summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/UnfoldShortCircuitToIf.cpp
blob: be23b524d757e679b28abb7c89cd0e4d00af0722 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// UnfoldShortCircuitToIf is an AST traverser to convert short-circuiting operators to if-else statements.
// The results are assigned to s# temporaries, which are used by the main translator instead of
// the original expression.
//

#include "compiler/translator/UnfoldShortCircuitToIf.h"

#include "compiler/translator/IntermNode.h"

namespace
{

// Traverser that unfolds one short-circuiting operation at a time.
class UnfoldShortCircuitTraverser : public TIntermTraverser
{
  public:
    UnfoldShortCircuitTraverser();

    bool visitBinary(Visit visit, TIntermBinary *node) override;
    bool visitAggregate(Visit visit, TIntermAggregate *node) override;
    bool visitSelection(Visit visit, TIntermSelection *node) override;
    bool visitLoop(Visit visit, TIntermLoop *node) override;

    void nextIteration();
    bool foundShortCircuit() const { return mFoundShortCircuit; }

  protected:
    // Check if the traversal is inside a loop condition or expression, in which case the unfolded
    // expression needs to be copied inside the loop. Returns true if the copying is done, in which
    // case no further unfolding should be done on the same traversal.
    // The parameters are the node that will be unfolded to multiple statements and so can't remain
    // inside a loop condition, and its parent.
    bool copyLoopConditionOrExpression(TIntermNode *parent, TIntermTyped *node);

    // Marked to true once an operation that needs to be unfolded has been found.
    // After that, no more unfolding is performed on that traversal.
    bool mFoundShortCircuit;

    // Set to the loop node while a loop condition or expression is being traversed.
    TIntermLoop *mParentLoop;
    // Parent of the loop node while a loop condition or expression is being traversed.
    TIntermNode *mLoopParent;

    bool mInLoopCondition;
    bool mInLoopExpression;
};

UnfoldShortCircuitTraverser::UnfoldShortCircuitTraverser()
    : TIntermTraverser(true, false, true),
      mFoundShortCircuit(false),
      mParentLoop(nullptr),
      mLoopParent(nullptr),
      mInLoopCondition(false),
      mInLoopExpression(false)
{
}

bool UnfoldShortCircuitTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
    if (mFoundShortCircuit)
        return false;
    // If our right node doesn't have side effects, we know we don't need to unfold this
    // expression: there will be no short-circuiting side effects to avoid
    // (note: unfolding doesn't depend on the left node -- it will always be evaluated)
    if (!node->getRight()->hasSideEffects())
    {
        return true;
    }

    switch (node->getOp())
    {
      case EOpLogicalOr:
        mFoundShortCircuit = true;
        if (!copyLoopConditionOrExpression(getParentNode(), node))
        {
            // "x || y" is equivalent to "x ? true : y", which unfolds to "bool s; if(x) s = true;
            // else s = y;",
            // and then further simplifies down to "bool s = x; if(!s) s = y;".

            TIntermSequence insertions;
            TType boolType(EbtBool, EbpUndefined, EvqTemporary);

            ASSERT(node->getLeft()->getType() == boolType);
            insertions.push_back(createTempInitDeclaration(node->getLeft()));

            TIntermAggregate *assignRightBlock = new TIntermAggregate(EOpSequence);
            ASSERT(node->getRight()->getType() == boolType);
            assignRightBlock->getSequence()->push_back(createTempAssignment(node->getRight()));

            TIntermUnary *notTempSymbol = new TIntermUnary(EOpLogicalNot, boolType);
            notTempSymbol->setOperand(createTempSymbol(boolType));
            TIntermSelection *ifNode = new TIntermSelection(notTempSymbol, assignRightBlock, nullptr);
            insertions.push_back(ifNode);

            insertStatementsInParentBlock(insertions);

            NodeUpdateEntry replaceVariable(getParentNode(), node, createTempSymbol(boolType), false);
            mReplacements.push_back(replaceVariable);
        }
        return false;
      case EOpLogicalAnd:
        mFoundShortCircuit = true;
        if (!copyLoopConditionOrExpression(getParentNode(), node))
        {
            // "x && y" is equivalent to "x ? y : false", which unfolds to "bool s; if(x) s = y;
            // else s = false;",
            // and then further simplifies down to "bool s = x; if(s) s = y;".
            TIntermSequence insertions;
            TType boolType(EbtBool, EbpUndefined, EvqTemporary);

