summaryrefslogtreecommitdiffstats
path: root/src/corelib/plugin/qmachparser.cpp
blob: 7a82b84cb3683d2b9a048f0f5ed3ad8fded06baa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Copyright (C) 2016 Intel Corporation.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only

#include "qmachparser_p.h"

#include <qendian.h>

#include <mach-o/loader.h>
#include <mach-o/fat.h>

QT_BEGIN_NAMESPACE

using namespace Qt::StringLiterals;

// Whether we include some extra validity checks
// (checks to ensure we don't read out-of-bounds are always included)
static constexpr bool IncludeValidityChecks = true;

#if defined(Q_PROCESSOR_X86_64)
#  define MACHO64
static const cpu_type_t my_cputype = CPU_TYPE_X86_64;
#elif defined(Q_PROCESSOR_X86_32)
static const cpu_type_t my_cputype = CPU_TYPE_X86;
#elif defined(Q_PROCESSOR_POWER_64)
#  define MACHO64
static const cpu_type_t my_cputype = CPU_TYPE_POWERPC64;
#elif defined(Q_PROCESSOR_POWER_32)
static const cpu_type_t my_cputype = CPU_TYPE_POWERPC;
#elif defined(Q_PROCESSOR_ARM_64)
#  define MACHO64
static const cpu_type_t my_cputype = CPU_TYPE_ARM64;
#elif defined(Q_PROCESSOR_ARM)
static const cpu_type_t my_cputype = CPU_TYPE_ARM;
#else
#  error "Unknown CPU type"
#endif

#ifdef MACHO64
#  undef MACHO64
typedef mach_header_64 my_mach_header;
typedef segment_command_64 my_segment_command;
typedef section_64 my_section;
static const uint32_t my_magic = MH_MAGIC_64;
#else
typedef mach_header my_mach_header;
typedef segment_command my_segment_command;
typedef section my_section;
static const uint32_t my_magic = MH_MAGIC;
#endif

Q_DECL_COLD_FUNCTION
static QLibraryScanResult notfound(const QString &reason, QString *errorString)
{
    *errorString = QLibrary::tr("'%1' is not a valid Mach-O binary (%2)")
            .arg(*errorString, reason.isEmpty() ? QLibrary::tr("file is corrupt") : reason);
    return {};
}

static bool isEncrypted(const my_mach_header *header)
{
    auto commandCursor = uintptr_t(header) + sizeof(my_mach_header);
    for (uint32_t i = 0; i < header->ncmds; ++i) {
        load_command *loadCommand = reinterpret_cast<load_command *>(commandCursor);
        if (loadCommand->cmd == LC_ENCRYPTION_INFO || loadCommand->cmd == LC_ENCRYPTION_INFO_64) {
            // The layout of encryption_info_command and encryption_info_command_64 is the same
            // up until and including cryptid, so we can treat it as encryption_info_command.
            auto encryptionInfoCommand = reinterpret_cast<encryption_info_command*>(loadCommand);
            return encryptionInfoCommand->cryptid != 0;
        }
        commandCursor += loadCommand->cmdsize;
    }

    return false;
}

QLibraryScanResult  QMachOParser::parse(const char *m_s, ulong fdlen, QString *errorString)
{
    // The minimum size of a Mach-O binary we're interested in.
    // It must have a full Mach header, at least one segment and at least one
    // section. It's probably useless with just the "qtmetadata" section, but
    // it's valid nonetheless.
    // A fat binary must have this plus the fat header, of course.
    static const size_t MinFileSize = sizeof(my_mach_header) + sizeof(my_segment_command) + sizeof(my_section);
    static const size_t MinFatHeaderSize = sizeof(fat_header) + 2 * sizeof(fat_arch);

    if (Q_UNLIKELY(fdlen < MinFileSize))
        return notfound(QLibrary::tr("file too small"), errorString);

    // find out if this is a fat Mach-O binary first
    const my_mach_header *header = nullptr;
    const fat_header *fat = reinterpret_cast<const fat_header *>(m_s);
    if (fat->magic == qToBigEndian(FAT_MAGIC)) {
        // find our architecture in the binary
        const fat_arch *arch = reinterpret_cast<const fat_arch *>(fat + 1);
        if (Q_UNLIKELY(fdlen < MinFatHeaderSize)) {
            return notfound(QLibrary::tr("file too small"), errorString);
        }

        int count = qFromBigEndian(fat->nfat_arch);
        if (Q_UNLIKELY(fdlen < sizeof(*fat) + sizeof(*arch) * count))
            return notfound(QString(), errorString);

        for (int i = 0; i < count; ++i) {
            if (arch[i].cputype == qToBigEndian(my_cputype)) {
                // ### should we check the CPU subtype? Maybe on ARM?
                uint32_t size = qFromBigEndian(arch[i].size);
                uint32_t offset = qFromBigEndian(arch[i].offset);
                if (Q_UNLIKELY(size > fdlen) || Q_UNLIKELY(offset > fdlen)
                        || Q_UNLIKELY(size + offset > fdlen) || Q_UNLIKELY(size < MinFileSize))
                    return notfound(QString(), errorString);

                header = reinterpret_cast<const my_mach_header *>(m_s + offset);
                fdlen = size;
                break;
            }
        }
        if (!header)
            return notfound(QLibrary::tr("no suitable architecture in fat binary"), errorString);

