summaryrefslogtreecommitdiffstats
path: root/src/corelib/text/qstringconverter.cpp
blob: efa625e30b5019af0f9db3bcdfad769d436cae98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
// Copyright (C) 2020 The Qt Company Ltd.
// Copyright (C) 2020 Intel Corporation.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only

#include <qstringconverter.h>
#include <private/qstringconverter_p.h>
#include "qendian.h"

#include "private/qsimd_p.h"
#include "private/qstringiterator_p.h"
#include "private/qtools_p.h"
#include "qbytearraymatcher.h"
#include "qcontainertools_impl.h"
#include <QtCore/qbytearraylist.h>

#if QT_CONFIG(icu)
#include <unicode/ucnv.h>
#include <unicode/ucnv_cb.h>
#include <unicode/ucnv_err.h>
#include <unicode/ustring.h>
#endif

#ifdef Q_OS_WIN
#include <qt_windows.h>
#ifndef QT_BOOTSTRAPPED
#include <QtCore/qvarlengtharray.h>
#include <QtCore/q20iterator.h>
#include <QtCore/private/qnumeric_p.h>
#endif // !QT_BOOTSTRAPPED
#endif

#include <array>

#if __has_include(<bit>) && __cplusplus > 201703L
#include <bit>
#endif

QT_BEGIN_NAMESPACE

using namespace QtMiscUtils;

static_assert(std::is_nothrow_move_constructible_v<QStringEncoder>);
static_assert(std::is_nothrow_move_assignable_v<QStringEncoder>);
static_assert(std::is_nothrow_move_constructible_v<QStringDecoder>);
static_assert(std::is_nothrow_move_assignable_v<QStringDecoder>);

enum { Endian = 0, Data = 1 };

static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf };

#if defined(__SSE2__) || defined(__ARM_NEON__)
static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept
{
#if defined(__cpp_lib_int_pow2) && __cpp_lib_int_pow2 >= 202002L
     return std::bit_width(v) - 1;
#else
    uint result = qCountLeadingZeroBits(v);
    // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31
    // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when
    // counting up: msb index is 0 (because it starts there), and the lsb index is 31.
    result ^= sizeof(unsigned) * 8 - 1;
    return result;
#endif
}
#endif

#if defined(__SSE2__)
static inline bool simdEncodeAscii(uchar *&dst, const char16_t *&nextAscii, const char16_t *&src, const char16_t *end)
{
    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16, dst += 16) {
#  ifdef __AVX2__
        __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src));
        __m128i data1 = _mm256_castsi256_si128(data);
        __m128i data2 = _mm256_extracti128_si256(data, 1);
#  else
        __m128i data1 = _mm_loadu_si128((const __m128i*)src);
        __m128i data2 = _mm_loadu_si128(1+(const __m128i*)src);
#  endif

        // check if everything is ASCII
        // the highest ASCII value is U+007F
        // Do the packing directly:
        // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit
        // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff,
        // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII,
        // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as
        // "non-ASCII", but it's an acceptable compromise.
        __m128i packed = _mm_packus_epi16(data1, data2);
        __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128());

        // store, even if there are non-ASCII characters here
        _mm_storeu_si128((__m128i*)dst, packed);

        // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL)
        ushort n = ~_mm_movemask_epi8(nonAscii);
        if (n) {
            // find the next probable ASCII character
            // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
            // characters still coming
            nextAscii = src + qBitScanReverse(n) + 1;

            n = qCountTrailingZeroBits(n);
            dst += n;
            src += n;
            return false;
        }
    }

    if (end - src >= 8) {
        // do eight characters at a time
        __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src));
        __m128i packed = _mm_packus_epi16(data, data);
        __m128i nonAscii = _mm_cmpgt_epi8(packed, _mm_setzero_si128());

        // store even non-ASCII
        _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), packed);

        uchar n = ~_mm_movemask_epi8(nonAscii);
        if (n) {
            nextAscii = src + qBitScanReverse(n) + 1;
            n = qCountTrailingZeroBits(n);
            dst += n;
            src += n;
            return false;
        }
    }

    return src == end;
}

static inline bool simdDecodeAscii(char16_t *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end)
{
    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16, dst += 16) {
        __m128i data = _mm_loadu_si128((const __m128i*)src);

#ifdef __AVX2__
        const int BitSpacing = 2;
        // load and zero extend to an YMM register
        const __m256i extended = _mm256_cvtepu8_epi16(data);

        uint n = _mm256_movemask_epi8(extended);
        if (!n) {
            // store
            _mm256_storeu_si256((__m256i*)dst, extended);
            continue;
        }
#else
        const int BitSpacing = 1;

        // check if everything is ASCII
        // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII
        uint n = _mm_movemask_epi8(data);
        if (!n) {
            // unpack
            _mm_storeu_si128((__m128i*)dst, _mm_unpacklo_epi8(data, _mm_setzero_si128()));
            _mm_storeu_si128(1+(__m128i*)dst, _mm_unpackhi_epi8(data, _mm_setzero_si128()));
            continue;
        }
#endif

        // copy the front part that is still ASCII
        while (!(n & 1)) {
            *dst++ = *src++;
            n >>= BitSpacing;
        }

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        n = qBitScanReverse(n);
        nextAscii = src + (n / BitSpacing) + 1;
        return false;

    }

    if (end - src >= 8) {
        __m128i data = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src));
        uint n = _mm_movemask_epi8(data) & 0xff;
        if (!n) {
            // unpack and store
            _mm_storeu_si128(reinterpret_cast<__m128i *>(dst), _mm_unpacklo_epi8(data, _mm_setzero_si128()));
        } else {
            while (!(n & 1)) {
                *dst++ = *src++;
                n >>= 1;
            }

            n = qBitScanReverse(n);
            nextAscii = src + n + 1;
            return false;
        }
    }

    return src == end;
}

static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
{
#ifdef __AVX2__
    // do 32 characters at a time
    // (this is similar to simdTestMask in qstring.cpp)
    const __m256i mask = _mm256_set1_epi8(char(0x80));
    for ( ; end - src >= 32; src += 32) {
        __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src));
        if (_mm256_testz_si256(mask, data))
            continue;

        uint n = _mm256_movemask_epi8(data);
        Q_ASSERT(n);

        // find the next probable ASCII character
        // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        nextAscii = src + qBitScanReverse(n) + 1;

        // return the non-ASCII character
        return src + qCountTrailingZeroBits(n);
    }
#endif

    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16) {
        __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));

        // check if everything is ASCII
        // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII
        uint n = _mm_movemask_epi8(data);
        if (!n)
            continue;

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        nextAscii = src + qBitScanReverse(n) + 1;

        // return the non-ASCII character
        return src + qCountTrailingZeroBits(n);
    }

    // do four characters at a time
    for ( ; end - src >= 4; src += 4) {
        quint32 data = qFromUnaligned<quint32>(src);
        data &= 0x80808080U;
        if (!data)
            continue;

        // We don't try to guess which of the three bytes is ASCII and which
        // one isn't. The chance that at least two of them are non-ASCII is
        // better than 75%.
        nextAscii = src;
        return src;
    }
    nextAscii = end;
    return src;
}

