summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/harfbuzz-ng/src/hb-repacker.hh
blob: 2a9e75c45b1adbd8f6eb9b337a5cb6dbb5a5816c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
/*
 * Copyright © 2020  Google, Inc.
 *
 *  This is part of HarfBuzz, a text shaping library.
 *
 * Permission is hereby granted, without written agreement and without
 * license or royalty fees, to use, copy, modify, and distribute this
 * software and its documentation for any purpose, provided that the
 * above copyright notice and the following two paragraphs appear in
 * all copies of this software.
 *
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
 * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
 * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
 * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
 *
 * Google Author(s): Garret Rieger
 */

#ifndef HB_REPACKER_HH
#define HB_REPACKER_HH

#include "hb-open-type.hh"
#include "hb-map.hh"
#include "hb-priority-queue.hh"
#include "hb-serialize.hh"
#include "hb-vector.hh"

/*
 * For a detailed writeup on the overflow resolution algorithm see:
 * docs/repacker.md
 */
struct graph_t
{
  struct vertex_t
  {
    hb_serialize_context_t::object_t obj;
    int64_t distance = 0 ;
    int64_t space = 0 ;
    hb_vector_t<unsigned> parents;
    unsigned start = 0;
    unsigned end = 0;
    unsigned priority = 0;

    bool is_shared () const
    {
      return parents.length > 1;
    }

    unsigned incoming_edges () const
    {
      return parents.length;
    }

    void remove_parent (unsigned parent_index)
    {
      for (unsigned i = 0; i < parents.length; i++)
      {
        if (parents[i] != parent_index) continue;
        parents.remove (i);
        break;
      }
    }

    void remap_parents (const hb_vector_t<unsigned>& id_map)
    {
      for (unsigned i = 0; i < parents.length; i++)
        parents[i] = id_map[parents[i]];
    }

    void remap_parent (unsigned old_index, unsigned new_index)
    {
      for (unsigned i = 0; i < parents.length; i++)
      {
        if (parents[i] == old_index)
          parents[i] = new_index;
      }
    }

    bool is_leaf () const
    {
      return !obj.real_links.length && !obj.virtual_links.length;
    }

    bool raise_priority ()
    {
      if (has_max_priority ()) return false;
      priority++;
      return true;
    }

    bool has_max_priority () const {
      return priority >= 3;
    }

    int64_t modified_distance (unsigned order) const
    {
      // TODO(garretrieger): once priority is high enough, should try
      // setting distance = 0 which will force to sort immediately after
      // it's parent where possible.

      int64_t modified_distance =
          hb_min (hb_max(distance + distance_modifier (), 0), 0x7FFFFFFFFFF);
      if (has_max_priority ()) {
        modified_distance = 0;
      }
      return (modified_distance << 18) | (0x003FFFF & order);
    }

    int64_t distance_modifier () const
    {
      if (!priority) return 0;
      int64_t table_size = obj.tail - obj.head;

      if (priority == 1)
        return -table_size / 2;

      return -table_size;
    }
  };

  struct overflow_record_t
  {
    unsigned parent;
    unsigned child;
  };

  /*
   * A topological sorting of an object graph. Ordered
   * in reverse serialization order (first object in the
   * serialization is at the end of the list). This matches
   * the 'packed' object stack used internally in the
   * serializer
   */
  template<typename T>
  graph_t (const T& objects)
      : parents_invalid (true),
        distance_invalid (true),
        positions_invalid (true),
        successful (true)
  {
    num_roots_for_space_.push (1);
    bool removed_nil = false;
    for (unsigned i = 0; i < objects.length; i++)
    {
      // TODO(grieger): check all links point to valid objects.

      // If this graph came from a serialization buffer object 0 is the
      // nil object. We don't need it for our purposes here so drop it.
      if (i == 0 && !objects[i])
      {
        removed_nil = true;
        continue;
      }

      vertex_t* v = vertices_.push ();
      if (check_success (!vertices_.in_error ()))
        v->obj = *objects[i];
      if (!removed_nil) continue;
      // Fix indices to account for removed nil object.
      for (auto& l : v->obj.all_links_writer ()) {
        l.objidx--;
      }
    }
  }

  ~graph_t ()
  {
    vertices_.fini ();
  }

  bool in_error () const
  {
    return !successful ||
        vertices_.in_error () ||
        num_roots_for_space_.in_error ();
  }

  const vertex_t& root () const
  {
    return vertices_[root_idx ()];
  }

  unsigned root_idx () const
  {
    // Object graphs are in reverse order, the first object is at the end
    // of the vector. Since the graph is topologically sorted it's safe to
    // assume the first object has no incoming edges.
    return vertices_.length - 1;
  }

  const hb_serialize_context_t::object_t& object(unsigned i) const
  {
    return vertices_[i].obj;
  }

