 * (wave - 380.0) / (420.0 - 380.0);

    r = std::pow(r * s, 0.8);
    g = std::pow(g * s, 0.8);
    b = std::pow(b * s, 0.8);
    return qRgb(int(r * 255), int(g * 255), int(b * 255));
}
//! [10]