// Compare only the US-ASCII beginning of [src8, end8) and [src16, end16)
// and advance src8 and src16 to the first character that could not be compared
static void simdCompareAscii(const qchar8_t *&src8, const qchar8_t *end8, const char16_t *&src16, const char16_t *end16)
{
    int bitSpacing = 1;
    qptrdiff len = qMin(end8 - src8, end16 - src16);
    qptrdiff offset = 0;
    uint mask = 0;

    // do sixteen characters at a time
    for ( ; offset + 16 < len; offset += 16) {
        __m128i data8 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src8 + offset));
#ifdef __AVX2__
        // AVX2 version, use 256-bit registers and VPMOVXZBW
        __m256i data16 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src16 + offset));

        // expand US-ASCII as if it were Latin1 and confirm it's US-ASCII
        __m256i datax8 = _mm256_cvtepu8_epi16(data8);
        mask = _mm256_movemask_epi8(datax8);
        if (mask)
            break;

        // compare Latin1 to UTF-16
        __m256i latin1cmp = _mm256_cmpeq_epi16(datax8, data16);
        mask = ~_mm256_movemask_epi8(latin1cmp);
        if (mask)
            break;
#else
        // non-AVX2 code
        __m128i datalo16 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src16 + offset));
        __m128i datahi16 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src16 + offset) + 1);

        // expand US-ASCII as if it were Latin1, we'll confirm later
        __m128i datalo8 = _mm_unpacklo_epi8(data8, _mm_setzero_si128());
        __m128i datahi8 = _mm_unpackhi_epi8(data8, _mm_setzero_si128());

        // compare Latin1 to UTF-16
        __m128i latin1cmplo = _mm_cmpeq_epi16(datalo8, datalo16);
        __m128i latin1cmphi = _mm_cmpeq_epi16(datahi8, datahi16);
        mask = _mm_movemask_epi8(latin1cmphi) << 16;
        mask |= ushort(_mm_movemask_epi8(latin1cmplo));
        mask = ~mask;
        if (mask)
            break;

        // confirm it was US-ASCII
        mask = _mm_movemask_epi8(data8);
        if (mask) {
            bitSpacing = 0;
            break;
        }
#endif
    }

    // helper for comparing 4 or 8 characters
    auto cmp_lt_16 = [&mask, &offset](int n, __m128i data8, __m128i data16) {
        // n = 4  ->  sizemask = 0xff
        // n = 8  ->  sizemask = 0xffff
        unsigned sizemask = (1U << (2 * n)) - 1;

        // expand as if Latin1
        data8 = _mm_unpacklo_epi8(data8, _mm_setzero_si128());

        // compare and confirm it's US-ASCII
        __m128i latin1cmp = _mm_cmpeq_epi16(data8, data16);
        mask = ~_mm_movemask_epi8(latin1cmp) & sizemask;
        mask |= _mm_movemask_epi8(data8);
        if (mask == 0)
            offset += n;
    };

    // do eight characters at a time
    if (mask == 0 && offset + 8 < len) {
        __m128i data8 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src8 + offset));
        __m128i data16 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(src16 + offset));
        cmp_lt_16(8, data8, data16);
    }

    // do four characters
    if (mask == 0 && offset + 4 < len) {
        __m128i data8 = _mm_cvtsi32_si128(qFromUnaligned<quint32>(src8 + offset));
        __m128i data16 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(src16 + offset));
        cmp_lt_16(4, data8, data16);
    }

    // correct the source pointers to point to the first character we couldn't deal with
    if (mask)
        offset += qCountTrailingZeroBits(mask) >> bitSpacing;
    src8 += offset;
    src16 += offset;
}
#elif defined(__ARM_NEON__)
static inline bool simdEncodeAscii(uchar *&dst, const char16_t *&nextAscii, const char16_t *&src, const char16_t *end)
{
    uint16x8_t maxAscii = vdupq_n_u16(0x7f);
    uint16x8_t mask1 = { 1,      1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 };
    uint16x8_t mask2 = vshlq_n_u16(mask1, 1);

    // do sixteen characters at a time
    for ( ; end - src >= 16; src += 16, dst += 16) {
        // load 2 lanes (or: "load interleaved")
        uint16x8x2_t in = vld2q_u16(reinterpret_cast<const uint16_t *>(src));

        // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc),
        // add those together into a scalar, and merge the scalars.
        uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1))
                          | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2));

        // merge the two lanes by shifting the values of the second by 8 and inserting them
        uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8);

        // store, even if there are non-ASCII characters here
        vst1q_u8(dst, vreinterpretq_u8_u16(out));

        if (nonAscii) {
            // find the next probable ASCII character
            // we don't want to load 32 bytes again in this loop if we know there are non-ASCII
            // characters still coming
            nextAscii = src + qBitScanReverse(nonAscii) + 1;

            nonAscii = qCountTrailingZeroBits(nonAscii);
            dst += nonAscii;
            src += nonAscii;
            return false;
        }
    }
    return src == end;
}

static inline bool simdDecodeAscii(char16_t *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end)
{
    // do eight characters at a time
    uint8x8_t msb_mask = vdup_n_u8(0x80);
    uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
    for ( ; end - src >= 8; src += 8, dst += 8) {
        uint8x8_t c = vld1_u8(src);
        uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask));
        if (!n) {
            // store
            vst1q_u16(reinterpret_cast<uint16_t *>(dst), vmovl_u8(c));
            continue;
        }

        // copy the front part that is still ASCII
        while (!(n & 1)) {
            *dst++ = *src++;
            n >>= 1;
        }

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        n = qBitScanReverse(n);
        nextAscii = src + n + 1;
        return false;

    }
    return src == end;
}

static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
{
    // The SIMD code below is untested, so just force an early return until
    // we've had the time to verify it works.
    nextAscii = end;
    return src;

    // do eight characters at a time
    uint8x8_t msb_mask = vdup_n_u8(0x80);
    uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
    for ( ; end - src >= 8; src += 8) {
        uint8x8_t c = vld1_u8(src);
        uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask));
        if (!n)
            continue;

        // find the next probable ASCII character
        // we don't want to load 16 bytes again in this loop if we know there are non-ASCII
        // characters still coming
        nextAscii = src + qBitScanReverse(n) + 1;

        // return the non-ASCII character
        return src + qCountTrailingZeroBits(n);
    }
    nextAscii = end;
    return src;
}

static void simdCompareAscii(const qchar8_t *&, const qchar8_t *, const char16_t *&, const char16_t *)
{
}
#else
static inline bool simdEncodeAscii(uchar *, const char16_t *, const char16_t *, const char16_t *)
{
    return false;
}

static inline bool simdDecodeAscii(char16_t *, const uchar *, const uchar *, const uchar *)
{
    return false;
}

static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii)
{
    nextAscii = end;
    return src;
}

static void simdCompareAscii(const qchar8_t *&, const qchar8_t *, const char16_t *&, const char16_t *)
{
}
#endif

enum { HeaderDone = 1 };

QByteArray QUtf8::convertFromUnicode(QStringView in)
{
    qsizetype len = in.size();

