summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/angle/src/libANGLE/renderer/d3d/d3d11/InputLayoutCache.cpp
blob: 242c09d6ce7b2a57bff2d6dd801180b35858775c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
//
// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// InputLayoutCache.cpp: Defines InputLayoutCache, a class that builds and caches
// D3D11 input layouts.

#include "libANGLE/renderer/d3d/d3d11/InputLayoutCache.h"
#include "libANGLE/renderer/d3d/d3d11/VertexBuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/Buffer11.h"
#include "libANGLE/renderer/d3d/d3d11/ShaderExecutable11.h"
#include "libANGLE/renderer/d3d/d3d11/formatutils11.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/VertexDataManager.h"
#include "libANGLE/Program.h"
#include "libANGLE/VertexAttribute.h"

#include "third_party/murmurhash/MurmurHash3.h"

namespace rx
{

static void GetInputLayout(const TranslatedAttribute translatedAttributes[gl::MAX_VERTEX_ATTRIBS],
                           gl::VertexFormat inputLayout[gl::MAX_VERTEX_ATTRIBS])
{
    for (unsigned int attributeIndex = 0; attributeIndex < gl::MAX_VERTEX_ATTRIBS; attributeIndex++)
    {
        const TranslatedAttribute &translatedAttribute = translatedAttributes[attributeIndex];

        if (translatedAttributes[attributeIndex].active)
        {
            inputLayout[attributeIndex] = gl::VertexFormat(*translatedAttribute.attribute,
                                                           translatedAttribute.currentValueType);
        }
    }
}

const unsigned int InputLayoutCache::kMaxInputLayouts = 1024;

InputLayoutCache::InputLayoutCache() : mInputLayoutMap(kMaxInputLayouts, hashInputLayout, compareInputLayouts)
{
    mCounter = 0;
    mDevice = NULL;
    mDeviceContext = NULL;
    mCurrentIL = NULL;
    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        mCurrentBuffers[i] = NULL;
        mCurrentVertexStrides[i] = static_cast<UINT>(-1);
        mCurrentVertexOffsets[i] = static_cast<UINT>(-1);
    }
    mPointSpriteVertexBuffer = NULL;
    mPointSpriteIndexBuffer = NULL;
}

InputLayoutCache::~InputLayoutCache()
{
    clear();
}

void InputLayoutCache::initialize(ID3D11Device *device, ID3D11DeviceContext *context)
{
    clear();
    mDevice = device;
    mDeviceContext = context;
    mFeatureLevel = device->GetFeatureLevel();
}

void InputLayoutCache::clear()
{
    for (InputLayoutMap::iterator i = mInputLayoutMap.begin(); i != mInputLayoutMap.end(); i++)
    {
        SafeRelease(i->second.inputLayout);
    }
    mInputLayoutMap.clear();
    SafeRelease(mPointSpriteVertexBuffer);
    SafeRelease(mPointSpriteIndexBuffer);
    markDirty();
}

void InputLayoutCache::markDirty()
{
    mCurrentIL = NULL;
    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        mCurrentBuffers[i] = NULL;
        mCurrentVertexStrides[i] = static_cast<UINT>(-1);
        mCurrentVertexOffsets[i] = static_cast<UINT>(-1);
    }
}

gl::Error InputLayoutCache::applyVertexBuffers(TranslatedAttribute attributes[gl::MAX_VERTEX_ATTRIBS],
                                               GLenum mode, gl::Program *program)
{
    ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);

    int sortedSemanticIndices[gl::MAX_VERTEX_ATTRIBS];
    programD3D->sortAttributesByLayout(attributes, sortedSemanticIndices);
    bool programUsesInstancedPointSprites = programD3D->usesPointSize() && programD3D->usesInstancedPointSpriteEmulation();
    bool instancedPointSpritesActive = programUsesInstancedPointSprites && (mode == GL_POINTS);

    if (!mDevice || !mDeviceContext)
    {
        return gl::Error(GL_OUT_OF_MEMORY, "Internal input layout cache is not initialized.");
    }

