summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/compiler/translator/util.cpp
blob: 9738370c47fbd89200b18e605b72ea01875e5152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
//
// Copyright (c) 2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

#include "compiler/translator/util.h"

#include <limits>

#include "common/utilities.h"
#include "compiler/preprocessor/numeric_lex.h"
#include "compiler/translator/SymbolTable.h"

bool atoi_clamp(const char *str, unsigned int *value)
{
    bool success = pp::numeric_lex_int(str, value);
    if (!success)
        *value = std::numeric_limits<unsigned int>::max();
    return success;
}

namespace sh
{

namespace
{

bool IsInterpolationIn(TQualifier qualifier)
{
    switch (qualifier)
    {
        case EvqSmoothIn:
        case EvqFlatIn:
        case EvqCentroidIn:
            return true;
        default:
            return false;
    }
}

}  // anonymous namespace

float NumericLexFloat32OutOfRangeToInfinity(const std::string &str)
{
    // Parses a decimal string using scientific notation into a floating point number.
    // Out-of-range values are converted to infinity. Values that are too small to be
    // represented are converted to zero.

    // The mantissa in decimal scientific notation. The magnitude of the mantissa integer does not
    // matter.
    unsigned int decimalMantissa = 0;
    size_t i                     = 0;
    bool decimalPointSeen        = false;
    bool nonZeroSeenInMantissa   = false;

    // The exponent offset reflects the position of the decimal point.
    int exponentOffset = -1;
    while (i < str.length())
    {
        const char c = str[i];
        if (c == 'e' || c == 'E')
        {
            break;
        }
        if (c == '.')
        {
            decimalPointSeen = true;
            ++i;
            continue;
        }

        unsigned int digit = static_cast<unsigned int>(c - '0');
        ASSERT(digit < 10u);
        if (digit != 0u)
        {
            nonZeroSeenInMantissa = true;
        }
        if (nonZeroSeenInMantissa)
        {
            // Add bits to the mantissa until space runs out in 32-bit int. This should be
            // enough precision to make the resulting binary mantissa accurate to 1 ULP.
            if (decimalMantissa <= (std::numeric_limits<unsigned int>::max() - 9u) / 10u)
            {
                decimalMantissa = decimalMantissa * 10u + digit;
            }
            if (!decimalPointSeen)
            {
                ++exponentOffset;
            }
        }
        else if (decimalPointSeen)
        {
            --exponentOffset;
        }
        ++i;
    }
    if (decimalMantissa == 0)
    {
        return 0.0f;
    }
    int exponent = 0;
    if (i < str.length())
    {
        ASSERT(str[i] == 'e' || str[i] == 'E');
        ++i;
        bool exponentOutOfRange = false;
        bool negativeExponent   = false;
        if (str[i] == '-')
        {
            negativeExponent = true;
            ++i;
        }
        else if (str[i] == '+')
        {
            ++i;
        }
        while (i < str.length())
        {
            const char c       = str[i];
            unsigned int digit = static_cast<unsigned int>(c - '0');
            ASSERT(digit < 10u);
            if (exponent <= (std::numeric_limits<int>::max() - 9) / 10)
            {
                exponent = exponent * 10 + digit;
            }
            else
            {
                exponentOutOfRange = true;
            }
            ++i;
        }
        if (negativeExponent)
        {
            exponent = -exponent;
        }
        if (exponentOutOfRange)
        {
            if (negativeExponent)
            {
                return 0.0f;
            }
            else
            {
                return std::numeric_limits<float>::infinity();
            }
        }
    }
    // Do the calculation in 64-bit to avoid overflow.
    long long exponentLong =
        static_cast<long long>(exponent) + static_cast<long long>(exponentOffset);
    if (exponentLong > std::numeric_limits<float>::max_exponent10)
    {
        return std::numeric_limits<float>::infinity();
    }
    else if (exponentLong < std::numeric_limits<float>::min_exponent10)
    {
        return 0.0f;
    }
    // The exponent is in range, so we need to actually evaluate the float.
    exponent     = static_cast<int>(exponentLong);
    double value = decimalMantissa;

