summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/common/third_party/base/anglebase/numerics/safe_math_impl.h
blob: 2831cc6cebc2b49226695f85623390c6587992ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef ANGLEBASE_NUMERICS_SAFE_MATH_IMPL_H_
#define ANGLEBASE_NUMERICS_SAFE_MATH_IMPL_H_

#include <stddef.h>
#include <stdint.h>

#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>

#include "anglebase/numerics/safe_conversions.h"

namespace angle
{

namespace base
{
namespace internal
{

// Everything from here up to the floating point operations is portable C++,
// but it may not be fast. This code could be split based on
// platform/architecture and replaced with potentially faster implementations.

// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForSizeAndSign;
template <>
struct IntegerForSizeAndSign<1, true>
{
    typedef int8_t type;
};
template <>
struct IntegerForSizeAndSign<1, false>
{
    typedef uint8_t type;
};
template <>
struct IntegerForSizeAndSign<2, true>
{
    typedef int16_t type;
};
template <>
struct IntegerForSizeAndSign<2, false>
{
    typedef uint16_t type;
};
template <>
struct IntegerForSizeAndSign<4, true>
{
    typedef int32_t type;
};
template <>
struct IntegerForSizeAndSign<4, false>
{
    typedef uint32_t type;
};
template <>
struct IntegerForSizeAndSign<8, true>
{
    typedef int64_t type;
};
template <>
struct IntegerForSizeAndSign<8, false>
{
    typedef uint64_t type;
};

// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).

template <typename Integer>
struct UnsignedIntegerForSize
{
    typedef
        typename std::enable_if<std::numeric_limits<Integer>::is_integer,
                                typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type
            type;
};

template <typename Integer>
struct SignedIntegerForSize
{
    typedef
        typename std::enable_if<std::numeric_limits<Integer>::is_integer,
                                typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type
            type;
};

template <typename Integer>
struct TwiceWiderInteger
{
    typedef typename std::enable_if<
        std::numeric_limits<Integer>::is_integer,
        typename IntegerForSizeAndSign<sizeof(Integer) * 2,
                                       std::numeric_limits<Integer>::is_signed>::type>::type type;
};

template <typename Integer>
struct PositionOfSignBit
{
    static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, size_t>::type
        value = CHAR_BIT * sizeof(Integer) - 1;
};

// This is used for UnsignedAbs, where we need to support floating-point
// template instantiations even though we don't actually support the operations.
// However, there is no corresponding implementation of e.g. CheckedUnsignedAbs,
// so the float versions will not compile.
template <typename Numeric,
          bool IsInteger = std::numeric_limits<Numeric>::is_integer,
          bool IsFloat   = std::numeric_limits<Numeric>::is_iec559>
struct UnsignedOrFloatForSize;

template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, true, false>
{
    typedef typename UnsignedIntegerForSize<Numeric>::type type;
};

template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, false, true>
{
    typedef Numeric type;
};

// Helper templates for integer manipulations.

template <typename T>
constexpr bool HasSignBit(T x)
{
    // Cast to unsigned since right shift on signed is undefined.
    return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
              PositionOfSignBit<T>::value);
}

// This wrapper undoes the standard integer promotions.
template <typename T>
constexpr T BinaryComplement(T x)
{
    return static_cast<T>(~x);
}

// Here are the actual portable checked integer math implementations.
// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
// way to coalesce things into the CheckedNumericState specializations below.

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type
CheckedAdd(T x, T y, RangeConstraint *validity)
{
    // Since the value of x+y is undefined if we have a signed type, we compute
    // it using the unsigned type of the same size.
    typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
    UnsignedDst ux      = static_cast<UnsignedDst>(x);
    UnsignedDst uy      = static_cast<UnsignedDst>(y);
    UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
    // Addition is valid if the sign of (x + y) is equal to either that of x or
    // that of y.
    if (std::numeric_limits<T>::is_signed)
    {
        if (HasSignBit(BinaryComplement(static_cast<UnsignedDst>((uresult ^ ux) & (uresult ^ uy)))))
        {
            *validity = RANGE_VALID;
        }
        else
        {  // Direction of wrap is inverse of result sign.
            *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
        }
    }
    else
    {  // Unsigned is either valid or overflow.
        *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
    }
    return static_cast<T>(uresult);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type
CheckedSub(T x, T y, RangeConstraint *validity)
{
    // Since the value of x+y is undefined if we have a signed type, we compute
    // it using the unsigned type of the same size.
    typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
    UnsignedDst ux      = static_cast<UnsignedDst>(x);
    UnsignedDst uy      = static_cast<UnsignedDst>(y);
    UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
    // Subtraction is valid if either x and y have same sign, or (x-y) and x have
    // the same sign.
    if (std::numeric_limits<T>::is_signed)
    {
        if (HasSignBit(BinaryComplement(static_cast<UnsignedDst>((uresult ^ ux) & (ux ^ uy)))))
        {
            *validity = RANGE_VALID;
        }
        else
        {  // Direction of wrap is inverse of result sign.
            *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
        }
    }
    else
    {  // Unsigned is either valid or underflow.
        *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
    }
    return static_cast<T>(uresult);
}

