summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/libANGLE/WorkerThread.h
blob: f6b81dce212eadfe697a0c6206353bee7bb590fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// WorkerThread:
//   Asychronous tasks/threads for ANGLE, similar to a TaskRunner in Chromium.
//   Can be implemented as different targets, depending on platform.
//

#ifndef LIBANGLE_WORKER_THREAD_H_
#define LIBANGLE_WORKER_THREAD_H_

#include <array>
#include <vector>

#include "common/debug.h"
#include "libANGLE/features.h"

#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
#include <future>
#endif  // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)

namespace angle
{
// Indicates whether a WaitableEvent should automatically reset the event state after a single
// waiting thread has been released or remain signaled until reset() is manually invoked.
enum class EventResetPolicy
{
    Manual,
    Automatic
};

// Specify the initial state on creation.
enum class EventInitialState
{
    NonSignaled,
    Signaled
};

// A callback function with no return value and no arguments.
class Closure
{
  public:
    virtual ~Closure()        = default;
    virtual void operator()() = 0;
};

namespace priv
{
// An event that we can wait on, useful for joining worker threads.
template <typename Impl>
class WaitableEventBase : angle::NonCopyable
{
  public:
    WaitableEventBase(EventResetPolicy resetPolicy, EventInitialState initialState);

    WaitableEventBase(WaitableEventBase &&other);

    // Puts the event in the un-signaled state.
    void reset();

    // Waits indefinitely for the event to be signaled.
    void wait();

    // Puts the event in the signaled state, causing any thread blocked on Wait to be woken up.
    // The event state is reset to non-signaled after a waiting thread has been released.
    void signal();

  protected:
    Impl &copyBase(Impl &&other);

    template <size_t Count>
    static size_t WaitManyBase(std::array<Impl, Count> *waitables);

    EventResetPolicy mResetPolicy;
    bool mSignaled;
};

template <typename Impl>
WaitableEventBase<Impl>::WaitableEventBase(EventResetPolicy resetPolicy,
                                           EventInitialState initialState)
    : mResetPolicy(resetPolicy), mSignaled(initialState == EventInitialState::Signaled)
{
}

template <typename Impl>
WaitableEventBase<Impl>::WaitableEventBase(WaitableEventBase &&other)
    : mResetPolicy(other.mResetPolicy), mSignaled(other.mSignaled)
{
}

template <typename Impl>
void WaitableEventBase<Impl>::reset()
{
    static_cast<Impl *>(this)->resetImpl();
}

template <typename Impl>
void WaitableEventBase<Impl>::wait()
{
    static_cast<Impl *>(this)->waitImpl();
}

template <typename Impl>
void WaitableEventBase<Impl>::signal()
{
    static_cast<Impl *>(this)->signalImpl();
}

template <typename Impl>
template <size_t Count>
// static
size_t WaitableEventBase<Impl>::WaitManyBase(std::array<Impl, Count> *waitables)
{
    ASSERT(Count > 0);

    for (size_t index = 0; index < Count; ++index)
    {
        (*waitables)[index].wait();
    }

    return 0;
}

template <typename Impl>
Impl &WaitableEventBase<Impl>::copyBase(Impl &&other)
{
    std::swap(mSignaled, other.mSignaled);
    std::swap(mResetPolicy, other.mResetPolicy);
    return *static_cast<Impl *>(this);
}

class SingleThreadedWaitableEvent : public WaitableEventBase<SingleThreadedWaitableEvent>
{
  public:
    SingleThreadedWaitableEvent();
    SingleThreadedWaitableEvent(EventResetPolicy resetPolicy, EventInitialState initialState);
    ~SingleThreadedWaitableEvent();

    SingleThreadedWaitableEvent(SingleThreadedWaitableEvent &&other);
    SingleThreadedWaitableEvent &operator=(SingleThreadedWaitableEvent &&other);

    void resetImpl();
    void waitImpl();
    void signalImpl();

    // Wait, synchronously, on multiple events.
    // returns the index of a WaitableEvent which has been signaled.
    template <size_t Count>
    static size_t WaitMany(std::array<SingleThreadedWaitableEvent, Count> *waitables);
};

template <size_t Count>
// static
size_t SingleThreadedWaitableEvent::WaitMany(
    std::array<SingleThreadedWaitableEvent, Count> *waitables)
{
    return WaitableEventBase<SingleThreadedWaitableEvent>::WaitManyBase(waitables);
}