    // Calculate the exponent offset to normalize the mantissa.
    int normalizationExponentOffset = 0;
    while (decimalMantissa >= 10u)
    {
        --normalizationExponentOffset;
        decimalMantissa /= 10u;
    }
    // Apply the exponent.
    value *= std::pow(10.0, static_cast<double>(exponent + normalizationExponentOffset));
    if (value > static_cast<double>(std::numeric_limits<float>::max()))
    {
        return std::numeric_limits<float>::infinity();
    }
    if (value < static_cast<double>(std::numeric_limits<float>::min()))
    {
        return 0.0f;
    }
    return static_cast<float>(value);
}

bool strtof_clamp(const std::string &str, float *value)
{
    // Try the standard float parsing path first.
    bool success = pp::numeric_lex_float(str, value);

    // If the standard path doesn't succeed, take the path that can handle the following corner
    // cases:
    //   1. The decimal mantissa is very small but the exponent is very large, putting the resulting
    //   number inside the float range.
    //   2. The decimal mantissa is very large but the exponent is very small, putting the resulting
    //   number inside the float range.
    //   3. The value is out-of-range and should be evaluated as infinity.
    //   4. The value is too small and should be evaluated as zero.
    // See ESSL 3.00.6 section 4.1.4 for the relevant specification.
    if (!success)
        *value = NumericLexFloat32OutOfRangeToInfinity(str);
    return !gl::isInf(*value);
}

GLenum GLVariableType(const TType &type)
{
    if (type.getBasicType() == EbtFloat)
    {
        if (type.isVector())
        {
            switch (type.getNominalSize())
            {
                case 2:
                    return GL_FLOAT_VEC2;
                case 3:
                    return GL_FLOAT_VEC3;
                case 4:
                    return GL_FLOAT_VEC4;
                default:
                    UNREACHABLE();
            }
        }
        else if (type.isMatrix())
        {
            switch (type.getCols())
            {
                case 2:
                    switch (type.getRows())
                    {
                        case 2:
                            return GL_FLOAT_MAT2;
                        case 3:
                            return GL_FLOAT_MAT2x3;
                        case 4:
                            return GL_FLOAT_MAT2x4;
                        default:
                            UNREACHABLE();
                    }

                case 3:
                    switch (type.getRows())
                    {
                        case 2:
                            return GL_FLOAT_MAT3x2;
                        case 3:
                            return GL_FLOAT_MAT3;
                        case 4:
                            return GL_FLOAT_MAT3x4;
                        default:
                            UNREACHABLE();
                    }

                case 4:
                    switch (type.getRows())
                    {
                        case 2:
                            return GL_FLOAT_MAT4x2;
                        case 3:
                            return GL_FLOAT_MAT4x3;
                        case 4:
                            return GL_FLOAT_MAT4;
                        default:
                            UNREACHABLE();
                    }

                default:
                    UNREACHABLE();
            }
        }
        else
        {
            return GL_FLOAT;
        }
    }
    else if (type.getBasicType() == EbtInt)
    {
        if (type.isVector())
        {
            switch (type.getNominalSize())
            {
                case 2:
                    return GL_INT_VEC2;
                case 3:
                    return GL_INT_VEC3;
                case 4:
                    return GL_INT_VEC4;
                default:
                    UNREACHABLE();
            }
        }
        else
        {
            ASSERT(!type.isMatrix());
            return GL_INT;
        }
    }
    else if (type.getBasicType() == EbtUInt)
    {
        if (type.isVector())
        {
            switch (type.getNominalSize())
            {
                case 2:
                    return GL_UNSIGNED_INT_VEC2;
                case 3:
                    return GL_UNSIGNED_INT_VEC3;
                case 4:
                    return GL_UNSIGNED_INT_VEC4;
                default:
                    UNREACHABLE();
            }
        }
        else
        {
            ASSERT(!type.isMatrix());
            return GL_UNSIGNED_INT;
        }
    }
    else if (type.getBasicType() == EbtBool)
    {
        if (type.isVector())
        {
            switch (type.getNominalSize())
            {
                case 2:
                    return GL_BOOL_VEC2;
                case 3:
                    return GL_BOOL_VEC3;
                case 4:
                    return GL_BOOL_VEC4;
                default:
                    UNREACHABLE();
            }
        }
        else
        {
            ASSERT(!type.isMatrix());
            return GL_BOOL;
        }
    }