// Integer multiplication is a bit complicated. In the fast case we just
// we just promote to a twice wider type, and range check the result. In the
// slow case we need to manually check that the result won't be truncated by
// checking with division against the appropriate bound.
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
                        T>::type
CheckedMul(T x, T y, RangeConstraint *validity)
{
    typedef typename TwiceWiderInteger<T>::type IntermediateType;
    IntermediateType tmp = static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
    *validity            = DstRangeRelationToSrcRange<T>(tmp);
    return static_cast<T>(tmp);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed &&
                            (sizeof(T) * 2 > sizeof(uintmax_t)),
                        T>::type
CheckedMul(T x, T y, RangeConstraint *validity)
{
    // If either side is zero then the result will be zero.
    if (!x || !y)
    {
        *validity = RANGE_VALID;
        return static_cast<T>(0);
    }
    else if (x > 0)
    {
        if (y > 0)
            *validity = x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
        else
            *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID : RANGE_UNDERFLOW;
    }
    else
    {
        if (y > 0)
            *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID : RANGE_UNDERFLOW;
        else
            *validity = y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
    }

    return static_cast<T>(x * y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed &&
                            (sizeof(T) * 2 > sizeof(uintmax_t)),
                        T>::type
CheckedMul(T x, T y, RangeConstraint *validity)
{
    *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) ? RANGE_VALID : RANGE_OVERFLOW;
    return static_cast<T>(x * y);
}

// Division just requires a check for an invalid negation on signed min/-1.
template <typename T>
T CheckedDiv(T x,
             T y,
             RangeConstraint *validity,
             typename std::enable_if<std::numeric_limits<T>::is_integer, int>::type = 0)
{
    if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
        y == static_cast<T>(-1))
    {
        *validity = RANGE_OVERFLOW;
        return std::numeric_limits<T>::min();
    }

    *validity = RANGE_VALID;
    return static_cast<T>(x / y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        T>::type
CheckedMod(T x, T y, RangeConstraint *validity)
{
    *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
    return static_cast<T>(x % y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedMod(T x, T y, RangeConstraint *validity)
{
    *validity = RANGE_VALID;
    return static_cast<T>(x % y);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        T>::type
CheckedNeg(T value, RangeConstraint *validity)
{
    *validity = value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
    // The negation of signed min is min, so catch that one.
    return static_cast<T>(-value);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedNeg(T value, RangeConstraint *validity)
{
    // The only legal unsigned negation is zero.
    *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
    return static_cast<T>(-static_cast<typename SignedIntegerForSize<T>::type>(value));
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        T>::type
CheckedAbs(T value, RangeConstraint *validity)
{
    *validity = value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
    return static_cast<T>(std::abs(value));
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedAbs(T value, RangeConstraint *validity)
{
    // T is unsigned, so |value| must already be positive.
    *validity = RANGE_VALID;
    return value;
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
                        typename UnsignedIntegerForSize<T>::type>::type
CheckedUnsignedAbs(T value)
{
    typedef typename UnsignedIntegerForSize<T>::type UnsignedT;
    return value == std::numeric_limits<T>::min()
               ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1
               : static_cast<UnsignedT>(std::abs(value));
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
                        T>::type
CheckedUnsignedAbs(T value)
{
    // T is unsigned, so |value| must already be positive.
    return static_cast<T>(value);
}

// These are the floating point stubs that the compiler needs to see. Only the
// negation operation is ever called.
#define ANGLEBASE_FLOAT_ARITHMETIC_STUBS(NAME)                                              \
    template <typename T>                                                              \
    typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type Checked##NAME( \
        T, T, RangeConstraint *)                                                       \
    {                                                                                  \
        NOTREACHED();                                                                  \
        return static_cast<T>(0);                                                      \
    }

ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Add)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Sub)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Mul)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Div)
ANGLEBASE_FLOAT_ARITHMETIC_STUBS(Mod)

#undef ANGLEBASE_FLOAT_ARITHMETIC_STUBS

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(T value,
                                                                               RangeConstraint *)
{
    return static_cast<T>(-value);
}

template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(T value,
                                                                               RangeConstraint *)
{
    return static_cast<T>(std::abs(value));
}

// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation
{
    NUMERIC_INTEGER,
    NUMERIC_FLOATING,
    NUMERIC_UNKNOWN
};

template <typename NumericType>
struct GetNumericRepresentation
{
    static const NumericRepresentation value =
        std::numeric_limits<NumericType>::is_integer
            ? NUMERIC_INTEGER
            : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING : NUMERIC_UNKNOWN);
};

template <typename T, NumericRepresentation type = GetNumericRepresentation<T>::value>
class CheckedNumericState
{
};

// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER>
{
  private:
    T value_;
    RangeConstraint validity_ : CHAR_BIT;  // Actually requires only two bits.

  public:
    template <typename Src, NumericRepresentation type>
    friend class CheckedNumericState;

    CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}

    template <typename Src>
    CheckedNumericState(Src value, RangeConstraint validity)
        : value_(static_cast<T>(value)),
          validity_(GetRangeConstraint(validity | DstRangeRelationToSrcRange<T>(value)))
    {
        static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric.");
    }

    // Copy constructor.
    template <typename Src>
    CheckedNumericState(const CheckedNumericState<Src> &rhs)
        : value_(static_cast<T>(rhs.value())),
          validity_(GetRangeConstraint(rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value())))
    {
    }

    template <typename Src>
    explicit CheckedNumericState(
        Src value,
        typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0)
        : value_(static_cast<T>(value)), validity_(DstRangeRelationToSrcRange<T>(value))
    {
    }

    RangeConstraint validity() const { return validity_; }
    T value() const { return value_; }
};

// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING>
{
  private:
    T value_;

  public:
    template <typename Src, NumericRepresentation type>
    friend class CheckedNumericState;

    CheckedNumericState() : value_(0.0) {}

    template <typename Src>
    CheckedNumericState(
        Src value,
        RangeConstraint validity,
        typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0)
    {
        switch (DstRangeRelationToSrcRange<T>(value))
        {
            case RANGE_VALID:
                value_ = static_cast<T>(value);
                break;

            case RANGE_UNDERFLOW:
                value_ = -std::numeric_limits<T>::infinity();
                break;

            case RANGE_OVERFLOW:
                value_ = std::numeric_limits<T>::infinity();
                break;

            case RANGE_INVALID:
                value_ = std::numeric_limits<T>::quiet_NaN();
                break;

            default:
                NOTREACHED();
        }
    }

    template <typename Src>
    explicit CheckedNumericState(
        Src value,
        typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0)
        : value_(static_cast<T>(value))
    {
    }

    // Copy constructor.
    template <typename Src>
    CheckedNumericState(const CheckedNumericState<Src> &rhs) : value_(static_cast<T>(rhs.value()))
    {
    }

    RangeConstraint validity() const
    {
        return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
                                  value_ >= -std::numeric_limits<T>::max());
    }
    T value() const { return value_; }
};

// For integers less than 128-bit and floats 32-bit or larger, we have the type
// with the larger maximum exponent take precedence.
enum ArithmeticPromotionCategory
{
    LEFT_PROMOTION,
    RIGHT_PROMOTION
};

template <typename Lhs,
          typename Rhs = Lhs,
          ArithmeticPromotionCategory Promotion =
              (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) ? LEFT_PROMOTION
                                                                  : RIGHT_PROMOTION>
struct ArithmeticPromotion;

template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION>
{
    typedef Lhs type;
};

template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION>
{
    typedef Rhs type;
};

// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs>
struct IsIntegerArithmeticSafe
{
    static const bool value =
        !std::numeric_limits<T>::is_iec559 &&
        StaticDstRangeRelationToSrcRange<T, Lhs>::value == NUMERIC_RANGE_CONTAINED &&
        sizeof(T) >= (2 * sizeof(Lhs)) &&
        StaticDstRangeRelationToSrcRange<T, Rhs>::value != NUMERIC_RANGE_CONTAINED &&
        sizeof(T) >= (2 * sizeof(Rhs));
};

}  // namespace internal
}  // namespace base

}  // namespace angle

#endif  // ANGLEBASE_NUMERICS_SAFE_MATH_IMPL_H_