  /*
   * serialize graph into the provided serialization buffer.
   */
  hb_blob_t* serialize () const
  {
    hb_vector_t<char> buffer;
    size_t size = serialized_length ();
    if (!buffer.alloc (size)) {
      DEBUG_MSG (SUBSET_REPACK, nullptr, "Unable to allocate output buffer.");
      return nullptr;
    }
    hb_serialize_context_t c((void *) buffer, size);

    c.start_serialize<void> ();
    for (unsigned i = 0; i < vertices_.length; i++) {
      c.push ();

      size_t size = vertices_[i].obj.tail - vertices_[i].obj.head;
      char* start = c.allocate_size <char> (size);
      if (!start) {
        DEBUG_MSG (SUBSET_REPACK, nullptr, "Buffer out of space.");
        return nullptr;
      }

      memcpy (start, vertices_[i].obj.head, size);

      // Only real links needs to be serialized.
      for (const auto& link : vertices_[i].obj.real_links)
        serialize_link (link, start, &c);

      // All duplications are already encoded in the graph, so don't
      // enable sharing during packing.
      c.pop_pack (false);
    }
    c.end_serialize ();

    if (c.in_error ()) {
      DEBUG_MSG (SUBSET_REPACK, nullptr, "Error during serialization. Err flag: %d",
                 c.errors);
      return nullptr;
    }

    return c.copy_blob ();
  }

  /*
   * Generates a new topological sorting of graph using Kahn's
   * algorithm: https://en.wikipedia.org/wiki/Topological_sorting#Algorithms
   */
  void sort_kahn ()
  {
    positions_invalid = true;

    if (vertices_.length <= 1) {
      // Graph of 1 or less doesn't need sorting.
      return;
    }

    hb_vector_t<unsigned> queue;
    hb_vector_t<vertex_t> sorted_graph;
    if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
    hb_vector_t<unsigned> id_map;
    if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;

    hb_vector_t<unsigned> removed_edges;
    if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
    update_parents ();

    queue.push (root_idx ());
    int new_id = vertices_.length - 1;

    while (!queue.in_error () && queue.length)
    {
      unsigned next_id = queue[0];
      queue.remove (0);

      vertex_t& next = vertices_[next_id];
      sorted_graph[new_id] = next;
      id_map[next_id] = new_id--;

      for (const auto& link : next.obj.all_links ()) {
        removed_edges[link.objidx]++;
        if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
          queue.push (link.objidx);
      }
    }

    check_success (!queue.in_error ());
    check_success (!sorted_graph.in_error ());
    if (!check_success (new_id == -1))
      print_orphaned_nodes ();

    remap_all_obj_indices (id_map, &sorted_graph);

    hb_swap (vertices_, sorted_graph);
    sorted_graph.fini ();
  }

  /*
   * Generates a new topological sorting of graph ordered by the shortest
   * distance to each node.
   */
  void sort_shortest_distance ()
  {
    positions_invalid = true;

    if (vertices_.length <= 1) {
      // Graph of 1 or less doesn't need sorting.
      return;
    }

    update_distances ();

    hb_priority_queue_t queue;
    hb_vector_t<vertex_t> sorted_graph;
    if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
    hb_vector_t<unsigned> id_map;
    if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;

    hb_vector_t<unsigned> removed_edges;
    if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
    update_parents ();

    queue.insert (root ().modified_distance (0), root_idx ());
    int new_id = root_idx ();
    unsigned order = 1;
    while (!queue.in_error () && !queue.is_empty ())
    {
      unsigned next_id = queue.pop_minimum().second;

      vertex_t& next = vertices_[next_id];
      sorted_graph[new_id] = next;
      id_map[next_id] = new_id--;

      for (const auto& link : next.obj.all_links ()) {
        removed_edges[link.objidx]++;
        if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
          // Add the order that the links were encountered to the priority.
          // This ensures that ties between priorities objects are broken in a consistent
          // way. More specifically this is set up so that if a set of objects have the same
          // distance they'll be added to the topological order in the order that they are
          // referenced from the parent object.
          queue.insert (vertices_[link.objidx].modified_distance (order++),
                        link.objidx);
      }
    }

    check_success (!queue.in_error ());
    check_success (!sorted_graph.in_error ());
    if (!check_success (new_id == -1))
      print_orphaned_nodes ();

