summaryrefslogtreecommitdiffstats
path: root/src/corelib/global/qnumeric_p.h
blob: 823a1812de6eb81ca690c2a3fa0133235a8c144d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/****************************************************************************
**
** Copyright (C) 2020 The Qt Company Ltd.
** Copyright (C) 2020 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#ifndef QNUMERIC_P_H
#define QNUMERIC_P_H

//
//  W A R N I N G
//  -------------
//
// This file is not part of the Qt API.  It exists purely as an
// implementation detail.  This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//

#include "QtCore/private/qglobal_p.h"
#include "QtCore/qnumeric.h"
#include <cmath>
#include <limits>
#include <type_traits>

#if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL))
#  include <math.h>
#  ifdef isnan
#    define QT_MATH_H_DEFINES_MACROS
QT_BEGIN_NAMESPACE
namespace qnumeric_std_wrapper {
// the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros.
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); }
}
QT_END_NAMESPACE
// These macros from math.h conflict with the real functions in the std namespace.
#    undef signbit
#    undef isnan
#    undef isinf
#    undef isfinite
#    undef fpclassify
#  endif // defined(isnan)
#endif

QT_BEGIN_NAMESPACE

namespace qnumeric_std_wrapper {
#if defined(QT_MATH_H_DEFINES_MACROS)
#  undef QT_MATH_H_DEFINES_MACROS
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); }
#else
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(d); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(f); }
Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(f); }
#endif
}

constexpr Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept
{
    static_assert(std::numeric_limits<double>::has_infinity,
                  "platform has no definition for infinity for type double");
    return std::numeric_limits<double>::infinity();
}

#if QT_CONFIG(signaling_nan)
constexpr Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept
{
    static_assert(std::numeric_limits<double>::has_signaling_NaN,
                  "platform has no definition for signaling NaN for type double");
    return std::numeric_limits<double>::signaling_NaN();
}
#endif

// Quiet NaN
constexpr Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept
{
    static_assert(std::numeric_limits<double>::has_quiet_NaN,
                  "platform has no definition for quiet NaN for type double");
    return std::numeric_limits<double>::quiet_NaN();
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d)
{
    return qnumeric_std_wrapper::isinf(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d)
{
    return qnumeric_std_wrapper::isnan(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d)
{
    return qnumeric_std_wrapper::isfinite(d);
}

Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d)
{
    return qnumeric_std_wrapper::fpclassify(d);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f)
{
    return qnumeric_std_wrapper::isinf(f);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f)
{
    return qnumeric_std_wrapper::isnan(f);
}

Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f)
{
    return qnumeric_std_wrapper::isfinite(f);
}

Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f)
{
    return qnumeric_std_wrapper::fpclassify(f);
}

#ifndef Q_CLANG_QDOC
namespace {
/*!
    Returns true if the double \a v can be converted to type \c T, false if
    it's out of range. If the conversion is successful, the converted value is
    stored in \a value; if it was not successful, \a value will contain the
    minimum or maximum of T, depending on the sign of \a d. If \c T is
    unsigned, then \a value contains the absolute value of \a v.

    This function works for v containing infinities, but not NaN. It's the
    caller's responsibility to exclude that possibility before calling it.
*/
template<typename T>
static inline bool convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true)
{
    static_assert(std::numeric_limits<T>::is_integer);

    // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++
    // standard says only exact conversions are guaranteed. Converting
    // integrals to floating-point with loss of precision has implementation-
    // defined behavior whether the next higher or next lower is returned;
    // converting FP to integral is UB if it can't be represented.
    //
    // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be
    // correct, but Clang, ICC and MSVC don't realize that it's a constant and
    // the math call stays in the compiled code.

    double supremum;
    if (std::numeric_limits<T>::is_signed) {
        supremum = -1.0 * std::numeric_limits<T>::min();    // -1 * (-2^63) = 2^63, exact (for T = qint64)
        *value = std::numeric_limits<T>::min();
        if (v < std::numeric_limits<T>::min())
            return false;
    } else {
        using ST = typename std::make_signed<T>::type;
        supremum = -2.0 * std::numeric_limits<ST>::min();   // -2 * (-2^63) = 2^64, exact (for T = quint64)
        v = fabs(v);
    }
    if (std::is_integral<T>::value && sizeof(T) > 4 && !allow_precision_upgrade) {
        if (v > double(Q_INT64_C(1)<<53) || v < double(-((Q_INT64_C(1)<<53) + 1)))
            return false;
    }

    *value = std::numeric_limits<T>::max();
    if (v >= supremum)
        return false;

    // Now we can convert, these two conversions cannot be UB
    *value = T(v);

QT_WARNING_PUSH
QT_WARNING_DISABLE_FLOAT_COMPARE

    return *value == v;

QT_WARNING_POP
}

template <typename T> inline bool add_overflow(T v1, T v2, T *r) { return qAddOverflow(v1, v2, r); }
template <typename T> inline bool sub_overflow(T v1, T v2, T *r) { return qSubOverflow(v1, v2, r); }
template <typename T> inline bool mul_overflow(T v1, T v2, T *r) { return qMulOverflow(v1, v2, r); }

template <typename T, T V2> bool add_overflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qAddOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
}

template <auto V2, typename T> bool add_overflow(T v1, T *r)
{
    return qAddOverflow<V2, T>(v1, r);
}

template <typename T, T V2> bool sub_overflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qSubOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
}

template <auto V2, typename T> bool sub_overflow(T v1, T *r)
{
    return qSubOverflow<V2, T>(v1, r);
}

template <typename T, T V2> bool mul_overflow(T v1, std::integral_constant<T, V2>, T *r)
{
    return qMulOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r);
}

template <auto V2, typename T> bool mul_overflow(T v1, T *r)
{
    return qMulOverflow<V2, T>(v1, r);
}
}
#endif // Q_CLANG_QDOC

QT_END_NAMESPACE

#endif // QNUMERIC_P_H