    InputLayoutKey ilKey = { 0 };

    static const char* semanticName = "TEXCOORD";

    unsigned int firstIndexedElement = gl::MAX_VERTEX_ATTRIBS;
    unsigned int firstInstancedElement = gl::MAX_VERTEX_ATTRIBS;
    unsigned int nextAvailableInputSlot = 0;

    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        if (attributes[i].active)
        {
            D3D11_INPUT_CLASSIFICATION inputClass = attributes[i].divisor > 0 ? D3D11_INPUT_PER_INSTANCE_DATA : D3D11_INPUT_PER_VERTEX_DATA;
            // If rendering points and instanced pointsprite emulation is being used, the inputClass is required to be configured as per instance data
            inputClass = instancedPointSpritesActive ? D3D11_INPUT_PER_INSTANCE_DATA : inputClass;

            gl::VertexFormat vertexFormat(*attributes[i].attribute, attributes[i].currentValueType);
            const d3d11::VertexFormat &vertexFormatInfo = d3d11::GetVertexFormatInfo(vertexFormat, mFeatureLevel);

            // Record the type of the associated vertex shader vector in our key
            // This will prevent mismatched vertex shaders from using the same input layout
            GLint attributeSize;
            program->getActiveAttribute(ilKey.elementCount, 0, NULL, &attributeSize, &ilKey.elements[ilKey.elementCount].glslElementType, NULL);

            ilKey.elements[ilKey.elementCount].desc.SemanticName = semanticName;
            ilKey.elements[ilKey.elementCount].desc.SemanticIndex = sortedSemanticIndices[i];
            ilKey.elements[ilKey.elementCount].desc.Format = vertexFormatInfo.nativeFormat;
            ilKey.elements[ilKey.elementCount].desc.InputSlot = i;
            ilKey.elements[ilKey.elementCount].desc.AlignedByteOffset = 0;
            ilKey.elements[ilKey.elementCount].desc.InputSlotClass = inputClass;
            ilKey.elements[ilKey.elementCount].desc.InstanceDataStepRate = instancedPointSpritesActive ? 1 : attributes[i].divisor;

            if (inputClass == D3D11_INPUT_PER_VERTEX_DATA && firstIndexedElement == gl::MAX_VERTEX_ATTRIBS)
            {
                firstIndexedElement = ilKey.elementCount;
            }
            else if (inputClass == D3D11_INPUT_PER_INSTANCE_DATA && firstInstancedElement == gl::MAX_VERTEX_ATTRIBS)
            {
                firstInstancedElement = ilKey.elementCount;
            }

            ilKey.elementCount++;
            nextAvailableInputSlot = i + 1;
        }
    }

    // Instanced PointSprite emulation requires additional entries in the
    // inputlayout to support the vertices that make up the pointsprite quad.
    // We do this even if mode != GL_POINTS, since the shader signature has these inputs, and the input layout must match the shader
    if (programUsesInstancedPointSprites)
    {
        ilKey.elements[ilKey.elementCount].desc.SemanticName = "SPRITEPOSITION";
        ilKey.elements[ilKey.elementCount].desc.SemanticIndex = 0;
        ilKey.elements[ilKey.elementCount].desc.Format = DXGI_FORMAT_R32G32B32_FLOAT;
        ilKey.elements[ilKey.elementCount].desc.InputSlot = nextAvailableInputSlot;
        ilKey.elements[ilKey.elementCount].desc.AlignedByteOffset = 0;
        ilKey.elements[ilKey.elementCount].desc.InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
        ilKey.elements[ilKey.elementCount].desc.InstanceDataStepRate = 0;