    remap_all_obj_indices (id_map, &sorted_graph);

    hb_swap (vertices_, sorted_graph);
    sorted_graph.fini ();
  }

  /*
   * Assign unique space numbers to each connected subgraph of 32 bit offset(s).
   */
  bool assign_32bit_spaces ()
  {
    unsigned root_index = root_idx ();
    hb_set_t visited;
    hb_set_t roots;
    for (unsigned i = 0; i <= root_index; i++)
    {
      // Only real links can form 32 bit spaces
      for (auto& l : vertices_[i].obj.real_links)
      {
        if (l.width == 4 && !l.is_signed)
        {
          roots.add (l.objidx);
          find_subgraph (l.objidx, visited);
        }
      }
    }

    // Mark everything not in the subgraphs of 32 bit roots as visited.
    // This prevents 32 bit subgraphs from being connected via nodes not in the 32 bit subgraphs.
    visited.invert ();

    if (!roots) return false;

    while (roots)
    {
      unsigned next = HB_SET_VALUE_INVALID;
      if (unlikely (!check_success (!roots.in_error ()))) break;
      if (!roots.next (&next)) break;

      hb_set_t connected_roots;
      find_connected_nodes (next, roots, visited, connected_roots);
      if (unlikely (!check_success (!connected_roots.in_error ()))) break;

      isolate_subgraph (connected_roots);
      if (unlikely (!check_success (!connected_roots.in_error ()))) break;

      unsigned next_space = this->next_space ();
      num_roots_for_space_.push (0);
      for (unsigned root : connected_roots)
      {
        DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
        vertices_[root].space = next_space;
        num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
        distance_invalid = true;
        positions_invalid = true;
      }

      // TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
      //                into the 32 bit space as needed, instead of using isolation.
    }



    return true;
  }

  /*
   * Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
   * that originate from outside of the subgraph will be removed by duplicating the linked to
   * object.
   *
   * Indices stored in roots will be updated if any of the roots are duplicated to new indices.
   */
  bool isolate_subgraph (hb_set_t& roots)
  {
    update_parents ();
    hb_hashmap_t<unsigned, unsigned> subgraph;

    // incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
    // set the subgraph incoming edge count to match all of root_idx's incoming edges
    hb_set_t parents;
    for (unsigned root_idx : roots)
    {
      subgraph.set (root_idx, wide_parents (root_idx, parents));
      find_subgraph (root_idx, subgraph);
    }

    unsigned original_root_idx = root_idx ();
    hb_hashmap_t<unsigned, unsigned> index_map;
    bool made_changes = false;
    for (auto entry : subgraph.iter ())
    {
      const auto& node = vertices_[entry.first];
      unsigned subgraph_incoming_edges = entry.second;

      if (subgraph_incoming_edges < node.incoming_edges ())
      {
        // Only  de-dup objects with incoming links from outside the subgraph.
        made_changes = true;
        duplicate_subgraph (entry.first, index_map);
      }
    }

    if (!made_changes)
      return false;

    if (original_root_idx != root_idx ()
        && parents.has (original_root_idx))
    {
      // If the root idx has changed since parents was determined, update root idx in parents
      parents.add (root_idx ());
      parents.del (original_root_idx);
    }

    auto new_subgraph =
        + subgraph.keys ()
        | hb_map([&] (unsigned node_idx) {
          if (index_map.has (node_idx)) return index_map[node_idx];
          return node_idx;
        })
        ;

    remap_obj_indices (index_map, new_subgraph);
    remap_obj_indices (index_map, parents.iter (), true);

    // Update roots set with new indices as needed.
    unsigned next = HB_SET_VALUE_INVALID;
    while (roots.next (&next))
    {
      if (index_map.has (next))
      {
        roots.del (next);
        roots.add (index_map[next]);
      }
    }

    return true;
  }

  void find_subgraph (unsigned node_idx, hb_hashmap_t<unsigned, unsigned>& subgraph)
  {
    for (const auto& link : vertices_[node_idx].obj.all_links ())
    {
      if (subgraph.has (link.objidx))
      {
        subgraph.set (link.objidx, subgraph[link.objidx] + 1);
        continue;
      }
      subgraph.set (link.objidx, 1);
      find_subgraph (link.objidx, subgraph);
    }
  }

  void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
  {
    if (subgraph.has (node_idx)) return;
    subgraph.add (node_idx);
    for (const auto& link : vertices_[node_idx].obj.all_links ())
      find_subgraph (link.objidx, subgraph);
  }