    switch (type.getBasicType())
    {
        case EbtSampler2D:
            return GL_SAMPLER_2D;
        case EbtSampler3D:
            return GL_SAMPLER_3D;
        case EbtSamplerCube:
            return GL_SAMPLER_CUBE;
        case EbtSamplerExternalOES:
            return GL_SAMPLER_EXTERNAL_OES;
        case EbtSamplerExternal2DY2YEXT:
            return GL_SAMPLER_EXTERNAL_2D_Y2Y_EXT;
        case EbtSampler2DRect:
            return GL_SAMPLER_2D_RECT_ANGLE;
        case EbtSampler2DArray:
            return GL_SAMPLER_2D_ARRAY;
        case EbtSampler2DMS:
            return GL_SAMPLER_2D_MULTISAMPLE;
        case EbtISampler2D:
            return GL_INT_SAMPLER_2D;
        case EbtISampler3D:
            return GL_INT_SAMPLER_3D;
        case EbtISamplerCube:
            return GL_INT_SAMPLER_CUBE;
        case EbtISampler2DArray:
            return GL_INT_SAMPLER_2D_ARRAY;
        case EbtISampler2DMS:
            return GL_INT_SAMPLER_2D_MULTISAMPLE;
        case EbtUSampler2D:
            return GL_UNSIGNED_INT_SAMPLER_2D;
        case EbtUSampler3D:
            return GL_UNSIGNED_INT_SAMPLER_3D;
        case EbtUSamplerCube:
            return GL_UNSIGNED_INT_SAMPLER_CUBE;
        case EbtUSampler2DArray:
            return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
        case EbtUSampler2DMS:
            return GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE;
        case EbtSampler2DShadow:
            return GL_SAMPLER_2D_SHADOW;
        case EbtSamplerCubeShadow:
            return GL_SAMPLER_CUBE_SHADOW;
        case EbtSampler2DArrayShadow:
            return GL_SAMPLER_2D_ARRAY_SHADOW;
        case EbtImage2D:
            return GL_IMAGE_2D;
        case EbtIImage2D:
            return GL_INT_IMAGE_2D;
        case EbtUImage2D:
            return GL_UNSIGNED_INT_IMAGE_2D;
        case EbtImage2DArray:
            return GL_IMAGE_2D_ARRAY;
        case EbtIImage2DArray:
            return GL_INT_IMAGE_2D_ARRAY;
        case EbtUImage2DArray:
            return GL_UNSIGNED_INT_IMAGE_2D_ARRAY;
        case EbtImage3D:
            return GL_IMAGE_3D;
        case EbtIImage3D:
            return GL_INT_IMAGE_3D;
        case EbtUImage3D:
            return GL_UNSIGNED_INT_IMAGE_3D;
        case EbtImageCube:
            return GL_IMAGE_CUBE;
        case EbtIImageCube:
            return GL_INT_IMAGE_CUBE;
        case EbtUImageCube:
            return GL_UNSIGNED_INT_IMAGE_CUBE;
        case EbtAtomicCounter:
            return GL_UNSIGNED_INT_ATOMIC_COUNTER;
        default:
            UNREACHABLE();
    }

    return GL_NONE;
}

GLenum GLVariablePrecision(const TType &type)
{
    if (type.getBasicType() == EbtFloat)
    {
        switch (type.getPrecision())
        {
            case EbpHigh:
                return GL_HIGH_FLOAT;
            case EbpMedium:
                return GL_MEDIUM_FLOAT;
            case EbpLow:
                return GL_LOW_FLOAT;
            case EbpUndefined:
            // Should be defined as the default precision by the parser
            default:
                UNREACHABLE();
        }
    }
    else if (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt)
    {
        switch (type.getPrecision())
        {
            case EbpHigh:
                return GL_HIGH_INT;
            case EbpMedium:
                return GL_MEDIUM_INT;
            case EbpLow:
                return GL_LOW_INT;
            case EbpUndefined:
            // Should be defined as the default precision by the parser
            default:
                UNREACHABLE();
        }
    }

