summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/pcre2/src/sljit/sljitNativePPC_32.c
blob: 2352fad5d47a1e36b60c15744111266907607000 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* ppc 32-bit arch dependent functions. */

static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
{
	if (imm <= SIMM_MAX && imm >= SIMM_MIN)
		return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));

	if (!(imm & ~0xffff))
		return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));

	FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
	return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
}

/* Simplified mnemonics: clrlwi. */
#define INS_CLEAR_LEFT(dst, src, from) \
	(RLWINM | S(src) | A(dst) | RLWI_MBE(from, 31))

static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
	sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
{
	sljit_u32 imm;

	switch (op) {
	case SLJIT_MOV:
	case SLJIT_MOV_U32:
	case SLJIT_MOV_S32:
	case SLJIT_MOV_P:
		SLJIT_ASSERT(src1 == TMP_REG1);
		if (dst != src2)
			return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
		return SLJIT_SUCCESS;

	case SLJIT_MOV_U8:
	case SLJIT_MOV_S8:
		SLJIT_ASSERT(src1 == TMP_REG1);
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S8)
				return push_inst(compiler, EXTSB | S(src2) | A(dst));
			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
		}
		else if ((flags & REG_DEST) && op == SLJIT_MOV_S8)
			return push_inst(compiler, EXTSB | S(src2) | A(dst));
		else {
			SLJIT_ASSERT(dst == src2);
		}
		return SLJIT_SUCCESS;

	case SLJIT_MOV_U16:
	case SLJIT_MOV_S16:
		SLJIT_ASSERT(src1 == TMP_REG1);
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S16)
				return push_inst(compiler, EXTSH | S(src2) | A(dst));
			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
		}
		else {
			SLJIT_ASSERT(dst == src2);
		}
		return SLJIT_SUCCESS;

	case SLJIT_CLZ:
		SLJIT_ASSERT(src1 == TMP_REG1);
		return push_inst(compiler, CNTLZW | S(src2) | A(dst));

	case SLJIT_CTZ:
		SLJIT_ASSERT(src1 == TMP_REG1);
		FAIL_IF(push_inst(compiler, NEG | D(TMP_REG1) | A(src2)));
		FAIL_IF(push_inst(compiler, AND | S(src2) | A(dst) | B(TMP_REG1)));
		FAIL_IF(push_inst(compiler, CNTLZW | S(dst) | A(dst)));
		FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG1) | A(dst) | IMM(-32)));
		/* The highest bits are set, if dst < 32, zero otherwise. */
		FAIL_IF(push_inst(compiler, SRWI(27) | S(TMP_REG1) | A(TMP_REG1)));
		return push_inst(compiler, XOR | S(dst) | A(dst) | B(TMP_REG1));

	case SLJIT_ADD:
		if (flags & ALT_FORM1) {
			/* Setting XER SO is not enough, CR SO is also needed. */
			return push_inst(compiler, ADD | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
		}

		if (flags & ALT_FORM2) {
			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
			SLJIT_ASSERT(src2 == TMP_REG2);

			if (flags & ALT_FORM3)
				return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);

			imm = compiler->imm;

			if (flags & ALT_FORM4) {
				FAIL_IF(push_inst(compiler, ADDIS | D(dst) | A(src1) | (((imm >> 16) & 0xffff) + ((imm >> 15) & 0x1))));
				src1 = dst;
			}

			return push_inst(compiler, ADDI | D(dst) | A(src1) | (imm & 0xffff));
		}
		if (flags & ALT_FORM3) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
		}
		SLJIT_ASSERT(!(flags & ALT_FORM4));
		if (!(flags & ALT_SET_FLAGS))
			return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
		if (flags & ALT_FORM5)
			return push_inst(compiler, ADDC | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
		return push_inst(compiler, ADD | RC(flags) | D(dst) | A(src1) | B(src2));

	case SLJIT_ADDC:
		return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));

	case SLJIT_SUB:
		if (flags & ALT_FORM1) {
			if (flags & ALT_FORM2) {
				FAIL_IF(push_inst(compiler, CMPLI | CRD(0) | A(src1) | compiler->imm));
				if (!(flags & ALT_FORM3))
					return SLJIT_SUCCESS;
				return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
			}
			FAIL_IF(push_inst(compiler, CMPL | CRD(0) | A(src1) | B(src2)));
			if (!(flags & ALT_FORM3))
				return SLJIT_SUCCESS;
			return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
		}

		if (flags & ALT_FORM2) {
			if (flags & ALT_FORM3) {
				FAIL_IF(push_inst(compiler, CMPI | CRD(0) | A(src1) | compiler->imm));
				if (!(flags & ALT_FORM4))
					return SLJIT_SUCCESS;
				return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
			}
			FAIL_IF(push_inst(compiler, CMP | CRD(0) | A(src1) | B(src2)));
			if (!(flags & ALT_FORM4))
				return SLJIT_SUCCESS;
			return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
		}