            ASSERT(node->getLeft()->getType() == boolType);
            insertions.push_back(createTempInitDeclaration(node->getLeft()));

            TIntermAggregate *assignRightBlock = new TIntermAggregate(EOpSequence);
            ASSERT(node->getRight()->getType() == boolType);
            assignRightBlock->getSequence()->push_back(createTempAssignment(node->getRight()));

            TIntermSelection *ifNode = new TIntermSelection(createTempSymbol(boolType), assignRightBlock, nullptr);
            insertions.push_back(ifNode);

            insertStatementsInParentBlock(insertions);

            NodeUpdateEntry replaceVariable(getParentNode(), node, createTempSymbol(boolType), false);
            mReplacements.push_back(replaceVariable);
        }
        return false;
      default:
        return true;
    }
}

bool UnfoldShortCircuitTraverser::visitSelection(Visit visit, TIntermSelection *node)
{
    if (mFoundShortCircuit)
        return false;

    // Unfold "b ? x : y" into "type s; if(b) s = x; else s = y;"
    if (visit == PreVisit && node->usesTernaryOperator())
    {
        mFoundShortCircuit = true;
        if (!copyLoopConditionOrExpression(getParentNode(), node))
        {
            TIntermSequence insertions;

            TIntermSymbol *tempSymbol         = createTempSymbol(node->getType());
            TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
            tempDeclaration->getSequence()->push_back(tempSymbol);
            insertions.push_back(tempDeclaration);

            TIntermAggregate *trueBlock = new TIntermAggregate(EOpSequence);
            TIntermBinary *trueAssignment =
                createTempAssignment(node->getTrueBlock()->getAsTyped());
            trueBlock->getSequence()->push_back(trueAssignment);

            TIntermAggregate *falseBlock = new TIntermAggregate(EOpSequence);
            TIntermBinary *falseAssignment =
                createTempAssignment(node->getFalseBlock()->getAsTyped());
            falseBlock->getSequence()->push_back(falseAssignment);

            TIntermSelection *ifNode =
                new TIntermSelection(node->getCondition()->getAsTyped(), trueBlock, falseBlock);
            insertions.push_back(ifNode);

            insertStatementsInParentBlock(insertions);

            TIntermSymbol *ternaryResult = createTempSymbol(node->getType());
            NodeUpdateEntry replaceVariable(getParentNode(), node, ternaryResult, false);
            mReplacements.push_back(replaceVariable);
        }
        return false;
    }

    return true;
}

bool UnfoldShortCircuitTraverser::visitAggregate(Visit visit, TIntermAggregate *node)
{
    if (visit == PreVisit && mFoundShortCircuit)
        return false; // No need to traverse further

    if (node->getOp() == EOpComma)
    {
        ASSERT(visit != PreVisit || !mFoundShortCircuit);

        if (visit == PostVisit && mFoundShortCircuit)
        {
            // We can be sure that we arrived here because there was a short-circuiting operator
            // inside the sequence operator since we only start traversing the sequence operator in
            // case a short-circuiting operator has not been found so far.
            // We need to unfold the sequence (comma) operator, otherwise the evaluation order of
            // statements would be messed up by unfolded operations inside.
            // Don't do any other unfolding on this round of traversal.
            mReplacements.clear();
            mMultiReplacements.clear();
            mInsertions.clear();

            if (!copyLoopConditionOrExpression(getParentNode(), node))
            {
                TIntermSequence insertions;
                TIntermSequence *seq = node->getSequence();

                TIntermSequence::size_type i = 0;
                ASSERT(!seq->empty());
                while (i < seq->size() - 1)
                {
                    TIntermTyped *child = (*seq)[i]->getAsTyped();
                    insertions.push_back(child);
                    ++i;
                }

                insertStatementsInParentBlock(insertions);