        // check the magic again
        if (Q_UNLIKELY(header->magic != my_magic))
            return notfound(QString(), errorString);
    } else {
        header = reinterpret_cast<const my_mach_header *>(m_s);
        fat = 0;

        // check magic
        if (header->magic != my_magic)
            return notfound(QLibrary::tr("invalid magic %1").arg(qFromBigEndian(header->magic),
                                                                 8, 16, '0'_L1),
                      errorString);
    }

    // from this point on, everything is in host byte order

    // (re-)check the CPU type
    // ### should we check the CPU subtype? Maybe on ARM?
    if (header->cputype != my_cputype) {
        if (fat)
            return notfound(QString(), errorString);
        return notfound(QLibrary::tr("wrong architecture"), errorString);
    }

    // check the file type
    if (Q_UNLIKELY(header->filetype != MH_BUNDLE && header->filetype != MH_DYLIB))
        return notfound(QLibrary::tr("not a dynamic library"), errorString);

    // find the __TEXT segment, "qtmetadata" section
    const my_segment_command *seg = reinterpret_cast<const my_segment_command *>(header + 1);
    ulong minsize = sizeof(*header);

    for (uint i = 0; i < header->ncmds; ++i,
         seg = reinterpret_cast<const my_segment_command *>(reinterpret_cast<const char *>(seg) + seg->cmdsize)) {
        // We're sure that the file size includes at least one load command
        // but we have to check anyway if we're past the first
        if (Q_UNLIKELY(fdlen < minsize + sizeof(load_command)))
            return notfound(QString(), errorString);

        // cmdsize can't be trusted until validated
        // so check it against fdlen anyway
        // (these are unsigned operations, with overflow behavior specified in the standard)
        minsize += seg->cmdsize;
        if (Q_UNLIKELY(fdlen < minsize) || Q_UNLIKELY(fdlen < seg->cmdsize))
            return notfound(QString(), errorString);

        const uint32_t MyLoadCommand = sizeof(void *) > 4 ? LC_SEGMENT_64 : LC_SEGMENT;
        if (seg->cmd != MyLoadCommand)
            continue;

        // is this the __TEXT segment?
        if (strcmp(seg->segname, "__TEXT") == 0) {
            const my_section *sect = reinterpret_cast<const my_section *>(seg + 1);
            for (uint j = 0; j < seg->nsects; ++j) {
                // is this the "qtmetadata" section?
                if (strcmp(sect[j].sectname, "qtmetadata") != 0)
                    continue;

                // found it!
                if (Q_UNLIKELY(fdlen < sect[j].offset) || Q_UNLIKELY(fdlen < sect[j].size)
                        || Q_UNLIKELY(fdlen < sect[j].offset + sect[j].size))
                    return notfound(QString(), errorString);

                if (sect[j].size < sizeof(QPluginMetaData::MagicHeader))
                    return notfound(QLibrary::tr(".qtmetadata section is too small"), errorString);

                const bool binaryIsEncrypted = isEncrypted(header);
                qsizetype pos = reinterpret_cast<const char *>(header) - m_s + sect[j].offset;

                // We can not read the section data of encrypted libraries until they
                // have been dlopened(), so skip validity check if that's the case.
                if (IncludeValidityChecks && !binaryIsEncrypted) {
                    QByteArrayView expectedMagic = QByteArrayView::fromArray(QPluginMetaData::MagicString);
                    QByteArrayView actualMagic = QByteArrayView(m_s + pos, expectedMagic.size());
                    if (expectedMagic != actualMagic)
                        return notfound(QLibrary::tr(".qtmetadata section has incorrect magic"), errorString);
                }

                pos += sizeof(QPluginMetaData::MagicString);
                return { pos, qsizetype(sect[j].size - sizeof(QPluginMetaData::MagicString)), binaryIsEncrypted };
            }
        }

        // other type of segment
        seg = reinterpret_cast<const my_segment_command *>(reinterpret_cast<const char *>(seg) + seg->cmdsize);
    }

    // No .qtmetadata section was found
    *errorString = QLibrary::tr("'%1' is not a Qt plugin").arg(*errorString);
    return {};
}

QT_END_NAMESPACE