		if (flags & ALT_FORM3) {
			/* Setting XER SO is not enough, CR SO is also needed. */
			if (src1 != TMP_ZERO)
				return push_inst(compiler, SUBF | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
			return push_inst(compiler, NEG | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2));
		}

		if (flags & ALT_FORM4) {
			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
		}

		if (!(flags & ALT_SET_FLAGS)) {
			SLJIT_ASSERT(src1 != TMP_ZERO);
			return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
		}

		if (flags & ALT_FORM5)
			return push_inst(compiler, SUBFC | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));

		if (src1 != TMP_ZERO)
			return push_inst(compiler, SUBF | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
		return push_inst(compiler, NEG | RC(ALT_SET_FLAGS) | D(dst) | A(src2));

	case SLJIT_SUBC:
		return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));

	case SLJIT_MUL:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
		}
		return push_inst(compiler, MULLW | OE(flags) | RC(flags) | D(dst) | A(src2) | B(src1));

	case SLJIT_AND:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
		}
		if (flags & ALT_FORM2) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
		}
		return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));

	case SLJIT_OR:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
		}
		if (flags & ALT_FORM2) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
		}
		if (flags & ALT_FORM3) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			imm = compiler->imm;

			FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(imm)));
			return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(imm >> 16));
		}
		return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));

	case SLJIT_XOR:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
		}
		if (flags & ALT_FORM2) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
		}
		if (flags & ALT_FORM3) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			imm = compiler->imm;

			FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(imm)));
			return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(imm >> 16));
		}
		if (flags & ALT_FORM4) {
			SLJIT_ASSERT(src1 == TMP_REG1);
			return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
		}
		return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));

	case SLJIT_SHL:
	case SLJIT_MSHL:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			imm = compiler->imm & 0x1f;
			return push_inst(compiler, SLWI(imm) | RC(flags) | S(src1) | A(dst));
		}

		if (op == SLJIT_MSHL) {
			FAIL_IF(push_inst(compiler, ANDI | S(src2) | A(TMP_REG2) | 0x1f));
			src2 = TMP_REG2;
		}

		return push_inst(compiler, SLW | RC(flags) | S(src1) | A(dst) | B(src2));

	case SLJIT_LSHR:
	case SLJIT_MLSHR:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			imm = compiler->imm & 0x1f;
			/* Since imm can be 0, SRWI() cannot be used. */
			return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | RLWI_SH((32 - imm) & 0x1f) | RLWI_MBE(imm, 31));
		}

		if (op == SLJIT_MLSHR) {
			FAIL_IF(push_inst(compiler, ANDI | S(src2) | A(TMP_REG2) | 0x1f));
			src2 = TMP_REG2;
		}

		return push_inst(compiler, SRW | RC(flags) | S(src1) | A(dst) | B(src2));

	case SLJIT_ASHR:
	case SLJIT_MASHR:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			imm = compiler->imm & 0x1f;
			return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (imm << 11));
		}

		if (op == SLJIT_MASHR) {
			FAIL_IF(push_inst(compiler, ANDI | S(src2) | A(TMP_REG2) | 0x1f));
			src2 = TMP_REG2;
		}

		return push_inst(compiler, SRAW | RC(flags) | S(src1) | A(dst) | B(src2));

	case SLJIT_ROTL:
	case SLJIT_ROTR:
		if (flags & ALT_FORM1) {
			SLJIT_ASSERT(src2 == TMP_REG2);
			imm = compiler->imm;

			if (op == SLJIT_ROTR)
				imm = (sljit_u32)(-(sljit_s32)imm);

			imm &= 0x1f;
			return push_inst(compiler, RLWINM | S(src1) | A(dst) | RLWI_SH(imm) | RLWI_MBE(0, 31));
		}

		if (op == SLJIT_ROTR) {
			FAIL_IF(push_inst(compiler, SUBFIC | D(TMP_REG2) | A(src2) | 0));
			src2 = TMP_REG2;
		}

		return push_inst(compiler, RLWNM | S(src1) | A(dst) | B(src2) | RLWI_MBE(0, 31));
	}

	SLJIT_UNREACHABLE();
	return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value)
{
	FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 16)));
	return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
}

static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
	sljit_s32 invert_sign = 1;

	if (src == SLJIT_IMM) {
		FAIL_IF(load_immediate(compiler, TMP_REG1, srcw ^ (sljit_sw)0x80000000));
		src = TMP_REG1;
		invert_sign = 0;
	} else if (!FAST_IS_REG(src)) {
		FAIL_IF(emit_op_mem(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1));
		src = TMP_REG1;
	}