  /*
   * duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
   * links. index_map is updated with mappings from old id to new id. If a duplication has already
   * been performed for a given index, then it will be skipped.
   */
  void duplicate_subgraph (unsigned node_idx, hb_hashmap_t<unsigned, unsigned>& index_map)
  {
    if (index_map.has (node_idx))
      return;

    index_map.set (node_idx, duplicate (node_idx));
    for (const auto& l : object (node_idx).all_links ()) {
      duplicate_subgraph (l.objidx, index_map);
    }
  }

  /*
   * Creates a copy of node_idx and returns it's new index.
   */
  unsigned duplicate (unsigned node_idx)
  {
    positions_invalid = true;
    distance_invalid = true;

    auto* clone = vertices_.push ();
    auto& child = vertices_[node_idx];
    if (vertices_.in_error ()) {
      return -1;
    }

    clone->obj.head = child.obj.head;
    clone->obj.tail = child.obj.tail;
    clone->distance = child.distance;
    clone->space = child.space;
    clone->parents.reset ();

    unsigned clone_idx = vertices_.length - 2;
    for (const auto& l : child.obj.real_links)
    {
      clone->obj.real_links.push (l);
      vertices_[l.objidx].parents.push (clone_idx);
    }
    for (const auto& l : child.obj.virtual_links)
    {
      clone->obj.virtual_links.push (l);
      vertices_[l.objidx].parents.push (clone_idx);
    }

    check_success (!clone->obj.real_links.in_error ());
    check_success (!clone->obj.virtual_links.in_error ());

    // The last object is the root of the graph, so swap back the root to the end.
    // The root's obj idx does change, however since it's root nothing else refers to it.
    // all other obj idx's will be unaffected.
    vertex_t root = vertices_[vertices_.length - 2];
    vertices_[clone_idx] = *clone;
    vertices_[vertices_.length - 1] = root;

    // Since the root moved, update the parents arrays of all children on the root.
    for (const auto& l : root.obj.all_links ())
      vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());

    return clone_idx;
  }

  /*
   * Creates a copy of child and re-assigns the link from
   * parent to the clone. The copy is a shallow copy, objects
   * linked from child are not duplicated.
   */
  bool duplicate (unsigned parent_idx, unsigned child_idx)
  {
    update_parents ();

    unsigned links_to_child = 0;
    for (const auto& l : vertices_[parent_idx].obj.all_links ())
    {
      if (l.objidx == child_idx) links_to_child++;
    }

    if (vertices_[child_idx].incoming_edges () <= links_to_child)
    {
      // Can't duplicate this node, doing so would orphan the original one as all remaining links
      // to child are from parent.
      DEBUG_MSG (SUBSET_REPACK, nullptr, "  Not duplicating %d => %d",
                 parent_idx, child_idx);
      return false;
    }

    DEBUG_MSG (SUBSET_REPACK, nullptr, "  Duplicating %d => %d",
               parent_idx, child_idx);

    unsigned clone_idx = duplicate (child_idx);
    if (clone_idx == (unsigned) -1) return false;
    // duplicate shifts the root node idx, so if parent_idx was root update it.
    if (parent_idx == clone_idx) parent_idx++;

    auto& parent = vertices_[parent_idx];
    for (auto& l : parent.obj.all_links_writer ())
    {
      if (l.objidx != child_idx)
        continue;

      reassign_link (l, parent_idx, clone_idx);
    }

    return true;
  }

  /*
   * Raises the sorting priority of all children.
   */
  bool raise_childrens_priority (unsigned parent_idx)
  {
    DEBUG_MSG (SUBSET_REPACK, nullptr, "  Raising priority of all children of %d",
               parent_idx);
    // This operation doesn't change ordering until a sort is run, so no need
    // to invalidate positions. It does not change graph structure so no need
    // to update distances or edge counts.
    auto& parent = vertices_[parent_idx].obj;
    bool made_change = false;
    for (auto& l : parent.all_links_writer ())
      made_change |= vertices_[l.objidx].raise_priority ();
    return made_change;
  }