                NodeUpdateEntry replaceVariable(getParentNode(), node, (*seq)[i], false);
                mReplacements.push_back(replaceVariable);
            }
        }
    }
    return true;
}

bool UnfoldShortCircuitTraverser::visitLoop(Visit visit, TIntermLoop *node)
{
    if (visit == PreVisit)
    {
        if (mFoundShortCircuit)
            return false;  // No need to traverse further

        mLoopParent = getParentNode();
        mParentLoop = node;
        incrementDepth(node);

        if (node->getInit())
        {
            node->getInit()->traverse(this);
            if (mFoundShortCircuit)
            {
                decrementDepth();
                return false;
            }
        }

        if (node->getCondition())
        {
            mInLoopCondition = true;
            node->getCondition()->traverse(this);
            mInLoopCondition = false;

            if (mFoundShortCircuit)
            {
                decrementDepth();
                return false;
            }
        }

        if (node->getExpression())
        {
            mInLoopExpression = true;
            node->getExpression()->traverse(this);
            mInLoopExpression = false;

            if (mFoundShortCircuit)
            {
                decrementDepth();
                return false;
            }
        }

        if (node->getBody())
            node->getBody()->traverse(this);

        decrementDepth();
    }
    return false;
}

bool UnfoldShortCircuitTraverser::copyLoopConditionOrExpression(TIntermNode *parent,
                                                                TIntermTyped *node)
{
    if (mInLoopCondition)
    {
        mReplacements.push_back(
            NodeUpdateEntry(parent, node, createTempSymbol(node->getType()), false));
        TIntermAggregate *body = mParentLoop->getBody();
        TIntermSequence empty;
        if (mParentLoop->getType() == ELoopDoWhile)
        {
            // Declare the temporary variable before the loop.
            TIntermSequence insertionsBeforeLoop;
            insertionsBeforeLoop.push_back(createTempDeclaration(node->getType()));
            insertStatementsInParentBlock(insertionsBeforeLoop);

            // Move a part of do-while loop condition to inside the loop.
            TIntermSequence insertionsInLoop;
            insertionsInLoop.push_back(createTempAssignment(node));
            mInsertions.push_back(NodeInsertMultipleEntry(body, body->getSequence()->size() - 1,
                                                          empty, insertionsInLoop));
        }
        else
        {
            // The loop initializer expression and one copy of the part of the loop condition are
            // executed before the loop. They need to be in a new scope.
            TIntermAggregate *loopScope = new TIntermAggregate(EOpSequence);

            TIntermNode *initializer = mParentLoop->getInit();
            if (initializer != nullptr)
            {
                // Move the initializer to the newly created outer scope, so that condition can
                // depend on it.
                mReplacements.push_back(NodeUpdateEntry(mParentLoop, initializer, nullptr, false));
                loopScope->getSequence()->push_back(initializer);
            }

            loopScope->getSequence()->push_back(createTempInitDeclaration(node));
            loopScope->getSequence()->push_back(mParentLoop);
            mReplacements.push_back(NodeUpdateEntry(mLoopParent, mParentLoop, loopScope, true));

            // The second copy of the part of the loop condition is executed inside the loop.
            TIntermSequence insertionsInLoop;
            insertionsInLoop.push_back(createTempAssignment(node->deepCopy()));
            mInsertions.push_back(NodeInsertMultipleEntry(body, body->getSequence()->size() - 1,
                                                          empty, insertionsInLoop));
        }
        return true;
    }

    if (mInLoopExpression)
    {
        TIntermTyped *movedExpression = mParentLoop->getExpression();
        mReplacements.push_back(NodeUpdateEntry(mParentLoop, movedExpression, nullptr, false));
        TIntermAggregate *body = mParentLoop->getBody();
        TIntermSequence empty;
        TIntermSequence insertions;
        insertions.push_back(movedExpression);
        mInsertions.push_back(
            NodeInsertMultipleEntry(body, body->getSequence()->size() - 1, empty, insertions));
        return true;
    }
    return false;
}

void UnfoldShortCircuitTraverser::nextIteration()
{
    mFoundShortCircuit = false;
    nextTemporaryIndex();
}

} // namespace

void UnfoldShortCircuitToIf(TIntermNode *root, unsigned int *temporaryIndex)
{
    UnfoldShortCircuitTraverser traverser;
    ASSERT(temporaryIndex != nullptr);
    traverser.useTemporaryIndex(temporaryIndex);
    // Unfold one operator at a time, and reset the traverser between iterations.
    do
    {
        traverser.nextIteration();
        root->traverse(&traverser);
        if (traverser.foundShortCircuit())
            traverser.updateTree();
    }
    while (traverser.foundShortCircuit());
}