        // The new elements are D3D11_INPUT_PER_VERTEX_DATA data so the indexed element
        // tracking must be applied.  This ensures that the instancing specific
        // buffer swapping logic continues to work.
        if (firstIndexedElement == gl::MAX_VERTEX_ATTRIBS)
        {
            firstIndexedElement = ilKey.elementCount;
        }

        ilKey.elementCount++;

        ilKey.elements[ilKey.elementCount].desc.SemanticName = "SPRITETEXCOORD";
        ilKey.elements[ilKey.elementCount].desc.SemanticIndex = 0;
        ilKey.elements[ilKey.elementCount].desc.Format = DXGI_FORMAT_R32G32_FLOAT;
        ilKey.elements[ilKey.elementCount].desc.InputSlot = nextAvailableInputSlot;
        ilKey.elements[ilKey.elementCount].desc.AlignedByteOffset = sizeof(float) * 3;
        ilKey.elements[ilKey.elementCount].desc.InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
        ilKey.elements[ilKey.elementCount].desc.InstanceDataStepRate = 0;

        ilKey.elementCount++;
    }

    // On 9_3, we must ensure that slot 0 contains non-instanced data.
    // If slot 0 currently contains instanced data then we swap it with a non-instanced element.
    // Note that instancing is only available on 9_3 via ANGLE_instanced_arrays, since 9_3 doesn't support OpenGL ES 3.0.
    // As per the spec for ANGLE_instanced_arrays, not all attributes can be instanced simultaneously, so a non-instanced element must exist.
    ASSERT(!(mFeatureLevel <= D3D_FEATURE_LEVEL_9_3 && firstIndexedElement == gl::MAX_VERTEX_ATTRIBS));
    bool moveFirstIndexedIntoSlotZero = mFeatureLevel <= D3D_FEATURE_LEVEL_9_3 && firstInstancedElement == 0 && firstIndexedElement != gl::MAX_VERTEX_ATTRIBS;

    if (moveFirstIndexedIntoSlotZero)
    {
        ilKey.elements[firstInstancedElement].desc.InputSlot = ilKey.elements[firstIndexedElement].desc.InputSlot;
        ilKey.elements[firstIndexedElement].desc.InputSlot = 0;

        // Instanced PointSprite emulation uses multiple layout entries across a single vertex buffer.
        // If an index swap is performed, we need to ensure that all elements get the proper InputSlot.
        if (programUsesInstancedPointSprites)
        {
            ilKey.elements[firstIndexedElement + 1].desc.InputSlot = 0;
        }
    }

    ID3D11InputLayout *inputLayout = NULL;

    InputLayoutMap::iterator keyIter = mInputLayoutMap.find(ilKey);
    if (keyIter != mInputLayoutMap.end())
    {
        inputLayout = keyIter->second.inputLayout;
        keyIter->second.lastUsedTime = mCounter++;
    }
    else
    {
        gl::VertexFormat shaderInputLayout[gl::MAX_VERTEX_ATTRIBS];
        GetInputLayout(attributes, shaderInputLayout);

        ShaderExecutableD3D *shader = NULL;
        gl::Error error = programD3D->getVertexExecutableForInputLayout(shaderInputLayout, &shader, nullptr);
        if (error.isError())
        {
            return error;
        }

        ShaderExecutableD3D *shader11 = ShaderExecutable11::makeShaderExecutable11(shader);

        D3D11_INPUT_ELEMENT_DESC descs[gl::MAX_VERTEX_ATTRIBS];
        for (unsigned int j = 0; j < ilKey.elementCount; ++j)
        {
            descs[j] = ilKey.elements[j].desc;
        }

        HRESULT result = mDevice->CreateInputLayout(descs, ilKey.elementCount, shader11->getFunction(), shader11->getLength(), &inputLayout);
        if (FAILED(result))
        {
            return gl::Error(GL_OUT_OF_MEMORY, "Failed to create internal input layout, HRESULT: 0x%08x", result);
        }

        if (mInputLayoutMap.size() >= kMaxInputLayouts)
        {
            TRACE("Overflowed the limit of %u input layouts, removing the least recently used "
                  "to make room.", kMaxInputLayouts);

