summaryrefslogtreecommitdiffstats
path: root/src/corelib/global/qnumeric_p.h
blob: f5beb4d38def35684d9ce60127f10e2d7f0a05c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright (C) 2020 The Qt Company Ltd.
// Copyright (C) 2021 Intel Corporation.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only

#ifndef QNUMERIC_P_H
#define QNUMERIC_P_H

//
//  W A R N I N G
//  -------------
//
// This file is not part of the Qt API.  It exists purely as an
// implementation detail.  This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//

#include "QtCore/private/qglobal_p.h"
#include "QtCore/qnumeric.h"
#include "QtCore/qsimd.h"
#include <cmath>
#include <limits>
#include <type_traits>

#if !defined(Q_CC_MSVC) && defined(Q_OS_QNX)
#  include <math.h>
#  ifdef isnan
#    define QT_MATH_H_DEFINES_MACROS
QT_BEGIN_NAMESPACE
namespace qnumeric_std_wrapper {
// the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros.
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); }
}
QT_END_NAMESPACE
// These macros from math.h conflict with the real functions in the std namespace.
#    undef signbit
#    undef isnan
#    undef isinf
#    undef isfinite
#    undef fpclassify
#  endif // defined(isnan)
#endif

QT_BEGIN_NAMESPACE

namespace qnumeric_std_wrapper {
#if defined(QT_MATH_H_DEFINES_MACROS)
#  undef QT_MATH_H_DEFINES_MACROS
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); }
#else
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(f); }
#endif
}

constexpr Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept
{
    static_assert(std::numeric_limits<double>::has_infinity,
                  "platform has no definition for infinity for type double");
    return std::numeric_limits<double>::infinity();
}

#if QT_CONFIG(signaling_nan)
constexpr Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept
{
    static_assert(std::numeric_limits<double>::has_signaling_NaN,
                  "platform has no definition for signaling NaN for type double");
    return std::numeric_limits<double>::signaling_NaN();
}
#endif

// Quiet NaN
constexpr Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept
{
    static_assert(std::numeric_limits<double>::has_quiet_NaN,
                  "platform has no definition for quiet NaN for type double");
    return std::numeric_limits<double>::quiet_NaN();
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d)
{
    return qnumeric_std_wrapper::isinf(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d)
{
    return qnumeric_std_wrapper::isnan(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d)
{
    return qnumeric_std_wrapper::isfinite(d);
}

Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d)
{
    return qnumeric_std_wrapper::fpclassify(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f)
{
    return qnumeric_std_wrapper::isinf(f);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f)
{
    return qnumeric_std_wrapper::isnan(f);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f)
{
    return qnumeric_std_wrapper::isfinite(f);
}

Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f)
{
    return qnumeric_std_wrapper::fpclassify(f);
}

#ifndef Q_CLANG_QDOC
namespace {
/*!
    Returns true if the double \a v can be converted to type \c T, false if
    it's out of range. If the conversion is successful, the converted value is
    stored in \a value; if it was not successful, \a value will contain the
    minimum or maximum of T, depending on the sign of \a d. If \c T is
    unsigned, then \a value contains the absolute value of \a v.

    This function works for v containing infinities, but not NaN. It's the
    caller's responsibility to exclude that possibility before calling it.
*/
template<typename T>
static inline bool convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true)
{
    static_assert(std::numeric_limits<T>::is_integer);
    static_assert(std::is_integral_v<T>);
    constexpr bool TypeIsLarger = std::numeric_limits<T>::digits > std::numeric_limits<double>::digits;

    if constexpr (TypeIsLarger) {
        using S = std::make_signed_t<T>;
        constexpr S max_mantissa = S(1) << std::numeric_limits<double>::digits;
        // T has more bits than double's mantissa, so don't allow "upgrading"
        // to T (makes it look like the number had more precision than really
        // was transmitted)
        if (!allow_precision_upgrade && !(v <= double(max_mantissa) && v >= double(-max_mantissa - 1)))
            return false;
    }

    constexpr T Tmin = (std::numeric_limits<T>::min)();
    constexpr T Tmax = (std::numeric_limits<T>::max)();

    // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++
    // standard says only exact conversions are guaranteed. Converting
    // integrals to floating-point with loss of precision has implementation-
    // defined behavior whether the next higher or next lower is returned;
    // converting FP to integral is UB if it can't be represented.
    //
    // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be
    // correct, but Clang, ICC and MSVC don't realize that it's a constant and
    // the math call stays in the compiled code.

#ifdef Q_PROCESSOR_X86_64
    // Of course, UB doesn't apply if we use intrinsics, in which case we are
    // allowed to dpeend on exactly the processor's behavior. This
    // implementation uses the truncating conversions from Scalar Double to
    // integral types (CVTTSD2SI and VCVTTSD2USI), which is documented to
    // return the "indefinite integer value" if the range of the target type is
    // exceeded. (only implemented for x86-64 to avoid having to deal with the
    // non-existence of the 64-bit intrinsics on i386)

    if (std::numeric_limits<T>::is_signed) {
        __m128d mv = _mm_set_sd(v);
#  ifdef __AVX512F__
        // use explicit round control and suppress exceptions
        if (sizeof(T) > 4)
            *value = T(_mm_cvtt_roundsd_i64(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
        else
            *value = _mm_cvtt_roundsd_i32(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
#  else
        *value = sizeof(T) > 4 ? T(_mm_cvttsd_si64(mv)) : _mm_cvttsd_si32(mv);
#  endif