  /*
   * Will any offsets overflow on graph when it's serialized?
   */
  bool will_overflow (hb_vector_t<overflow_record_t>* overflows = nullptr)
  {
    if (overflows) overflows->resize (0);
    update_positions ();

    for (int parent_idx = vertices_.length - 1; parent_idx >= 0; parent_idx--)
    {
      // Don't need to check virtual links for overflow
      for (const auto& link : vertices_[parent_idx].obj.real_links)
      {
        int64_t offset = compute_offset (parent_idx, link);
        if (is_valid_offset (offset, link))
          continue;

        if (!overflows) return true;

        overflow_record_t r;
        r.parent = parent_idx;
        r.child = link.objidx;
        overflows->push (r);
      }
    }

    if (!overflows) return false;
    return overflows->length;
  }

  void print_orphaned_nodes ()
  {
    if (!DEBUG_ENABLED(SUBSET_REPACK)) return;

    DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
    parents_invalid = true;
    update_parents();

    for (unsigned i = 0; i < root_idx (); i++)
    {
      const auto& v = vertices_[i];
      if (!v.parents)
        DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
    }
  }

  void print_overflows (const hb_vector_t<overflow_record_t>& overflows)
  {
    if (!DEBUG_ENABLED(SUBSET_REPACK)) return;

    update_parents ();
    int limit = 10;
    for (const auto& o : overflows)
    {
      if (!limit--) break;
      const auto& parent = vertices_[o.parent];
      const auto& child = vertices_[o.child];
      DEBUG_MSG (SUBSET_REPACK, nullptr,
                 "  overflow from "
                 "%4d (%4d in, %4d out, space %2d) => "
                 "%4d (%4d in, %4d out, space %2d)",
                 o.parent,
                 parent.incoming_edges (),
                 parent.obj.real_links.length + parent.obj.virtual_links.length,
                 space_for (o.parent),
                 o.child,
                 child.incoming_edges (),
                 child.obj.real_links.length + child.obj.virtual_links.length,
                 space_for (o.child));
    }
    if (overflows.length > 10) {
      DEBUG_MSG (SUBSET_REPACK, nullptr, "  ... plus %d more overflows.", overflows.length - 10);
    }
  }

  unsigned num_roots_for_space (unsigned space) const
  {
    return num_roots_for_space_[space];
  }

  unsigned next_space () const
  {
    return num_roots_for_space_.length;
  }

  void move_to_new_space (const hb_set_t& indices)
  {
    num_roots_for_space_.push (0);
    unsigned new_space = num_roots_for_space_.length - 1;

    for (unsigned index : indices) {
      auto& node = vertices_[index];
      num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
      num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1;
      node.space = new_space;
      distance_invalid = true;
      positions_invalid = true;
    }
  }

  unsigned space_for (unsigned index, unsigned* root = nullptr) const
  {
    const auto& node = vertices_[index];
    if (node.space)
    {
      if (root != nullptr)
        *root = index;
      return node.space;
    }

    if (!node.parents)
    {
      if (root)
        *root = index;
      return 0;
    }

    return space_for (node.parents[0], root);
  }

  void err_other_error () { this->successful = false; }

 private:

  size_t serialized_length () const {
    size_t total_size = 0;
    for (unsigned i = 0; i < vertices_.length; i++) {
      size_t size = vertices_[i].obj.tail - vertices_[i].obj.head;
      total_size += size;
    }
    return total_size;
  }

  /*
   * Returns the numbers of incoming edges that are 32bits wide.
   */
  unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
  {
    unsigned count = 0;
    hb_set_t visited;
    for (unsigned p : vertices_[node_idx].parents)
    {
      if (visited.has (p)) continue;
      visited.add (p);

      // Only real links can be wide
      for (const auto& l : vertices_[p].obj.real_links)
      {
        if (l.objidx == node_idx && l.width == 4 && !l.is_signed)
        {
          count++;
          parents.add (p);
        }
      }
    }
    return count;
  }

  bool check_success (bool success)
  { return this->successful && (success || (err_other_error (), false)); }

  /*
   * Creates a map from objid to # of incoming edges.
   */
  void update_parents ()
  {
    if (!parents_invalid) return;

    for (unsigned i = 0; i < vertices_.length; i++)
      vertices_[i].parents.reset ();

    for (unsigned p = 0; p < vertices_.length; p++)
    {
      for (auto& l : vertices_[p].obj.all_links ())
      {
        vertices_[l.objidx].parents.push (p);
      }
    }

    parents_invalid = false;
  }

  /*
   * compute the serialized start and end positions for each vertex.
   */
  void update_positions ()
  {
    if (!positions_invalid) return;

    unsigned current_pos = 0;
    for (int i = root_idx (); i >= 0; i--)
    {
      auto& v = vertices_[i];
      v.start = current_pos;
      current_pos += v.obj.tail - v.obj.head;
      v.end = current_pos;
    }

    positions_invalid = false;
  }

  /*
   * Finds the distance to each object in the graph
   * from the initial node.
   */
  void update_distances ()
  {
    if (!distance_invalid) return;