            InputLayoutMap::iterator leastRecentlyUsed = mInputLayoutMap.begin();
            for (InputLayoutMap::iterator i = mInputLayoutMap.begin(); i != mInputLayoutMap.end(); i++)
            {
                if (i->second.lastUsedTime < leastRecentlyUsed->second.lastUsedTime)
                {
                    leastRecentlyUsed = i;
                }
            }
            SafeRelease(leastRecentlyUsed->second.inputLayout);
            mInputLayoutMap.erase(leastRecentlyUsed);
        }

        InputLayoutCounterPair inputCounterPair;
        inputCounterPair.inputLayout = inputLayout;
        inputCounterPair.lastUsedTime = mCounter++;

        mInputLayoutMap.insert(std::make_pair(ilKey, inputCounterPair));
    }

    if (inputLayout != mCurrentIL)
    {
        mDeviceContext->IASetInputLayout(inputLayout);
        mCurrentIL = inputLayout;
    }

    bool dirtyBuffers = false;
    size_t minDiff = gl::MAX_VERTEX_ATTRIBS;
    size_t maxDiff = 0;
    unsigned int nextAvailableIndex = 0;

    for (unsigned int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
    {
        ID3D11Buffer *buffer = NULL;

        if (attributes[i].active)
        {
            VertexBuffer11 *vertexBuffer = VertexBuffer11::makeVertexBuffer11(attributes[i].vertexBuffer);
            Buffer11 *bufferStorage = attributes[i].storage ? Buffer11::makeBuffer11(attributes[i].storage) : NULL;

            buffer = bufferStorage ? bufferStorage->getBuffer(BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK)
                                   : vertexBuffer->getBuffer();
        }

        UINT vertexStride = attributes[i].stride;
        UINT vertexOffset = attributes[i].offset;

        if (buffer != mCurrentBuffers[i] || vertexStride != mCurrentVertexStrides[i] ||
            vertexOffset != mCurrentVertexOffsets[i])
        {
            dirtyBuffers = true;
            minDiff = std::min(minDiff, static_cast<size_t>(i));
            maxDiff = std::max(maxDiff, static_cast<size_t>(i));

            mCurrentBuffers[i] = buffer;
            mCurrentVertexStrides[i] = vertexStride;
            mCurrentVertexOffsets[i] = vertexOffset;

            // If a non null ID3D11Buffer is being assigned to mCurrentBuffers,
            // then the next available index needs to be tracked to ensure 
            // that any instanced pointsprite emulation buffers will be properly packed.
            if (buffer)
            {
                nextAvailableIndex = i + 1;
            }
        }
    }

    // Instanced PointSprite emulation requires two additional ID3D11Buffers.
    // A vertex buffer needs to be created and added to the list of current buffers, 
    // strides and offsets collections.  This buffer contains the vertices for a single
    // PointSprite quad.
    // An index buffer also needs to be created and applied because rendering instanced
    // data on D3D11 FL9_3 requires DrawIndexedInstanced() to be used.
    if (instancedPointSpritesActive)
    {
        HRESULT result = S_OK;
        const UINT pointSpriteVertexStride = sizeof(float) * 5;

        if (!mPointSpriteVertexBuffer)
        {
            static const float pointSpriteVertices[] =
            {
                // Position        // TexCoord
               -1.0f, -1.0f, 0.0f, 0.0f, 1.0f,
               -1.0f,  1.0f, 0.0f, 0.0f, 0.0f,
                1.0f,  1.0f, 0.0f, 1.0f, 0.0f,
                1.0f, -1.0f, 0.0f, 1.0f, 1.0f,
               -1.0f, -1.0f, 0.0f, 0.0f, 1.0f,
                1.0f,  1.0f, 0.0f, 1.0f, 0.0f,
            };

