summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/harfbuzz-ng/src/hb-subset-instancer-solver.cc
blob: 4876bc4379749fb5d1978ac7283f817b0078466f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
 * Copyright © 2023  Behdad Esfahbod
 *
 *  This is part of HarfBuzz, a text shaping library.
 *
 * Permission is hereby granted, without written agreement and without
 * license or royalty fees, to use, copy, modify, and distribute this
 * software and its documentation for any purpose, provided that the
 * above copyright notice and the following two paragraphs appear in
 * all copies of this software.
 *
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
 * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
 * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
 * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
 */

#include "hb-subset-instancer-solver.hh"

/* This file is a straight port of the following:
 *
 * https://github.com/fonttools/fonttools/blob/f73220816264fc383b8a75f2146e8d69e455d398/Lib/fontTools/varLib/instancer/solver.py
 *
 * Where that file returns None for a triple, we return Triple{}.
 * This should be safe.
 */

constexpr static float EPSILON = 1.f / (1 << 14);
constexpr static float MAX_F2DOT14 = float (0x7FFF) / (1 << 14);

static inline Triple _reverse_negate(const Triple &v)
{ return {-v.maximum, -v.middle, -v.minimum}; }


static inline float supportScalar (float coord, const Triple &tent)
{
  /* Copied from VarRegionAxis::evaluate() */
  float start = tent.minimum, peak = tent.middle, end = tent.maximum;

  if (unlikely (start > peak || peak > end))
    return 1.;
  if (unlikely (start < 0 && end > 0 && peak != 0))
    return 1.;

  if (peak == 0 || coord == peak)
    return 1.;

  if (coord <= start || end <= coord)
    return 0.;

  /* Interpolate */
  if (coord < peak)
    return (coord - start) / (peak - start);
  else
    return  (end - coord) / (end - peak);
}

static inline result_t
_solve (Triple tent, Triple axisLimit, bool negative = false)
{
  float axisMin = axisLimit.minimum;
  float axisDef = axisLimit.middle;
  float axisMax = axisLimit.maximum;
  float lower = tent.minimum;
  float peak  = tent.middle;
  float upper = tent.maximum;

  // Mirror the problem such that axisDef <= peak
  if (axisDef > peak)
  {
    result_t vec = _solve (_reverse_negate (tent),
			   _reverse_negate (axisLimit),
			   !negative);

    for (auto &p : vec)
      p = hb_pair (p.first, _reverse_negate (p.second));

    return vec;
  }
  // axisDef <= peak

  /* case 1: The whole deltaset falls outside the new limit; we can drop it
   *
   *                                          peak
   *  1.........................................o..........
   *                                           / \
   *                                          /   \
   *                                         /     \
   *                                        /       \
   *  0---|-----------|----------|-------- o         o----1
   *    axisMin     axisDef    axisMax   lower     upper
   */
  if (axisMax <= lower && axisMax < peak)
      return result_t{};  // No overlap

  /* case 2: Only the peak and outermost bound fall outside the new limit;
   * we keep the deltaset, update peak and outermost bound and scale deltas
   * by the scalar value for the restricted axis at the new limit, and solve
   * recursively.
   *
   *                                  |peak
   *  1...............................|.o..........
   *                                  |/ \
   *                                  /   \
   *                                 /|    \
   *                                / |     \
   *  0--------------------------- o  |      o----1
   *                           lower  |      upper
   *                                  |
   *                                axisMax
   *
   * Convert to:
   *
   *  1............................................
   *                                  |
   *                                  o peak
   *                                 /|
   *                                /x|
   *  0--------------------------- o  o upper ----1
   *                           lower  |
   *                                  |
   *                                axisMax
   */
  if (axisMax < peak)
  {
    float mult = supportScalar (axisMax, tent);
    tent = Triple{lower, axisMax, axisMax};

    result_t vec = _solve (tent, axisLimit);

    for (auto &p : vec)
      p = hb_pair (p.first * mult, p.second);

    return vec;
  }

  // lower <= axisDef <= peak <= axisMax

  float gain = supportScalar (axisDef, tent);
  result_t out {hb_pair (gain, Triple{})};

  // First, the positive side

  // outGain is the scalar of axisMax at the tent.
  float outGain = supportScalar (axisMax, tent);

  /* Case 3a: Gain is more than outGain. The tent down-slope crosses
   * the axis into negative. We have to split it into multiples.
   *
   *                      | peak  |
   *  1...................|.o.....|..............
   *                      |/x\_   |
   *  gain................+....+_.|..............
   *                     /|    |y\|
   *  ................../.|....|..+_......outGain
   *                   /  |    |  | \
   *  0---|-----------o   |    |  |  o----------1
   *    axisMin    lower  |    |  |   upper
   *                      |    |  |
   *                axisDef    |  axisMax
   *                           |
   *                      crossing
   */
  if (gain >= outGain)
  {
    // Note that this is the branch taken if both gain and outGain are 0.