    // Other types (boolean, sampler) don't have a precision
    return GL_NONE;
}

TString ArrayString(const TType &type)
{
    TStringStream arrayString;
    if (!type.isArray())
        return arrayString.str();

    const TVector<unsigned int> &arraySizes = *type.getArraySizes();
    for (auto arraySizeIter = arraySizes.rbegin(); arraySizeIter != arraySizes.rend();
         ++arraySizeIter)
    {
        arrayString << "[";
        if (*arraySizeIter > 0)
        {
            arrayString << (*arraySizeIter);
        }
        arrayString << "]";
    }
    return arrayString.str();
}

TString GetTypeName(const TType &type, ShHashFunction64 hashFunction, NameMap *nameMap)
{
    if (type.getBasicType() == EbtStruct)
        return HashName(TName(type.getStruct()->name()), hashFunction, nameMap);
    else
        return type.getBuiltInTypeNameString();
}

bool IsVaryingOut(TQualifier qualifier)
{
    switch (qualifier)
    {
        case EvqVaryingOut:
        case EvqSmoothOut:
        case EvqFlatOut:
        case EvqCentroidOut:
        case EvqVertexOut:
        case EvqGeometryOut:
            return true;

        default:
            break;
    }

    return false;
}

bool IsVaryingIn(TQualifier qualifier)
{
    switch (qualifier)
    {
        case EvqVaryingIn:
        case EvqSmoothIn:
        case EvqFlatIn:
        case EvqCentroidIn:
        case EvqFragmentIn:
        case EvqGeometryIn:
            return true;

        default:
            break;
    }

    return false;
}

bool IsVarying(TQualifier qualifier)
{
    return IsVaryingIn(qualifier) || IsVaryingOut(qualifier);
}

bool IsGeometryShaderInput(GLenum shaderType, TQualifier qualifier)
{
    return (qualifier == EvqGeometryIn) ||
           ((shaderType == GL_GEOMETRY_SHADER_OES) && IsInterpolationIn(qualifier));
}

InterpolationType GetInterpolationType(TQualifier qualifier)
{
    switch (qualifier)
    {
        case EvqFlatIn:
        case EvqFlatOut:
            return INTERPOLATION_FLAT;

        case EvqSmoothIn:
        case EvqSmoothOut:
        case EvqVertexOut:
        case EvqFragmentIn:
        case EvqVaryingIn:
        case EvqVaryingOut:
        case EvqGeometryIn:
        case EvqGeometryOut:
            return INTERPOLATION_SMOOTH;

        case EvqCentroidIn:
        case EvqCentroidOut:
            return INTERPOLATION_CENTROID;

        default:
            UNREACHABLE();
            return INTERPOLATION_SMOOTH;
    }
}