            D3D11_SUBRESOURCE_DATA vertexBufferData = { pointSpriteVertices, 0, 0 };
            D3D11_BUFFER_DESC vertexBufferDesc;
            vertexBufferDesc.ByteWidth = sizeof(pointSpriteVertices);
            vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
            vertexBufferDesc.Usage = D3D11_USAGE_IMMUTABLE;
            vertexBufferDesc.CPUAccessFlags = 0;
            vertexBufferDesc.MiscFlags = 0;
            vertexBufferDesc.StructureByteStride = 0;

            result = mDevice->CreateBuffer(&vertexBufferDesc, &vertexBufferData, &mPointSpriteVertexBuffer);
            if (FAILED(result))
            {
                return gl::Error(GL_OUT_OF_MEMORY, "Failed to create instanced pointsprite emulation vertex buffer, HRESULT: 0x%08x", result);
            }
        }

        mCurrentBuffers[nextAvailableIndex] = mPointSpriteVertexBuffer;
        mCurrentVertexStrides[nextAvailableIndex] = pointSpriteVertexStride;
        mCurrentVertexOffsets[nextAvailableIndex] = 0;

        if (!mPointSpriteIndexBuffer)
        {
            // Create an index buffer and set it for pointsprite rendering
            static const unsigned short pointSpriteIndices[] =
            {
                0, 1, 2, 3, 4, 5,
            };

            D3D11_SUBRESOURCE_DATA indexBufferData = { pointSpriteIndices, 0, 0 };
            D3D11_BUFFER_DESC indexBufferDesc;
            indexBufferDesc.ByteWidth = sizeof(pointSpriteIndices);
            indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
            indexBufferDesc.Usage = D3D11_USAGE_IMMUTABLE;
            indexBufferDesc.CPUAccessFlags = 0;
            indexBufferDesc.MiscFlags = 0;
            indexBufferDesc.StructureByteStride = 0;

            result = mDevice->CreateBuffer(&indexBufferDesc, &indexBufferData, &mPointSpriteIndexBuffer);
            if (FAILED(result))
            {
                SafeRelease(mPointSpriteVertexBuffer);
                return gl::Error(GL_OUT_OF_MEMORY, "Failed to create instanced pointsprite emulation index buffer, HRESULT: 0x%08x", result);
            }
        }

        // The index buffer is applied here because Instanced PointSprite emulation uses
        // the a non-indexed rendering path in ANGLE (DrawArrays).  This means that applyIndexBuffer()
        // on the renderer will not be called and setting this buffer here ensures that the rendering
        // path will contain the correct index buffers.
        mDeviceContext->IASetIndexBuffer(mPointSpriteIndexBuffer, DXGI_FORMAT_R16_UINT, 0);
    }

    if (moveFirstIndexedIntoSlotZero)
    {
        // In this case, we swapped the slots of the first instanced element and the first indexed element, to ensure
        // that the first slot contains non-instanced data (required by Feature Level 9_3).
        // We must also swap the corresponding buffers sent to IASetVertexBuffers so that the correct data is sent to each slot.
        std::swap(mCurrentBuffers[firstIndexedElement], mCurrentBuffers[firstInstancedElement]);
        std::swap(mCurrentVertexStrides[firstIndexedElement], mCurrentVertexStrides[firstInstancedElement]);
        std::swap(mCurrentVertexOffsets[firstIndexedElement], mCurrentVertexOffsets[firstInstancedElement]);
    }

    if (dirtyBuffers)
    {
        ASSERT(minDiff <= maxDiff && maxDiff < gl::MAX_VERTEX_ATTRIBS);
        mDeviceContext->IASetVertexBuffers(minDiff, maxDiff - minDiff + 1, mCurrentBuffers + minDiff,
                                           mCurrentVertexStrides + minDiff, mCurrentVertexOffsets + minDiff);
    }

    return gl::Error(GL_NO_ERROR);
}

std::size_t InputLayoutCache::hashInputLayout(const InputLayoutKey &inputLayout)
{
    static const unsigned int seed = 0xDEADBEEF;

    std::size_t hash = 0;
    MurmurHash3_x86_32(inputLayout.begin(), inputLayout.end() - inputLayout.begin(), seed, &hash);
    return hash;
}

bool InputLayoutCache::compareInputLayouts(const InputLayoutKey &a, const InputLayoutKey &b)
{
    if (a.elementCount != b.elementCount)
    {
        return false;
    }

    return std::equal(a.begin(), a.end(), b.begin());
}

}