#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
class AsyncWaitableEvent : public WaitableEventBase<AsyncWaitableEvent>
{
  public:
    AsyncWaitableEvent();
    AsyncWaitableEvent(EventResetPolicy resetPolicy, EventInitialState initialState);
    ~AsyncWaitableEvent();

    AsyncWaitableEvent(AsyncWaitableEvent &&other);
    AsyncWaitableEvent &operator=(AsyncWaitableEvent &&other);

    void resetImpl();
    void waitImpl();
    void signalImpl();

    // Wait, synchronously, on multiple events.
    // returns the index of a WaitableEvent which has been signaled.
    template <size_t Count>
    static size_t WaitMany(std::array<AsyncWaitableEvent, Count> *waitables);

  private:
    friend class AsyncWorkerPool;
    void setFuture(std::future<void> &&future);

    std::future<void> mFuture;
};

template <size_t Count>
// static
size_t AsyncWaitableEvent::WaitMany(std::array<AsyncWaitableEvent, Count> *waitables)
{
    return WaitableEventBase<AsyncWaitableEvent>::WaitManyBase(waitables);
}
#endif  // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)

// The traits class allows the the thread pool to return the "Typed" waitable event from postTask.
// Otherwise postTask would always think it returns the current active type, so the unit tests
// could not run on multiple worker types in the same compilation.
template <typename Impl>
struct WorkerThreadPoolTraits;

class SingleThreadedWorkerPool;
template <>
struct WorkerThreadPoolTraits<SingleThreadedWorkerPool>
{
    using WaitableEventType = SingleThreadedWaitableEvent;
};

#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
class AsyncWorkerPool;
template <>
struct WorkerThreadPoolTraits<AsyncWorkerPool>
{
    using WaitableEventType = AsyncWaitableEvent;
};
#endif  // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)

// Request WorkerThreads from the WorkerThreadPool. Each pool can keep worker threads around so
// we avoid the costly spin up and spin down time.
template <typename Impl>
class WorkerThreadPoolBase : angle::NonCopyable
{
  public:
    WorkerThreadPoolBase(size_t maxThreads);
    ~WorkerThreadPoolBase();

    using WaitableEventType = typename WorkerThreadPoolTraits<Impl>::WaitableEventType;

    // Returns an event to wait on for the task to finish.
    // If the pool fails to create the task, returns null.
    WaitableEventType postWorkerTask(Closure *task);
};

template <typename Impl>
WorkerThreadPoolBase<Impl>::WorkerThreadPoolBase(size_t maxThreads)
{
}

template <typename Impl>
WorkerThreadPoolBase<Impl>::~WorkerThreadPoolBase()
{
}

template <typename Impl>
typename WorkerThreadPoolBase<Impl>::WaitableEventType WorkerThreadPoolBase<Impl>::postWorkerTask(
    Closure *task)
{
    return static_cast<Impl *>(this)->postWorkerTaskImpl(task);
}

class SingleThreadedWorkerPool : public WorkerThreadPoolBase<SingleThreadedWorkerPool>
{
  public:
    SingleThreadedWorkerPool(size_t maxThreads);
    ~SingleThreadedWorkerPool();

    SingleThreadedWaitableEvent postWorkerTaskImpl(Closure *task);
};

#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
class AsyncWorkerPool : public WorkerThreadPoolBase<AsyncWorkerPool>
{
  public:
    AsyncWorkerPool(size_t maxThreads);
    ~AsyncWorkerPool();

    AsyncWaitableEvent postWorkerTaskImpl(Closure *task);
};
#endif  // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)

}  // namespace priv

#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
using WaitableEvent    = priv::AsyncWaitableEvent;
using WorkerThreadPool = priv::AsyncWorkerPool;
#else
using WaitableEvent    = priv::SingleThreadedWaitableEvent;
using WorkerThreadPool = priv::SingleThreadedWorkerPool;
#endif  // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)

}  // namespace angle

#endif  // LIBANGLE_WORKER_THREAD_H_