        // if *value is the "indefinite integer value", check if the original
        // variable \a v is the same value (Tmin is an exact representation)
        if (*value == Tmin && !_mm_ucomieq_sd(mv, _mm_set_sd(Tmin))) {
            // v != Tmin, so it was out of range
            if (v > 0)
                *value = Tmax;
            return false;
        }

        // convert the integer back to double and compare for equality with v,
        // to determine if we've lost any precision
        __m128d mi = _mm_setzero_pd();
        mi = sizeof(T) > 4 ? _mm_cvtsi64_sd(mv, *value) : _mm_cvtsi32_sd(mv, *value);
        return _mm_ucomieq_sd(mv, mi);
    }

#  ifdef __AVX512F__
    if (!std::numeric_limits<T>::is_signed) {
        // Same thing as above, but this function operates on absolute values
        // and the "indefinite integer value" for the 64-bit unsigned
        // conversion (Tmax) is not representable in double, so it can never be
        // the result of an in-range conversion. This is implemented for AVX512
        // and later because of the unsigned conversion instruction. Converting
        // to unsigned without losing an extra bit of precision prior to AVX512
        // is left to the compiler below.

        v = fabs(v);
        __m128d mv = _mm_set_sd(v);

        // use explicit round control and suppress exceptions
        if (sizeof(T) > 4)
            *value = T(_mm_cvtt_roundsd_u64(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
        else
            *value = _mm_cvtt_roundsd_u32(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);

        if (*value == Tmax) {
            // no double can have an exact value of quint64(-1), but they can
            // quint32(-1), so we need to compare for that
            if (TypeIsLarger || _mm_ucomieq_sd(mv, _mm_set_sd(Tmax)))
                return false;
        }

        // return true if it was an exact conversion
        __m128d mi = _mm_setzero_pd();
        mi = sizeof(T) > 4 ? _mm_cvtu64_sd(mv, *value) : _mm_cvtu32_sd(mv, *value);
        return _mm_ucomieq_sd(mv, mi);
    }
#  endif
#endif

    double supremum;
    if (std::numeric_limits<T>::is_signed) {
        supremum = -1.0 * Tmin;     // -1 * (-2^63) = 2^63, exact (for T = qint64)
        *value = Tmin;
        if (v < Tmin)
            return false;
    } else {
        using ST = typename std::make_signed<T>::type;
        supremum = -2.0 * (std::numeric_limits<ST>::min)();   // -2 * (-2^63) = 2^64, exact (for T = quint64)
        v = fabs(v);
    }

    *value = Tmax;
    if (v >= supremum)
        return false;

    // Now we can convert, these two conversions cannot be UB
    *value = T(v);

QT_WARNING_PUSH
QT_WARNING_DISABLE_FLOAT_COMPARE

    return *value == v;

QT_WARNING_POP
}

template <typename T> inline bool add_overflow(T v1, T v2, T *r) { return qAddOverflow(v1, v2, r); }
template <typename T> inline bool sub_overflow(T v1, T v2, T *r) { return qSubOverflow(v1, v2, r); }
template <typename T> inline bool mul_overflow(T v1, T v2, T *r) { return qMulOverflow(v1, v2, r); }

template <typename T, T V2> bool add_overflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qAddOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
}

template <auto V2, typename T> bool add_overflow(T v1, T *r)
{
    return qAddOverflow<V2, T>(v1, r);
}

template <typename T, T V2> bool sub_overflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qSubOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
}

template <auto V2, typename T> bool sub_overflow(T v1, T *r)
{
    return qSubOverflow<V2, T>(v1, r);
}

template <typename T, T V2> bool mul_overflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qMulOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
}

template <auto V2, typename T> bool mul_overflow(T v1, T *r)
{
    return qMulOverflow<V2, T>(v1, r);
}
}
#endif // Q_CLANG_QDOC

/*
    Safely narrows \a x to \c{To}. Let \c L be
    \c{std::numeric_limit<To>::min()} and \c H be \c{std::numeric_limit<To>::max()}.

    If \a x is less than L, returns L. If \a x is greater than H,
    returns H. Otherwise, returns \c{To(x)}.
*/
template <typename To, typename From>
static constexpr auto qt_saturate(From x)
{
    static_assert(std::is_integral_v<To>);
    static_assert(std::is_integral_v<From>);

    [[maybe_unused]]
    constexpr auto Lo = (std::numeric_limits<To>::min)();
    constexpr auto Hi = (std::numeric_limits<To>::max)();

    if constexpr (std::is_signed_v<From> == std::is_signed_v<To>) {
        // same signedness, we can accept regular integer conversion rules
        return x < Lo  ? Lo :
               x > Hi  ? Hi :
               /*else*/  To(x);
    } else {
        if constexpr (std::is_signed_v<From>) { // ie. !is_signed_v<To>
            if (x < From{0})
                return To{0};
        }

        // from here on, x >= 0
        using FromU = std::make_unsigned_t<From>;
        using ToU = std::make_unsigned_t<To>;
        return FromU(x) > ToU(Hi) ? Hi : To(x); // assumes Hi >= 0
    }
}

QT_END_NAMESPACE

#endif // QNUMERIC_P_H