    // Uses Dijkstra's algorithm to find all of the shortest distances.
    // https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
    //
    // Implementation Note:
    // Since our priority queue doesn't support fast priority decreases
    // we instead just add new entries into the queue when a priority changes.
    // Redundant ones are filtered out later on by the visited set.
    // According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
    // for practical performance this is faster then using a more advanced queue
    // (such as a fibonacci queue) with a fast decrease priority.
    for (unsigned i = 0; i < vertices_.length; i++)
    {
      if (i == vertices_.length - 1)
        vertices_[i].distance = 0;
      else
        vertices_[i].distance = hb_int_max (int64_t);
    }

    hb_priority_queue_t queue;
    queue.insert (0, vertices_.length - 1);

    hb_vector_t<bool> visited;
    visited.resize (vertices_.length);

    while (!queue.in_error () && !queue.is_empty ())
    {
      unsigned next_idx = queue.pop_minimum ().second;
      if (visited[next_idx]) continue;
      const auto& next = vertices_[next_idx];
      int64_t next_distance = vertices_[next_idx].distance;
      visited[next_idx] = true;

      for (const auto& link : next.obj.all_links ())
      {
        if (visited[link.objidx]) continue;

        const auto& child = vertices_[link.objidx].obj;
        unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide
        int64_t child_weight = (child.tail - child.head) +
                               ((int64_t) 1 << (link_width * 8)) * (vertices_[link.objidx].space + 1);
        int64_t child_distance = next_distance + child_weight;

        if (child_distance < vertices_[link.objidx].distance)
        {
          vertices_[link.objidx].distance = child_distance;
          queue.insert (child_distance, link.objidx);
        }
      }
    }

    check_success (!queue.in_error ());
    if (!check_success (queue.is_empty ()))
    {
      print_orphaned_nodes ();
      return;
    }

    distance_invalid = false;
  }

  int64_t compute_offset (
      unsigned parent_idx,
      const hb_serialize_context_t::object_t::link_t& link) const
  {
    const auto& parent = vertices_[parent_idx];
    const auto& child = vertices_[link.objidx];
    int64_t offset = 0;
    switch ((hb_serialize_context_t::whence_t) link.whence) {
      case hb_serialize_context_t::whence_t::Head:
        offset = child.start - parent.start; break;
      case hb_serialize_context_t::whence_t::Tail:
        offset = child.start - parent.end; break;
      case hb_serialize_context_t::whence_t::Absolute:
        offset = child.start; break;
    }

    assert (offset >= link.bias);
    offset -= link.bias;
    return offset;
  }

  bool is_valid_offset (int64_t offset,
                        const hb_serialize_context_t::object_t::link_t& link) const
  {
    if (unlikely (!link.width))
      // Virtual links can't overflow.
      return link.is_signed || offset >= 0;

    if (link.is_signed)
    {
      if (link.width == 4)
        return offset >= -((int64_t) 1 << 31) && offset < ((int64_t) 1 << 31);
      else
        return offset >= -(1 << 15) && offset < (1 << 15);
    }
    else
    {
      if (link.width == 4)
        return offset >= 0 && offset < ((int64_t) 1 << 32);
      else if (link.width == 3)
        return offset >= 0 && offset < ((int32_t) 1 << 24);
      else
        return offset >= 0 && offset < (1 << 16);
    }
  }

  /*
   * Updates a link in the graph to point to a different object. Corrects the
   * parents vector on the previous and new child nodes.
   */
  void reassign_link (hb_serialize_context_t::object_t::link_t& link,
                      unsigned parent_idx,
                      unsigned new_idx)
  {
    unsigned old_idx = link.objidx;
    link.objidx = new_idx;
    vertices_[old_idx].remove_parent (parent_idx);
    vertices_[new_idx].parents.push (parent_idx);
  }