    // create a QByteArray with the worst case scenario size
    QByteArray result(len * 3, Qt::Uninitialized);
    uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData()));
    const char16_t *src = reinterpret_cast<const char16_t *>(in.data());
    const char16_t *const end = src + len;

    while (src != end) {
        const char16_t *nextAscii = end;
        if (simdEncodeAscii(dst, nextAscii, src, end))
            break;

        do {
            char16_t u = *src++;
            int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u, dst, src, end);
            if (res < 0) {
                // encoding error - append '?'
                *dst++ = '?';
            }
        } while (src < nextAscii);
    }

    result.truncate(dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData())));
    return result;
}

QByteArray QUtf8::convertFromUnicode(QStringView in, QStringConverterBase::State *state)
{
    QByteArray ba(3*in.size() +3, Qt::Uninitialized);
    char *end = convertFromUnicode(ba.data(), in, state);
    ba.truncate(end - ba.data());
    return ba;
}

char *QUtf8::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state)
{
    Q_ASSERT(state);
    qsizetype len = in.size();
    if (!len)
        return out;

    auto appendReplacementChar = [state](uchar *cursor) -> uchar * {
        if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) {
            *cursor++ = 0;
        } else {
            // QChar::replacement encoded in utf8
            *cursor++ = 0xef;
            *cursor++ = 0xbf;
            *cursor++ = 0xbd;
        }
        return cursor;
    };

    uchar *cursor = reinterpret_cast<uchar *>(out);
    const char16_t *src = in.utf16();
    const char16_t *const end = src + len;

    if (!(state->flags & QStringDecoder::Flag::Stateless)) {
        if (state->remainingChars) {
            int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(state->state_data[0], cursor, src, end);
            if (res < 0)
                cursor = appendReplacementChar(cursor);
            state->state_data[0] = 0;
            state->remainingChars = 0;
        } else if (!(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom) {
            // append UTF-8 BOM
            *cursor++ = utf8bom[0];
            *cursor++ = utf8bom[1];
            *cursor++ = utf8bom[2];
            state->internalState |= HeaderDone;
        }
    }

    while (src != end) {
        const char16_t *nextAscii = end;
        if (simdEncodeAscii(cursor, nextAscii, src, end))
            break;

        do {
            char16_t uc = *src++;
            int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(uc, cursor, src, end);
            if (Q_LIKELY(res >= 0))
                continue;

            if (res == QUtf8BaseTraits::Error) {
                // encoding error
                ++state->invalidChars;
                cursor = appendReplacementChar(cursor);
            } else if (res == QUtf8BaseTraits::EndOfString) {
                if (state->flags & QStringConverter::Flag::Stateless) {
                    ++state->invalidChars;
                    cursor = appendReplacementChar(cursor);
                } else {
                    state->remainingChars = 1;
                    state->state_data[0] = uc;
                }
                return reinterpret_cast<char *>(cursor);
            }
        } while (src < nextAscii);
    }

    return reinterpret_cast<char *>(cursor);
}

char *QUtf8::convertFromLatin1(char *out, QLatin1StringView in)
{
    // ### SIMD-optimize:
    for (uchar ch : in) {
        if (ch < 128) {
            *out++ = ch;
        } else {
            // as per https://en.wikipedia.org/wiki/UTF-8#Encoding, 2nd row
            *out++ = 0b110'0'0000u | (ch >> 6);
            *out++ = 0b10'00'0000u | (ch & 0b0011'1111);
        }
    }
    return out;
}

QString QUtf8::convertToUnicode(QByteArrayView in)
{
    // UTF-8 to UTF-16 always needs the exact same number of words or less:
    //    UTF-8     UTF-16
    //   1 byte     1 word
    //   2 bytes    1 word
    //   3 bytes    1 word
    //   4 bytes    2 words (one surrogate pair)
    // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8),
    // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or
    // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK).
    //
    // The table holds for invalid sequences too: we'll insert one replacement char
    // per invalid byte.
    QString result(in.size(), Qt::Uninitialized);
    QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared
    const QChar *end = convertToUnicode(data, in);
    result.truncate(end - data);
    return result;
}

/*! \internal
    \since 6.6
    \overload

    Converts the UTF-8 sequence of bytes viewed by \a in to a sequence of
    QChar starting at \a dst in the destination buffer. The buffer is expected
    to be large enough to hold the result. An upper bound for the size of the
    buffer is \c in.size() QChars.

    If, during decoding, an error occurs, a QChar::ReplacementCharacter is
    written.

    Returns a pointer to one past the last QChar written.

    This function never throws.

    For QChar buffers, instead of casting manually, you can use the static
    QUtf8::convertToUnicode(QChar *, QByteArrayView) directly.
*/
char16_t *QUtf8::convertToUnicode(char16_t *dst, QByteArrayView in) noexcept
{
    const uchar *const start = reinterpret_cast<const uchar *>(in.data());
    const uchar *src = start;
    const uchar *end = src + in.size();

    // attempt to do a full decoding in SIMD
    const uchar *nextAscii = end;
    if (!simdDecodeAscii(dst, nextAscii, src, end)) {
        // at least one non-ASCII entry
        // check if we failed to decode the UTF-8 BOM; if so, skip it
        if (Q_UNLIKELY(src == start)
                && end - src >= 3
                && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) {
            src += 3;
        }

        while (src < end) {
            nextAscii = end;
            if (simdDecodeAscii(dst, nextAscii, src, end))
                break;

            do {
                uchar b = *src++;
                const qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end);
                if (res < 0) {
                    // decoding error
                    *dst++ = QChar::ReplacementCharacter;
                }
            } while (src < nextAscii);
        }
    }

    return dst;
}

QString QUtf8::convertToUnicode(QByteArrayView in, QStringConverter::State *state)
{
    // See above for buffer requirements for stateless decoding. However, that
    // fails if the state is not empty. The following situations can add to the
    // requirements:
    //  state contains      chars starts with           requirement
    //   1 of 2 bytes       valid continuation          0
    //   2 of 3 bytes       same                        0
    //   3 bytes of 4       same                        +1 (need to insert surrogate pair)
    //   1 of 2 bytes       invalid continuation        +1 (need to insert replacement and restart)
    //   2 of 3 bytes       same                        +1 (same)
    //   3 of 4 bytes       same                        +1 (same)
    QString result(in.size() + 1, Qt::Uninitialized);
    QChar *end = convertToUnicode(result.data(), in, state);
    result.truncate(end - result.constData());
    return result;
}

char16_t *QUtf8::convertToUnicode(char16_t *dst, QByteArrayView in, QStringConverter::State *state)
{
    qsizetype len = in.size();