    // Crossing point on the axis.
    float crossing = peak + (1 - gain) * (upper - peak);

    Triple loc{hb_max (lower, axisDef), peak, crossing};
    float scalar = 1.f;

    // The part before the crossing point.
    out.push (hb_pair (scalar - gain, loc));

    /* The part after the crossing point may use one or two tents,
     * depending on whether upper is before axisMax or not, in one
     * case we need to keep it down to eternity.
     *
     * Case 3a1, similar to case 1neg; just one tent needed, as in
     * the drawing above.
     */
    if (upper >= axisMax)
    {
      Triple loc {crossing, axisMax, axisMax};
      float scalar = outGain;

      out.push (hb_pair (scalar - gain, loc));
    }

    /* Case 3a2: Similar to case 2neg; two tents needed, to keep
     * down to eternity.
     *
     *                      | peak             |
     *  1...................|.o................|...
     *                      |/ \_              |
     *  gain................+....+_............|...
     *                     /|    | \xxxxxxxxxxy|
     *                    / |    |  \_xxxxxyyyy|
     *                   /  |    |    \xxyyyyyy|
     *  0---|-----------o   |    |     o-------|--1
     *    axisMin    lower  |    |      upper  |
     *                      |    |             |
     *                axisDef    |             axisMax
     *                           |
     *                      crossing
     */
    else
    {
      // A tent's peak cannot fall on axis default. Nudge it.
      if (upper == axisDef)
	upper += EPSILON;

      // Downslope.
      Triple loc1 {crossing, upper, axisMax};
      float scalar1 = 0.f;

      // Eternity justify.
      Triple loc2 {upper, axisMax, axisMax};
      float scalar2 = 0.f;

      out.push (hb_pair (scalar1 - gain, loc1));
      out.push (hb_pair (scalar2 - gain, loc2));
    }
  }

  else
  {
    // Special-case if peak is at axisMax.
    if (axisMax == peak)
	upper = peak;

    /* Case 3:
     * we keep deltas as is and only scale the axis upper to achieve
     * the desired new tent if feasible.
     *
     *                        peak
     *  1.....................o....................
     *                       / \_|
     *  ..................../....+_.........outGain
     *                     /     | \
     *  gain..............+......|..+_.............
     *                   /|      |  | \
     *  0---|-----------o |      |  |  o----------1
     *    axisMin    lower|      |  |   upper
     *                    |      |  newUpper
     *              axisDef      axisMax
     */
    float newUpper = peak + (1 - gain) * (upper - peak);
    assert (axisMax <= newUpper);  // Because outGain > gain
    if (newUpper <= axisDef + (axisMax - axisDef) * 2)
    {
      upper = newUpper;
      if (!negative && axisDef + (axisMax - axisDef) * MAX_F2DOT14 < upper)
      {
	// we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience
	upper = axisDef + (axisMax - axisDef) * MAX_F2DOT14;
	assert (peak < upper);
      }

      Triple loc {hb_max (axisDef, lower), peak, upper};
      float scalar = 1.f;

      out.push (hb_pair (scalar - gain, loc));
    }

    /* Case 4: New limit doesn't fit; we need to chop into two tents,
     * because the shape of a triangle with part of one side cut off
     * cannot be represented as a triangle itself.
     *
     *            |   peak |
     *  1.........|......o.|....................
     *  ..........|...../x\|.............outGain
     *            |    |xxy|\_
     *            |   /xxxy|  \_
     *            |  |xxxxy|    \_
     *            |  /xxxxy|      \_
     *  0---|-----|-oxxxxxx|        o----------1
     *    axisMin | lower  |        upper
     *            |        |
     *          axisDef  axisMax
     */
    else
    {
      Triple loc1 {hb_max (axisDef, lower), peak, axisMax};
      float scalar1 = 1.f;