  /*
   * Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
   */
  template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
  void remap_obj_indices (const hb_hashmap_t<unsigned, unsigned>& id_map,
                          Iterator subgraph,
                          bool only_wide = false)
  {
    if (!id_map) return;
    for (unsigned i : subgraph)
    {
      for (auto& link : vertices_[i].obj.all_links_writer ())
      {
        if (!id_map.has (link.objidx)) continue;
        if (only_wide && !(link.width == 4 && !link.is_signed)) continue;

        reassign_link (link, i, id_map[link.objidx]);
      }
    }
  }

  /*
   * Updates all objidx's in all links using the provided mapping.
   */
  void remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
                              hb_vector_t<vertex_t>* sorted_graph) const
  {
    for (unsigned i = 0; i < sorted_graph->length; i++)
    {
      (*sorted_graph)[i].remap_parents (id_map);
      for (auto& link : (*sorted_graph)[i].obj.all_links_writer ())
      {
        link.objidx = id_map[link.objidx];
      }
    }
  }

  template <typename O> void
  serialize_link_of_type (const hb_serialize_context_t::object_t::link_t& link,
                          char* head,
                          hb_serialize_context_t* c) const
  {
    OT::Offset<O>* offset = reinterpret_cast<OT::Offset<O>*> (head + link.position);
    *offset = 0;
    c->add_link (*offset,
                 // serializer has an extra nil object at the start of the
                 // object array. So all id's are +1 of what our id's are.
                 link.objidx + 1,
                 (hb_serialize_context_t::whence_t) link.whence,
                 link.bias);
  }

  void serialize_link (const hb_serialize_context_t::object_t::link_t& link,
                 char* head,
                 hb_serialize_context_t* c) const
  {
    switch (link.width)
    {
    case 0:
      // Virtual links aren't serialized.
      return;
    case 4:
      if (link.is_signed)
      {
        serialize_link_of_type<OT::HBINT32> (link, head, c);
      } else {
        serialize_link_of_type<OT::HBUINT32> (link, head, c);
      }
      return;
    case 2:
      if (link.is_signed)
      {
        serialize_link_of_type<OT::HBINT16> (link, head, c);
      } else {
        serialize_link_of_type<OT::HBUINT16> (link, head, c);
      }
      return;
    case 3:
      serialize_link_of_type<OT::HBUINT24> (link, head, c);
      return;
    default:
      // Unexpected link width.
      assert (0);
    }
  }

  /*
   * Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
   * For this search the graph is treated as being undirected.
   *
   * Connected targets will be added to connected and removed from targets. All visited nodes
   * will be added to visited.
   */
  void find_connected_nodes (unsigned start_idx,
                             hb_set_t& targets,
                             hb_set_t& visited,
                             hb_set_t& connected)
  {
    if (unlikely (!check_success (!visited.in_error ()))) return;
    if (visited.has (start_idx)) return;
    visited.add (start_idx);

    if (targets.has (start_idx))
    {
      targets.del (start_idx);
      connected.add (start_idx);
    }

    const auto& v = vertices_[start_idx];

    // Graph is treated as undirected so search children and parents of start_idx
    for (const auto& l : v.obj.all_links ())
      find_connected_nodes (l.objidx, targets, visited, connected);

    for (unsigned p : v.parents)
      find_connected_nodes (p, targets, visited, connected);
  }

 public:
  // TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
  hb_vector_t<vertex_t> vertices_;
 private:
  bool parents_invalid;
  bool distance_invalid;
  bool positions_invalid;
  bool successful;
  hb_vector_t<unsigned> num_roots_for_space_;
};

static inline
bool _try_isolating_subgraphs (const hb_vector_t<graph_t::overflow_record_t>& overflows,
                               graph_t& sorted_graph)
{
  unsigned space = 0;
  hb_set_t roots_to_isolate;

  for (int i = overflows.length - 1; i >= 0; i--)
  {
    const graph_t::overflow_record_t& r = overflows[i];

    unsigned root;
    unsigned overflow_space = sorted_graph.space_for (r.parent, &root);
    if (!overflow_space) continue;
    if (sorted_graph.num_roots_for_space (overflow_space) <= 1) continue;

    if (!space) {
      space = overflow_space;
    }

    if (space == overflow_space)
      roots_to_isolate.add(root);
  }

  if (!roots_to_isolate) return false;

  unsigned maximum_to_move = hb_max ((sorted_graph.num_roots_for_space (space) / 2u), 1u);
  if (roots_to_isolate.get_population () > maximum_to_move) {
    // Only move at most half of the roots in a space at a time.
    unsigned extra = roots_to_isolate.get_population () - maximum_to_move;
    while (extra--) {
      unsigned root = HB_SET_VALUE_INVALID;
      roots_to_isolate.previous (&root);
      roots_to_isolate.del (root);
    }
  }