    Q_ASSERT(state);
    if (!len)
        return dst;


    char16_t replacement = QChar::ReplacementCharacter;
    if (state->flags & QStringConverter::Flag::ConvertInvalidToNull)
        replacement = QChar::Null;

    qsizetype res;
    uchar ch = 0;

    const uchar *src = reinterpret_cast<const uchar *>(in.data());
    const uchar *end = src + len;

    if (!(state->flags & QStringConverter::Flag::Stateless)) {
        bool headerdone = state->internalState & HeaderDone || state->flags & QStringConverter::Flag::ConvertInitialBom;
        if (state->remainingChars || !headerdone) {
            // handle incoming state first
            uchar remainingCharsData[4]; // longest UTF-8 sequence possible
            qsizetype remainingCharsCount = state->remainingChars;
            qsizetype newCharsToCopy = qMin<qsizetype>(sizeof(remainingCharsData) - remainingCharsCount, end - src);

            memset(remainingCharsData, 0, sizeof(remainingCharsData));
            memcpy(remainingCharsData, &state->state_data[0], remainingCharsCount);
            memcpy(remainingCharsData + remainingCharsCount, src, newCharsToCopy);

            const uchar *begin = &remainingCharsData[1];
            res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(remainingCharsData[0], dst, begin,
                    static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy);
            if (res == QUtf8BaseTraits::Error) {
                ++state->invalidChars;
                *dst++ = replacement;
                ++src;
            } else if (res == QUtf8BaseTraits::EndOfString) {
                // if we got EndOfString again, then there were too few bytes in src;
                // copy to our state and return
                state->remainingChars = remainingCharsCount + newCharsToCopy;
                memcpy(&state->state_data[0], remainingCharsData, state->remainingChars);
                return dst;
            } else if (!headerdone) {
                // eat the UTF-8 BOM
                if (dst[-1] == 0xfeff)
                    --dst;
            }
            state->internalState |= HeaderDone;

            // adjust src now that we have maybe consumed a few chars
            if (res >= 0) {
                Q_ASSERT(res > remainingCharsCount);
                src += res - remainingCharsCount;
            }
        }
    } else if (!(state->flags & QStringConverter::Flag::ConvertInitialBom)) {
        // stateless, remove initial BOM
        if (len > 2 && src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])
            // skip BOM
            src += 3;
    }

    // main body, stateless decoding
    res = 0;
    const uchar *nextAscii = src;
    while (res >= 0 && src < end) {
        if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end))
            break;

        ch = *src++;
        res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(ch, dst, src, end);
        if (res == QUtf8BaseTraits::Error) {
            res = 0;
            ++state->invalidChars;
            *dst++ = replacement;
        }
    }

    if (res == QUtf8BaseTraits::EndOfString) {
        // unterminated UTF sequence
        if (state->flags & QStringConverter::Flag::Stateless) {
            *dst++ = QChar::ReplacementCharacter;
            ++state->invalidChars;
            while (src++ < end) {
                *dst++ = QChar::ReplacementCharacter;
                ++state->invalidChars;
            }
            state->remainingChars = 0;
        } else {
            --src; // unread the byte in ch
            state->remainingChars = end - src;
            memcpy(&state->state_data[0], src, end - src);
        }
    } else {
        state->remainingChars = 0;
    }

    return dst;
}

struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii
{
    struct NoOutput {};
    static void appendUtf16(const NoOutput &, char16_t) {}
    static void appendUcs4(const NoOutput &, char32_t) {}
};

QUtf8::ValidUtf8Result QUtf8::isValidUtf8(QByteArrayView in)
{
    const uchar *src = reinterpret_cast<const uchar *>(in.data());
    const uchar *end = src + in.size();
    const uchar *nextAscii = src;
    bool isValidAscii = true;

    while (src < end) {
        if (src >= nextAscii)
            src = simdFindNonAscii(src, end, nextAscii);
        if (src == end)
            break;

        do {
            uchar b = *src++;
            if ((b & 0x80) == 0)
                continue;

            isValidAscii = false;
            QUtf8NoOutputTraits::NoOutput output;
            const qsizetype res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, output, src, end);
            if (res < 0) {
                // decoding error
                return { false, false };
            }
        } while (src < nextAscii);
    }

    return { true, isValidAscii };
}

int QUtf8::compareUtf8(QByteArrayView utf8, QStringView utf16, Qt::CaseSensitivity cs) noexcept
{
    auto src1 = reinterpret_cast<const qchar8_t *>(utf8.data());
    auto end1 = src1 + utf8.size();
    auto src2 = reinterpret_cast<const char16_t *>(utf16.data());
    auto end2 = src2 + utf16.size();

    do {
        simdCompareAscii(src1, end1, src2, end2);

        if (src1 < end1 && src2 < end2) {
            char32_t uc1 = *src1++;
            char32_t uc2 = *src2++;

            if (uc1 >= 0x80) {
                char32_t *output = &uc1;
                qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraitsNoAscii>(uc1, output, src1, end1);
                if (res < 0) {
                    // decoding error
                    uc1 = QChar::ReplacementCharacter;
                }

                // Only decode the UTF-16 surrogate pair if the UTF-8 code point
                // wasn't US-ASCII (a surrogate cannot match US-ASCII).
                if (QChar::isHighSurrogate(uc2) && src2 < end2 && QChar::isLowSurrogate(*src2))
                    uc2 = QChar::surrogateToUcs4(uc2, *src2++);
            }
            if (cs == Qt::CaseInsensitive) {
                uc1 = QChar::toCaseFolded(uc1);
                uc2 = QChar::toCaseFolded(uc2);
            }
            if (uc1 != uc2)
                return int(uc1) - int(uc2);
        }
    } while (src1 < end1 && src2 < end2);

    // the shorter string sorts first
    return (end1 > src1) - int(end2 > src2);
}

int QUtf8::compareUtf8(QByteArrayView utf8, QLatin1StringView s, Qt::CaseSensitivity cs)
{
    char32_t uc1 = QChar::Null;
    auto src1 = reinterpret_cast<const uchar *>(utf8.data());
    auto end1 = src1 + utf8.size();
    auto src2 = reinterpret_cast<const uchar *>(s.latin1());
    auto end2 = src2 + s.size();

    while (src1 < end1 && src2 < end2) {
        uchar b = *src1++;
        char32_t *output = &uc1;
        const qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1);
        if (res < 0) {
            // decoding error
            uc1 = QChar::ReplacementCharacter;
        }

        char32_t uc2 = *src2++;
        if (cs == Qt::CaseInsensitive) {
            uc1 = QChar::toCaseFolded(uc1);
            uc2 = QChar::toCaseFolded(uc2);
        }
        if (uc1 != uc2)
            return int(uc1) - int(uc2);
    }

    // the shorter string sorts first
    return (end1 > src1) - (end2 > src2);
}

int QUtf8::compareUtf8(QByteArrayView lhs, QByteArrayView rhs, Qt::CaseSensitivity cs) noexcept
{
    if (lhs.isEmpty())
        return qt_lencmp(0, rhs.size());

    if (cs == Qt::CaseSensitive) {
        const auto l = std::min(lhs.size(), rhs.size());
        int r = memcmp(lhs.data(), rhs.data(), l);
        return r ? r : qt_lencmp(lhs.size(), rhs.size());
    }

    char32_t uc1 = QChar::Null;
    auto src1 = reinterpret_cast<const uchar *>(lhs.data());
    auto end1 = src1 + lhs.size();
    char32_t uc2 = QChar::Null;
    auto src2 = reinterpret_cast<const uchar *>(rhs.data());
    auto end2 = src2 + rhs.size();

    while (src1 < end1 && src2 < end2) {
        uchar b = *src1++;
        char32_t *output = &uc1;
        qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src1, end1);
        if (res < 0) {
            // decoding error
            uc1 = QChar::ReplacementCharacter;
        }

        b = *src2++;
        output = &uc2;
        res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, output, src2, end2);
        if (res < 0) {
            // decoding error
            uc2 = QChar::ReplacementCharacter;
        }

        uc1 = QChar::toCaseFolded(uc1);
        uc2 = QChar::toCaseFolded(uc2);
        if (uc1 != uc2)
            return int(uc1) - int(uc2);
    }