      Triple loc2 {peak, axisMax, axisMax};
      float scalar2 = outGain;

      out.push (hb_pair (scalar1 - gain, loc1));
      // Don't add a dirac delta!
      if (peak < axisMax)
	out.push (hb_pair (scalar2 - gain, loc2));
    }
  }

  /* Now, the negative side
   *
   * Case 1neg: Lower extends beyond axisMin: we chop. Simple.
   *
   *                     |   |peak
   *  1..................|...|.o.................
   *                     |   |/ \
   *  gain...............|...+...\...............
   *                     |x_/|    \
   *                     |/  |     \
   *                   _/|   |      \
   *  0---------------o  |   |       o----------1
   *              lower  |   |       upper
   *                     |   |
   *               axisMin   axisDef
   */
  if (lower <= axisMin)
  {
    Triple loc {axisMin, axisMin, axisDef};
    float scalar = supportScalar (axisMin, tent);

    out.push (hb_pair (scalar - gain, loc));
  }

  /* Case 2neg: Lower is betwen axisMin and axisDef: we add two
   * tents to keep it down all the way to eternity.
   *
   *      |               |peak
   *  1...|...............|.o.................
   *      |               |/ \
   *  gain|...............+...\...............
   *      |yxxxxxxxxxxxxx/|    \
   *      |yyyyyyxxxxxxx/ |     \
   *      |yyyyyyyyyyyx/  |      \
   *  0---|-----------o   |       o----------1
   *    axisMin    lower  |       upper
   *                      |
   *                    axisDef
   */
  else
  {
    // A tent's peak cannot fall on axis default. Nudge it.
    if (lower == axisDef)
      lower -= EPSILON;

    // Downslope.
    Triple loc1 {axisMin, lower, axisDef};
    float scalar1 = 0.f;

    // Eternity justify.
    Triple loc2 {axisMin, axisMin, lower};
    float scalar2 = 0.f;

    out.push (hb_pair (scalar1 - gain, loc1));
    out.push (hb_pair (scalar2 - gain, loc2));
  }

  return out;
}

static inline TripleDistances _reverse_triple_distances (const TripleDistances &v)
{ return TripleDistances (v.positive, v.negative); }

float renormalizeValue (float v, const Triple &triple,
                        const TripleDistances &triple_distances, bool extrapolate)
{
  float lower = triple.minimum, def = triple.middle, upper = triple.maximum;
  assert (lower <= def && def <= upper);

  if (!extrapolate)
      v = hb_max (hb_min (v, upper), lower);

  if (v == def)
    return 0.f;

  if (def < 0.f)
    return -renormalizeValue (-v, _reverse_negate (triple),
                              _reverse_triple_distances (triple_distances), extrapolate);

  /* default >= 0 and v != default */
  if (v > def)
    return (v - def) / (upper - def);

  /* v < def */
  if (lower >= 0.f)
    return (v - def) / (def - lower);

  /* lower < 0 and v < default */
  float total_distance = triple_distances.negative * (-lower) + triple_distances.positive * def;

  float v_distance;
  if (v >= 0.f)
    v_distance = (def - v) * triple_distances.positive;
  else
    v_distance = (-v) * triple_distances.negative + triple_distances.positive * def;

  return (-v_distance) /total_distance;
}

result_t
rebase_tent (Triple tent, Triple axisLimit, TripleDistances axis_triple_distances)
{
  assert (-1.f <= axisLimit.minimum && axisLimit.minimum <= axisLimit.middle && axisLimit.middle <= axisLimit.maximum && axisLimit.maximum <= +1.f);
  assert (-2.f <= tent.minimum && tent.minimum <= tent.middle && tent.middle <= tent.maximum && tent.maximum <= +2.f);
  assert (tent.middle != 0.f);

  result_t sols = _solve (tent, axisLimit);

  auto n = [&axisLimit, &axis_triple_distances] (float v) { return renormalizeValue (v, axisLimit, axis_triple_distances); };

  result_t out;
  for (auto &p : sols)
  {
    if (!p.first) continue;
    if (p.second == Triple{})
    {
      out.push (p);
      continue;
    }
    Triple t = p.second;
    out.push (hb_pair (p.first,
		       Triple{n (t.minimum), n (t.middle), n (t.maximum)}));
  }

  return out;
}