	/* First, a special double precision floating point value is constructed:
	      (2^53 + (src xor (2^31)))
	   The upper 32 bits of this number is a constant, and the lower 32 bits
	   is simply the value of the source argument. The xor 2^31 operation adds
	   0x80000000 to the source argument, which moves it into the 0 - 0xffffffff
	   range. Finally we substract 2^53 + 2^31 to get the converted value. */
	FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330));
	if (invert_sign)
		FAIL_IF(push_inst(compiler, XORIS | S(src) | A(TMP_REG1) | 0x8000));
	FAIL_IF(push_inst(compiler, STW | S(TMP_REG2) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI));
	FAIL_IF(push_inst(compiler, STW | S(TMP_REG1) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
	FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG1) | A(0) | 0x8000));
	FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG1) | A(SLJIT_SP) | TMP_MEM_OFFSET));
	FAIL_IF(push_inst(compiler, STW | S(TMP_REG1) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
	FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG2) | A(SLJIT_SP) | TMP_MEM_OFFSET));

	FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2)));

	if (op & SLJIT_32)
		FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r)));

	if (dst & SLJIT_MEM)
		return emit_op_mem(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, TMP_REG1);
	return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_uw(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;

	if (src == SLJIT_IMM) {
		FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
		src = TMP_REG1;
	} else if (!FAST_IS_REG(src)) {
		FAIL_IF(emit_op_mem(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1));
		src = TMP_REG1;
	}

	/* First, a special double precision floating point value is constructed:
	      (2^53 + src)
	   The upper 32 bits of this number is a constant, and the lower 32 bits
	   is simply the value of the source argument. Finally we substract 2^53
	   to get the converted value. */
	FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330));
	FAIL_IF(push_inst(compiler, STW | S(src) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
	FAIL_IF(push_inst(compiler, STW | S(TMP_REG2) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI));

	FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG1) | A(SLJIT_SP) | TMP_MEM_OFFSET));
	FAIL_IF(push_inst(compiler, STW | S(TMP_ZERO) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
	FAIL_IF(push_inst(compiler, LFD | FS(TMP_FREG2) | A(SLJIT_SP) | TMP_MEM_OFFSET));

	FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2)));

	if (op & SLJIT_32)
		FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r)));

	if (dst & SLJIT_MEM)
		return emit_op_mem(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, TMP_REG1);
	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler,
	sljit_s32 freg, sljit_f64 value)
{
	union {
		sljit_s32 imm[2];
		sljit_f64 value;
	} u;

	CHECK_ERROR();
	CHECK(check_sljit_emit_fset64(compiler, freg, value));

	u.value = value;

	if (u.imm[0] != 0)
		FAIL_IF(load_immediate(compiler, TMP_REG1, u.imm[0]));
	if (u.imm[1] != 0)
		FAIL_IF(load_immediate(compiler, TMP_REG2, u.imm[1]));

	/* Saved in the same endianness. */
	FAIL_IF(push_inst(compiler, STW | S(u.imm[0] != 0 ? TMP_REG1 : TMP_ZERO) | A(SLJIT_SP) | TMP_MEM_OFFSET));
	FAIL_IF(push_inst(compiler, STW | S(u.imm[1] != 0 ? TMP_REG2 : TMP_ZERO) | A(SLJIT_SP) | (TMP_MEM_OFFSET + sizeof(sljit_s32))));
	return push_inst(compiler, LFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 freg, sljit_s32 reg)
{
	sljit_s32 reg2 = 0;

	CHECK_ERROR();
	CHECK(check_sljit_emit_fcopy(compiler, op, freg, reg));

	if (op & SLJIT_32) {
		if (op == SLJIT_COPY32_TO_F32) {
			FAIL_IF(push_inst(compiler, STW | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET));
			return push_inst(compiler, LFS | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
		}

		FAIL_IF(push_inst(compiler, STFS | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET));
		return push_inst(compiler, LWZ | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
	}

	if (reg & REG_PAIR_MASK) {
		reg2 = REG_PAIR_SECOND(reg);
		reg = REG_PAIR_FIRST(reg);
	}

	if (op == SLJIT_COPY_TO_F64) {
		FAIL_IF(push_inst(compiler, STW | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI));

		if (reg2 != 0)
			FAIL_IF(push_inst(compiler, STW | S(reg2) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));
		else
			FAIL_IF(push_inst(compiler, STFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));

		return push_inst(compiler, LFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET);
	}

	FAIL_IF(push_inst(compiler, STFD | FS(freg) | A(SLJIT_SP) | TMP_MEM_OFFSET));

	if (reg2 != 0)
		FAIL_IF(push_inst(compiler, LWZ | S(reg2) | A(SLJIT_SP) | TMP_MEM_OFFSET_LO));

	return push_inst(compiler, LWZ | S(reg) | A(SLJIT_SP) | TMP_MEM_OFFSET_HI);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
	sljit_ins *inst = (sljit_ins *)addr;
	SLJIT_UNUSED_ARG(executable_offset);

	SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 0);
	SLJIT_ASSERT((inst[0] & 0xfc1f0000) == ADDIS && (inst[1] & 0xfc000000) == ORI);
	inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 16) & 0xffff);
	inst[1] = (inst[1] & 0xffff0000) | (new_target & 0xffff);
	SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 1);
	inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
	SLJIT_CACHE_FLUSH(inst, inst + 2);
}