    // the shorter string sorts first
    return (end1 > src1) - (end2 > src2);
}

#ifndef QT_BOOTSTRAPPED
QByteArray QUtf16::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian)
{
    bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom;
    qsizetype length = 2 * in.size();
    if (writeBom)
        length += 2;

    QByteArray d(length, Qt::Uninitialized);
    char *end = convertFromUnicode(d.data(), in, state, endian);
    Q_ASSERT(end - d.constData() == d.size());
    Q_UNUSED(end);
    return d;
}

char *QUtf16::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian)
{
    Q_ASSERT(state);
    bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom;

    if (endian == DetectEndianness)
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;

    if (writeBom) {
        // set them up the BOM
        QChar bom(QChar::ByteOrderMark);
        if (endian == BigEndianness)
            qToBigEndian(bom.unicode(), out);
        else
            qToLittleEndian(bom.unicode(), out);
        out += 2;
    }
    if (endian == BigEndianness)
        qToBigEndian<char16_t>(in.data(), in.size(), out);
    else
        qToLittleEndian<char16_t>(in.data(), in.size(), out);

    state->remainingChars = 0;
    state->internalState |= HeaderDone;
    return out + 2*in.size();
}

QString QUtf16::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian)
{
    QString result((in.size() + 1) >> 1, Qt::Uninitialized); // worst case
    QChar *qch = convertToUnicode(result.data(), in, state, endian);
    result.truncate(qch - result.constData());
    return result;
}

QChar *QUtf16::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian)
{
    qsizetype len = in.size();
    const char *chars = in.data();

    Q_ASSERT(state);

    if (endian == DetectEndianness)
        endian = (DataEndianness)state->state_data[Endian];

    const char *end = chars + len;

    // make sure we can decode at least one char
    if (state->remainingChars + len < 2) {
        if (len) {
            Q_ASSERT(state->remainingChars == 0 && len == 1);
            state->remainingChars = 1;
            state->state_data[Data] = *chars;
        }
        return out;
    }

    bool headerdone = state && state->internalState & HeaderDone;
    if (state->flags & QStringConverter::Flag::ConvertInitialBom)
        headerdone = true;

    if (!headerdone || state->remainingChars) {
        uchar buf;
        if (state->remainingChars)
            buf = state->state_data[Data];
        else
            buf = *chars++;

        // detect BOM, set endianness
        state->internalState |= HeaderDone;
        QChar ch(buf, *chars++);
        if (endian == DetectEndianness) {
            // someone set us up the BOM
            if (ch == QChar::ByteOrderSwapped) {
                endian = BigEndianness;
            } else if (ch == QChar::ByteOrderMark) {
                endian = LittleEndianness;
            } else {
                if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
                    endian = BigEndianness;
                } else {
                    endian = LittleEndianness;
                }
            }
        }
        if (endian == BigEndianness)
            ch = QChar::fromUcs2((ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8));
        if (headerdone || ch != QChar::ByteOrderMark)
            *out++ = ch;
    } else if (endian == DetectEndianness) {
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
    }

    qsizetype nPairs = (end - chars) >> 1;
    if (endian == BigEndianness)
        qFromBigEndian<char16_t>(chars, nPairs, out);
    else
        qFromLittleEndian<char16_t>(chars, nPairs, out);
    out += nPairs;

    state->state_data[Endian] = endian;
    state->remainingChars = 0;
    if ((end - chars) & 1) {
        if (state->flags & QStringConverter::Flag::Stateless) {
            *out++ = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? QChar::Null : QChar::ReplacementCharacter;
        } else {
            state->remainingChars = 1;
            state->state_data[Data] = *(end - 1);
        }
    } else {
        state->state_data[Data] = 0;
    }

    return out;
}

QByteArray QUtf32::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian)
{
    bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom;
    qsizetype length =  4*in.size();
    if (writeBom)
        length += 4;
    QByteArray ba(length, Qt::Uninitialized);
    char *end = convertFromUnicode(ba.data(), in, state, endian);
    ba.truncate(end - ba.constData());
    return ba;
}

char *QUtf32::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian)
{
    Q_ASSERT(state);

    bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom;
    if (endian == DetectEndianness)
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;

    if (writeBom) {
        // set them up the BOM
        if (endian == BigEndianness) {
            out[0] = 0;
            out[1] = 0;
            out[2] = (char)0xfe;
            out[3] = (char)0xff;
        } else {
            out[0] = (char)0xff;
            out[1] = (char)0xfe;
            out[2] = 0;
            out[3] = 0;
        }
        out += 4;
        state->internalState |= HeaderDone;
    }

    const QChar *uc = in.data();
    const QChar *end = in.data() + in.size();
    QChar ch;
    char32_t ucs4;
    if (state->remainingChars == 1) {
        auto character = state->state_data[Data];
        Q_ASSERT(character <= 0xFFFF);
        ch = QChar(character);
        // this is ugly, but shortcuts a whole lot of logic that would otherwise be required
        state->remainingChars = 0;
        goto decode_surrogate;
    }

    while (uc < end) {
        ch = *uc++;
        if (Q_LIKELY(!ch.isSurrogate())) {
            ucs4 = ch.unicode();
        } else if (Q_LIKELY(ch.isHighSurrogate())) {
decode_surrogate:
            if (uc == end) {
                if (state->flags & QStringConverter::Flag::Stateless) {
                    ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter;
                } else {
                    state->remainingChars = 1;
                    state->state_data[Data] = ch.unicode();
                    return out;
                }
            } else if (uc->isLowSurrogate()) {
                ucs4 = QChar::surrogateToUcs4(ch, *uc++);
            } else {
                ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter;
            }
        } else {
            ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter;
        }
        if (endian == BigEndianness)
            qToBigEndian(ucs4, out);
        else
            qToLittleEndian(ucs4, out);
        out += 4;
    }

    return out;
}

QString QUtf32::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian)
{
    QString result;
    result.resize((in.size() + 7) >> 1); // worst case
    QChar *end = convertToUnicode(result.data(), in, state, endian);
    result.truncate(end - result.constData());
    return result;
}

QChar *QUtf32::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian)
{
    qsizetype len = in.size();
    const char *chars = in.data();

    Q_ASSERT(state);
    if (endian == DetectEndianness)
        endian = (DataEndianness)state->state_data[Endian];

    const char *end = chars + len;

    uchar tuple[4];
    memcpy(tuple, &state->state_data[Data], 4);