  DEBUG_MSG (SUBSET_REPACK, nullptr,
             "Overflow in space %d (%d roots). Moving %d roots to space %d.",
             space,
             sorted_graph.num_roots_for_space (space),
             roots_to_isolate.get_population (),
             sorted_graph.next_space ());

  sorted_graph.isolate_subgraph (roots_to_isolate);
  sorted_graph.move_to_new_space (roots_to_isolate);

  return true;
}

static inline
bool _process_overflows (const hb_vector_t<graph_t::overflow_record_t>& overflows,
                         hb_set_t& priority_bumped_parents,
                         graph_t& sorted_graph)
{
  bool resolution_attempted = false;

  // Try resolving the furthest overflows first.
  for (int i = overflows.length - 1; i >= 0; i--)
  {
    const graph_t::overflow_record_t& r = overflows[i];
    const auto& child = sorted_graph.vertices_[r.child];
    if (child.is_shared ())
    {
      // The child object is shared, we may be able to eliminate the overflow
      // by duplicating it.
      if (!sorted_graph.duplicate (r.parent, r.child)) continue;
      return true;
    }

    if (child.is_leaf () && !priority_bumped_parents.has (r.parent))
    {
      // This object is too far from it's parent, attempt to move it closer.
      //
      // TODO(garretrieger): initially limiting this to leaf's since they can be
      //                     moved closer with fewer consequences. However, this can
      //                     likely can be used for non-leafs as well.
      // TODO(garretrieger): also try lowering priority of the parent. Make it
      //                     get placed further up in the ordering, closer to it's children.
      //                     this is probably preferable if the total size of the parent object
      //                     is < then the total size of the children (and the parent can be moved).
      //                     Since in that case moving the parent will cause a smaller increase in
      //                     the length of other offsets.
      if (sorted_graph.raise_childrens_priority (r.parent)) {
        priority_bumped_parents.add (r.parent);
        resolution_attempted = true;
      }
      continue;
    }

    // TODO(garretrieger): add additional offset resolution strategies
    // - Promotion to extension lookups.
    // - Table splitting.
  }

  return resolution_attempted;
}

/*
 * Attempts to modify the topological sorting of the provided object graph to
 * eliminate offset overflows in the links between objects of the graph. If a
 * non-overflowing ordering is found the updated graph is serialized it into the
 * provided serialization context.
 *
 * If necessary the structure of the graph may be modified in ways that do not
 * affect the functionality of the graph. For example shared objects may be
 * duplicated.
 *
 * For a detailed writeup describing how the algorithm operates see:
 * docs/repacker.md
 */
template<typename T>
inline hb_blob_t*
hb_resolve_overflows (const T& packed,
                      hb_tag_t table_tag,
                      unsigned max_rounds = 20) {
  // Kahn sort is ~twice as fast as shortest distance sort and works for many fonts
  // so try it first to save time.
  graph_t sorted_graph (packed);
  sorted_graph.sort_kahn ();
  if (!sorted_graph.will_overflow ())
  {
    return sorted_graph.serialize ();
  }

  sorted_graph.sort_shortest_distance ();

  if ((table_tag == HB_OT_TAG_GPOS
       ||  table_tag == HB_OT_TAG_GSUB)
      && sorted_graph.will_overflow ())
  {
    DEBUG_MSG (SUBSET_REPACK, nullptr, "Assigning spaces to 32 bit subgraphs.");
    if (sorted_graph.assign_32bit_spaces ())
      sorted_graph.sort_shortest_distance ();
  }

  unsigned round = 0;
  hb_vector_t<graph_t::overflow_record_t> overflows;
  // TODO(garretrieger): select a good limit for max rounds.
  while (!sorted_graph.in_error ()
         && sorted_graph.will_overflow (&overflows)
         && round++ < max_rounds) {
    DEBUG_MSG (SUBSET_REPACK, nullptr, "=== Overflow resolution round %d ===", round);
    sorted_graph.print_overflows (overflows);

    hb_set_t priority_bumped_parents;

    if (!_try_isolating_subgraphs (overflows, sorted_graph))
    {
      if (!_process_overflows (overflows, priority_bumped_parents, sorted_graph))
      {
        DEBUG_MSG (SUBSET_REPACK, nullptr, "No resolution available :(");
        break;
      }
    }

    sorted_graph.sort_shortest_distance ();
  }

  if (sorted_graph.in_error ())
  {
    DEBUG_MSG (SUBSET_REPACK, nullptr, "Sorted graph in error state.");
    return nullptr;
  }

  if (sorted_graph.will_overflow ())
  {
    DEBUG_MSG (SUBSET_REPACK, nullptr, "Offset overflow resolution failed.");
    return nullptr;
  }

  return sorted_graph.serialize ();
}

#endif /* HB_REPACKER_HH */