TType GetShaderVariableBasicType(const sh::ShaderVariable &var)
{
    switch (var.type)
    {
        case GL_BOOL:
            return TType(EbtBool);
        case GL_BOOL_VEC2:
            return TType(EbtBool, 2);
        case GL_BOOL_VEC3:
            return TType(EbtBool, 3);
        case GL_BOOL_VEC4:
            return TType(EbtBool, 4);
        case GL_FLOAT:
            return TType(EbtFloat);
        case GL_FLOAT_VEC2:
            return TType(EbtFloat, 2);
        case GL_FLOAT_VEC3:
            return TType(EbtFloat, 3);
        case GL_FLOAT_VEC4:
            return TType(EbtFloat, 4);
        case GL_FLOAT_MAT2:
            return TType(EbtFloat, 2, 2);
        case GL_FLOAT_MAT3:
            return TType(EbtFloat, 3, 3);
        case GL_FLOAT_MAT4:
            return TType(EbtFloat, 4, 4);
        case GL_FLOAT_MAT2x3:
            return TType(EbtFloat, 2, 3);
        case GL_FLOAT_MAT2x4:
            return TType(EbtFloat, 2, 4);
        case GL_FLOAT_MAT3x2:
            return TType(EbtFloat, 3, 2);
        case GL_FLOAT_MAT3x4:
            return TType(EbtFloat, 3, 4);
        case GL_FLOAT_MAT4x2:
            return TType(EbtFloat, 4, 2);
        case GL_FLOAT_MAT4x3:
            return TType(EbtFloat, 4, 3);
        case GL_INT:
            return TType(EbtInt);
        case GL_INT_VEC2:
            return TType(EbtInt, 2);
        case GL_INT_VEC3:
            return TType(EbtInt, 3);
        case GL_INT_VEC4:
            return TType(EbtInt, 4);
        case GL_UNSIGNED_INT:
            return TType(EbtUInt);
        case GL_UNSIGNED_INT_VEC2:
            return TType(EbtUInt, 2);
        case GL_UNSIGNED_INT_VEC3:
            return TType(EbtUInt, 3);
        case GL_UNSIGNED_INT_VEC4:
            return TType(EbtUInt, 4);
        default:
            UNREACHABLE();
            return TType();
    }
}

// GLSL ES 1.0.17 4.6.1 The Invariant Qualifier
bool CanBeInvariantESSL1(TQualifier qualifier)
{
    return IsVaryingIn(qualifier) || IsVaryingOut(qualifier) ||
           IsBuiltinOutputVariable(qualifier) ||
           (IsBuiltinFragmentInputVariable(qualifier) && qualifier != EvqFrontFacing);
}

// GLSL ES 3.00 Revision 6, 4.6.1 The Invariant Qualifier
// GLSL ES 3.10 Revision 4, 4.8.1 The Invariant Qualifier
bool CanBeInvariantESSL3OrGreater(TQualifier qualifier)
{
    return IsVaryingOut(qualifier) || qualifier == EvqFragmentOut ||
           IsBuiltinOutputVariable(qualifier);
}

bool IsBuiltinOutputVariable(TQualifier qualifier)
{
    switch (qualifier)
    {
        case EvqPosition:
        case EvqPointSize:
        case EvqFragDepth:
        case EvqFragDepthEXT:
        case EvqFragColor:
        case EvqSecondaryFragColorEXT:
        case EvqFragData:
        case EvqSecondaryFragDataEXT:
            return true;
        default:
            break;
    }
    return false;
}

bool IsBuiltinFragmentInputVariable(TQualifier qualifier)
{
    switch (qualifier)
    {
        case EvqFragCoord:
        case EvqPointCoord:
        case EvqFrontFacing:
            return true;
        default:
            break;
    }
    return false;
}

bool IsOutputESSL(ShShaderOutput output)
{
    return output == SH_ESSL_OUTPUT;
}

bool IsOutputGLSL(ShShaderOutput output)
{
    switch (output)
    {
        case SH_GLSL_130_OUTPUT:
        case SH_GLSL_140_OUTPUT:
        case SH_GLSL_150_CORE_OUTPUT:
        case SH_GLSL_330_CORE_OUTPUT:
        case SH_GLSL_400_CORE_OUTPUT:
        case SH_GLSL_410_CORE_OUTPUT:
        case SH_GLSL_420_CORE_OUTPUT:
        case SH_GLSL_430_CORE_OUTPUT:
        case SH_GLSL_440_CORE_OUTPUT:
        case SH_GLSL_450_CORE_OUTPUT:
        case SH_GLSL_COMPATIBILITY_OUTPUT:
            return true;
        default:
            break;
    }
    return false;
}
bool IsOutputHLSL(ShShaderOutput output)
{
    switch (output)
    {
        case SH_HLSL_3_0_OUTPUT:
        case SH_HLSL_4_1_OUTPUT:
        case SH_HLSL_4_0_FL9_3_OUTPUT:
            return true;
        default:
            break;
    }
    return false;
}
bool IsOutputVulkan(ShShaderOutput output)
{
    return output == SH_GLSL_VULKAN_OUTPUT;
}

}  // namespace sh