    // make sure we can decode at least one char
    if (state->remainingChars + len < 4) {
        if (len) {
            while (chars < end) {
                tuple[state->remainingChars] = *chars;
                ++state->remainingChars;
                ++chars;
            }
            Q_ASSERT(state->remainingChars < 4);
            memcpy(&state->state_data[Data], tuple, 4);
        }
        return out;
    }

    bool headerdone = state->internalState & HeaderDone;
    if (state->flags & QStringConverter::Flag::ConvertInitialBom)
        headerdone = true;

    qsizetype num = state->remainingChars;
    state->remainingChars = 0;

    if (!headerdone || endian == DetectEndianness || num) {
        while (num < 4)
            tuple[num++] = *chars++;
        if (endian == DetectEndianness) {
            // someone set us up the BOM?
            if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0) {
                endian = LittleEndianness;
            } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff) {
                endian = BigEndianness;
            } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
                endian = BigEndianness;
            } else {
                endian = LittleEndianness;
            }
        }
        char32_t code = (endian == BigEndianness) ? qFromBigEndian<char32_t>(tuple) : qFromLittleEndian<char32_t>(tuple);
        if (headerdone || code != QChar::ByteOrderMark) {
            if (QChar::requiresSurrogates(code)) {
                *out++ = QChar(QChar::highSurrogate(code));
                *out++ = QChar(QChar::lowSurrogate(code));
            } else {
                *out++ = QChar(code);
            }
        }
        num = 0;
    } else if (endian == DetectEndianness) {
        endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness;
    }
    state->state_data[Endian] = endian;
    state->internalState |= HeaderDone;

    while (chars < end) {
        tuple[num++] = *chars++;
        if (num == 4) {
            char32_t code = (endian == BigEndianness) ? qFromBigEndian<char32_t>(tuple) : qFromLittleEndian<char32_t>(tuple);
            for (char16_t c : QChar::fromUcs4(code))
                *out++ = c;
            num = 0;
        }
    }

    if (num) {
        if (state->flags & QStringDecoder::Flag::Stateless) {
            *out++ = QChar::ReplacementCharacter;
        } else {
            state->state_data[Endian] = endian;
            state->remainingChars = num;
            memcpy(&state->state_data[Data], tuple, 4);
        }
    }

    return out;
}
#endif // !QT_BOOTSTRAPPED

#if defined(Q_OS_WIN) && !defined(QT_BOOTSTRAPPED)
int QLocal8Bit::checkUtf8()
{
    return GetACP() == CP_UTF8 ? 1 : -1;
}

QString QLocal8Bit::convertToUnicode_sys(QByteArrayView in, QStringConverter::State *state)
{
    return convertToUnicode_sys(in, CP_ACP, state);
}

QString QLocal8Bit::convertToUnicode_sys(QByteArrayView in, quint32 codePage,
                                         QStringConverter::State *state)
{
    const char *mb = in.data();
    qsizetype mblen = in.size();

    Q_ASSERT(state);
    qsizetype &invalidChars = state->invalidChars;
    using Flag = QStringConverter::Flag;
    const bool useNullForReplacement = !!(state->flags & Flag::ConvertInvalidToNull);
    const char16_t replacementCharacter = useNullForReplacement ? QChar::Null
                                                                : QChar::ReplacementCharacter;
    if (state->flags & Flag::Stateless) {
        Q_ASSERT(state->remainingChars == 0);
        state = nullptr;
    }

    if (!mb || !mblen)
        return QString();

    // Use a local stack-buffer at first to allow us a decently large container
    // to avoid a lot of resizing, without also returning an overallocated
    // QString to the user for small strings.
    // Then we can be fast for small strings and take the hit of extra resizes
    // and measuring how much storage is needed for large strings.
    std::array<wchar_t, 4096> buf;
    wchar_t *out = buf.data();
    qsizetype outlen = buf.size();

    QString sp;

    // Return a pointer to storage where we have enough space for `size`
    const auto growOut = [&](qsizetype size) -> std::tuple<wchar_t *, qsizetype> {
        if (outlen >= size)
            return {out, outlen};
        const bool wasStackBuffer = sp.isEmpty();
        const auto begin = wasStackBuffer ? buf.data() : reinterpret_cast<wchar_t *>(sp.data());
        const qsizetype offset = qsizetype(std::distance(begin, out));
        qsizetype newSize = 0;
        if (Q_UNLIKELY(qAddOverflow(offset, size, &newSize))) {
            Q_CHECK_PTR(false);
            return {nullptr, 0};
        }
        sp.resize(newSize);
        auto it = reinterpret_cast<wchar_t *>(sp.data());
        if (wasStackBuffer)
            it = std::copy_n(buf.data(), offset, it);
        else
            it += offset;
        return {it, size};
    };

    // Convert the pending characters (if available)
    while (state && state->remainingChars && mblen) {
        QStringConverter::State localState;
        localState.flags = state->flags;
        // Use at most 6 characters as a guess for the longest encoded character
        // in any multibyte encoding.
        // Even with a total of 2 bytes of overhead that would leave around
        // 2^(4 * 8) possible characters
        std::array<char, 6> prev = {0};
        Q_ASSERT(state->remainingChars <= q20::ssize(state->state_data));
        qsizetype index = 0;
        for (; index < state->remainingChars; ++index)
            prev[index] = state->state_data[index];
        const qsizetype toCopy = std::min(q20::ssize(prev) - index, mblen);
        for (qsizetype i = 0; i < toCopy; ++i, ++index)
            prev[index] = mb[i];
        mb += toCopy;
        mblen -= toCopy;

        // Recursing:
        // Since we are using a clean local state it will try to decode what was
        // stored in our state + some extra octets from input (`prev`). If some
        // part fails we will have those characters stored in the local state's
        // storage, and we can extract those. It may also output some
        // replacement characters, which we'll count in the invalidChars.
        // In the best case we only do this once, but we will loop until we have
        // resolved all the remaining characters or we have run out of new input
        // in which case we may still have remaining characters.
        const QString tmp = convertToUnicode_sys(QByteArrayView(prev.data(), index), codePage,
                                                    &localState);
        std::tie(out, outlen) = growOut(tmp.size());
        if (!out)
            return {};
        out = std::copy_n(reinterpret_cast<const wchar_t *>(tmp.constData()), tmp.size(), out);
        outlen -= tmp.size();
        const qsizetype tail = toCopy - localState.remainingChars;
        if (tail >= 0) {
            // Everything left to process comes from `in`, so we can stop
            // looping. Adjust the window for `in` and unset remainingChars to
            // signal that we're done.
            mb -= localState.remainingChars;
            mblen += localState.remainingChars;
            localState.remainingChars = 0;
        }
        state->remainingChars = localState.remainingChars;
        state->invalidChars += localState.invalidChars;
        std::copy_n(localState.state_data, state->remainingChars, state->state_data);
    }

    Q_ASSERT(!state || state->remainingChars == 0 || mblen == 0);

    // Need it in this scope, since we try to decrease our window size if we
    // encounter an error
    int nextIn = qt_saturate<int>(mblen);
    while (mblen > 0) {
        std::tie(out, outlen) = growOut(1); // Need space for at least one character
        if (!out)
            return {};
        const int nextOut = qt_saturate<int>(outlen);
        int len = MultiByteToWideChar(codePage, MB_ERR_INVALID_CHARS, mb, nextIn, out, nextOut);
        if (len) {
            mb += nextIn;
            mblen -= nextIn;
            out += len;
            outlen -= len;
        } else {
            int r = GetLastError();
            if (r == ERROR_INSUFFICIENT_BUFFER) {
                const int wclen = MultiByteToWideChar(codePage, 0, mb, nextIn, 0, 0);
                std::tie(out, outlen) = growOut(wclen);
                if (!out)
                    return {};
            } else if (r == ERROR_NO_UNICODE_TRANSLATION) {
                // Can't decode the current window, so either store the state,
                // reduce window size or output a replacement character.

                // Check if we can store all remaining characters in the state
                // to be used next time we're called:
                if (state && mblen <= q20::ssize(state->state_data)) {
                    state->remainingChars = mblen;
                    std::copy_n(mb, mblen, state->state_data);
                    mb += mblen;
                    mblen = 0;
                    break;
                }

                // .. if not, try to find the last valid character in the window
                // and try again with a shrunken window:
                if (nextIn > 1) {
                    // There may be some incomplete data at the end of our current
                    // window, so decrease the window size and try again.
                    // In the worst case scenario there is gigs of undecodable
                    // garbage, but what are we supposed to do about that?
                    const auto it = CharPrevExA(codePage, mb, mb + nextIn, 0);
                    if (it != mb)
                        nextIn = int(it - mb);
                    else
                        --nextIn;
                    continue;
                }

                // Finally, we are forced to output a replacement character for
                // the first byte in the window:
                std::tie(out, outlen) = growOut(1);
                if (!out)
                    return {};
                *out = replacementCharacter;
                ++invalidChars;
                ++out;
                --outlen;
                ++mb;
                --mblen;
            } else {
                // Fail.
                qWarning("MultiByteToWideChar: Cannot convert multibyte text");
                break;
            }
        }
        nextIn = qt_saturate<int>(mblen);
    }

    if (sp.isEmpty()) {
        // We must have only used the stack buffer
        if (out != buf.data()) // else: we return null-string
            sp = QStringView(buf.data(), out).toString();
    } else{
        const auto begin = reinterpret_cast<wchar_t *>(sp.data());
        sp.truncate(std::distance(begin, out));
    }

    if (sp.size() && sp.back().isNull())
        sp.chop(1);

    if (!state && mblen > 0) {
        // We have trailing character(s) that could not be converted, and
        // nowhere to cache them
        sp.resize(sp.size() + mblen, replacementCharacter);
        invalidChars += mblen;
    }
    return sp;
}

QByteArray QLocal8Bit::convertFromUnicode_sys(QStringView in, QStringConverter::State *state)
{
    return convertFromUnicode_sys(in, CP_ACP, state);
}

QByteArray QLocal8Bit::convertFromUnicode_sys(QStringView in, quint32 codePage,
                                              QStringConverter::State *state)
{
    const wchar_t *ch = reinterpret_cast<const wchar_t *>(in.data());
    qsizetype uclen = in.size();

    Q_ASSERT(state);
    // The Windows API has a *boolean* out-parameter that says if a replacement
    // character was used, but it gives us no way to know _how many_ were used.
    // Since we cannot simply scan the string for replacement characters
    // (which is potentially a question mark, and thus a valid character),
    // we simply do not track the number of invalid characters here.
    // auto &invalidChars = state->invalidChars;

    using Flag = QStringConverter::Flag;
    if (state->flags & Flag::Stateless) { // temporary
        Q_ASSERT(state->remainingChars == 0);
        state = nullptr;
    }

    if (!ch)
        return QByteArray();
    if (uclen == 0)
        return QByteArray("");

    // Use a local stack-buffer at first to allow us a decently large container
    // to avoid a lot of resizing, without also returning an overallocated
    // QByteArray to the user for small strings.
    // Then we can be fast for small strings and take the hit of extra resizes
    // and measuring how much storage is needed for large strings.
    std::array<char, 4096> buf;
    char *out = buf.data();
    qsizetype outlen = buf.size();
    QByteArray mb;

    if (state && state->remainingChars > 0) {
        Q_ASSERT(state->remainingChars == 1);
        // Let's try to decode the pending character
        wchar_t wc[2] = { wchar_t(state->state_data[0]), ch[0] };
        // Check if the second character is a valid low surrogate,
        // otherwise we'll just decode the first character, for which windows
        // will output a replacement character.
        const bool validCodePoint = QChar::isLowSurrogate(wc[1]);
        int len = WideCharToMultiByte(codePage, 0, wc, validCodePoint ? 2 : 1, out, outlen, nullptr,
                                      nullptr);
        if (!len)
            return {}; // Cannot recover, and I refuse to believe it was a size limitation
        out += len;
        outlen -= len;
        if (validCodePoint) {
            ++ch;
            --uclen;
        }
        state->remainingChars = 0;
        state->state_data[0] = 0;
        if (uclen == 0)
            return QByteArrayView(buf.data(), len).toByteArray();
    }

    if (state && QChar::isHighSurrogate(ch[uclen - 1])) {
        // We can handle a missing low surrogate at the end of the string,
        // so if there is one, exclude it now and store it in the state.
        state->remainingChars = 1;
        state->state_data[0] = ch[uclen - 1];
        --uclen;
        if (uclen == 0)
            return QByteArray();
    }

    Q_ASSERT(uclen > 0);

    // Return a pointer to storage where we have enough space for `size`
    const auto growOut = [&](qsizetype size) -> std::tuple<char *, qsizetype> {
        if (outlen >= size)
            return {out, outlen};
        const bool wasStackBuffer = mb.isEmpty();
        const auto begin = wasStackBuffer ? buf.data() : mb.data();
        const qsizetype offset = qsizetype(std::distance(begin, out));
        qsizetype newSize = 0;
        if (Q_UNLIKELY(qAddOverflow(offset, size, &newSize))) {
            Q_CHECK_PTR(false);
            return {nullptr, 0};
        }
        mb.resize(newSize);
        auto it = mb.data();
        if (wasStackBuffer)
            it = std::copy_n(buf.data(), offset, it);
        else
            it += offset;
        return {it, size};
    };

    const auto getNextWindowSize = [&]() {
        int nextIn = qt_saturate<int>(uclen);
        // The Windows API has some issues if the current window ends in the
        // middle of a surrogate pair, so we avoid that:
        if (nextIn > 1 && QChar::isHighSurrogate(ch[nextIn - 1]))
            --nextIn;
        return nextIn;
    };

    int len = 0;
    while (uclen > 0) {
        const int nextIn = getNextWindowSize();
        std::tie(out, outlen) = growOut(1); // We need at least one byte
        if (!out)
            return {};
        const int nextOut = qt_saturate<int>(outlen);
        len = WideCharToMultiByte(codePage, 0, ch, nextIn, out, nextOut, nullptr, nullptr);
        if (len > 0) {
            ch += nextIn;
            uclen -= nextIn;
            out += len;
            outlen -= len;
        } else {
            int r = GetLastError();
            if (r == ERROR_INSUFFICIENT_BUFFER) {
                int neededLength = WideCharToMultiByte(codePage, 0, ch, nextIn, nullptr, 0,
                                                       nullptr, nullptr);
                if (neededLength <= 0) {
                    // Fail. Observed with UTF8 where the input window was max int and ended in an
                    // incomplete sequence, probably a Windows bug. We try to avoid that from
                    // happening by reducing the window size in that case. But let's keep this
                    // branch just in case of other bugs.
#ifndef QT_NO_DEBUG
                    r = GetLastError();
                    fprintf(stderr,
                            "WideCharToMultiByte: Cannot convert multibyte text (error %d)\n", r);
#endif // !QT_NO_DEBUG
                    break;
                }
                std::tie(out, outlen) = growOut(neededLength);
                if (!out)
                    return {};
                // and try again...
            } else {
                // Fail.  Probably can't happen in fact (dwFlags is 0).
#ifndef QT_NO_DEBUG
                // Can't use qWarning(), as it'll recurse to handle %ls
                fprintf(stderr,
                        "WideCharToMultiByte: Cannot convert multibyte text (error %d): %ls\n", r,
                        reinterpret_cast<const wchar_t *>(
                                QStringView(ch, uclen).left(100).toString().utf16()));
#endif
                break;
            }
        }
    }
    if (mb.isEmpty()) {
        // We must have only used the stack buffer
        if (out != buf.data()) // else: we return null-array
            mb = QByteArrayView(buf.data(), out).toByteArray();
    } else {
        mb.truncate(std::distance(mb.data(), out));
    }
    return mb;
}
#endif

void QStringConverter::State::clear() noexcept
{
    if (clearFn)
        clearFn(this);
    else
        state_data[0] = state_data[1] = state_data[2] = state_data[3] = 0;
    remainingChars = 0;
    invalidChars = 0;
    internalState = 0;
}

void QStringConverter::State::reset() noexcept
{
    if (flags & Flag::UsesIcu) {
#if QT_CONFIG(icu)
        UConverter *converter = static_cast<UConverter *>(d[0]);
        if (converter)
            ucnv_reset(converter);
#else
        Q_UNREACHABLE();
#endif
    } else {
        clear();
    }
}

#ifndef QT_BOOTSTRAPPED
static QChar *fromUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    return QUtf16::convertToUnicode(out, in, state, DetectEndianness);
}

static char *toUtf16(char *out, QStringView in, QStringConverter::State *state)
{
    return QUtf16::convertFromUnicode(out, in, state, DetectEndianness);
}

static QChar *fromUtf16BE(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    return QUtf16::convertToUnicode(out, in, state, BigEndianness);
}

static char *toUtf16BE(char *out, QStringView in, QStringConverter::State *state)
{
    return QUtf16::convertFromUnicode(out, in, state, BigEndianness);
}

static QChar *fromUtf16LE(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    return QUtf16::convertToUnicode(out, in, state, LittleEndianness);
}

static char *toUtf16LE(char *out, QStringView in, QStringConverter::State *state)
{
    return QUtf16::convertFromUnicode(out, in, state, LittleEndianness);
}

static QChar *fromUtf32(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    return QUtf32::convertToUnicode(out, in, state, DetectEndianness);
}

static char *toUtf32(char *out, QStringView in, QStringConverter::State *state)
{
    return QUtf32::convertFromUnicode(out, in, state, DetectEndianness);
}

static QChar *fromUtf32BE(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    return QUtf32::convertToUnicode(out, in, state, BigEndianness);
}

static char *toUtf32BE(char *out, QStringView in, QStringConverter::State *state)
{
    return QUtf32::convertFromUnicode(out, in, state, BigEndianness);
}

static QChar *fromUtf32LE(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    return QUtf32::convertToUnicode(out, in, state, LittleEndianness);
}

static char *toUtf32LE(char *out, QStringView in, QStringConverter::State *state)
{
    return QUtf32::convertFromUnicode(out, in, state, LittleEndianness);
}
#endif // !QT_BOOTSTRAPPED

char *QLatin1::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state) noexcept
{
    Q_ASSERT(state);
    if (state->flags & QStringConverter::Flag::Stateless) // temporary
        state = nullptr;

    const char replacement = (state && state->flags & QStringConverter::Flag::ConvertInvalidToNull) ? 0 : '?';
    qsizetype invalid = 0;
    for (qsizetype i = 0; i < in.size(); ++i) {
        if (in[i] > QChar(0xff)) {
            *out = replacement;
            ++invalid;
        } else {
            *out = (char)in[i].cell();
        }
        ++out;
    }
    if (state)
        state->invalidChars += invalid;
    return out;
}

static QChar *fromLocal8Bit(QChar *out, QByteArrayView in, QStringConverter::State *state)
{
    QString s = QLocal8Bit::convertToUnicode(in, state);
    memcpy(out, s.constData(), s.size()*sizeof(QChar));
    return out + s.size();
}

static char *toLocal8Bit(char *out, QStringView in, QStringConverter::State *state)
{
    QByteArray s = QLocal8Bit::convertFromUnicode(in, state);
    memcpy(out, s.constData(), s.size());
    return out + s.size();
}


static qsizetype fromUtf8Len(qsizetype l) { return l + 1; }
static qsizetype toUtf8Len(qsizetype l) { return 3*(l + 1); }

#ifndef QT_BOOTSTRAPPED
static qsizetype fromUtf16Len(qsizetype l) { return l/2 + 2; }
static qsizetype toUtf16Len(qsizetype l) { return 2*(l + 1); }

static qsizetype fromUtf32Len(qsizetype l) { return l/2 + 2; }
static qsizetype toUtf32Len(qsizetype l) { return 4*(l + 1); }
#endif

static qsizetype fromLatin1Len(qsizetype l) { return l + 1; }
static qsizetype toLatin1Len(qsizetype l) { return l + 1; }



/*!
  \class QStringConverterBase
  \internal

  Just a common base class for QStringConverter and QTextCodec
*/

/*!
    \class QStringConverter
    \inmodule QtCore
    \brief The QStringConverter class provides a base class for encoding and decoding text.
    \reentrant
    \ingroup i18n

    Qt uses UTF-16 to store, draw and manipulate strings. In many
    situations you may wish to deal with data that uses a different
    encoding. Most text data transferred over files and network connections is encoded
    in UTF-8.

    The QStringConverter class is a base class for the \l {QStringEncoder} and
    \l {QStringDecoder} classes that help with converting between different
    text encodings. QStringDecoder can decode a string from an encoded representation
    into UTF-16, the format Qt uses internally. QStringEncoder does the opposite
    operation, encoding UTF-16 encoded data (usually in the form of a QString) to
    the requested encoding.

    The supported encodings are:

    \list
    \li UTF-8
    \li UTF-16
    \li UTF-16BE
    \li UTF-16LE
    \li UTF-32
    \li UTF-32BE
    \li UTF-32LE
    \li ISO-8859-1 (Latin-1)
    \li The system encoding
    \endlist

    \l {QStringConverter}s can be used as follows to convert some encoded
    string to and from UTF-16.

    Suppose you have some string encoded in UTF-8, and
    want to convert it to a QString. The simple way
    to do it is to use a \l {QStringDecoder} like this:

    \snippet code/src_corelib_text_qstringconverter.cpp 0

    After this, \c string holds the text in decoded form.
    Converting a string from Unicode to the local encoding is just as
    easy using the \l {QStringEncoder} class:

    \snippet code/src_corelib_text_qstringconverter.cpp 1

    To read or write text files in various encodings, use QTextStream and
    its \l{QTextStream::setEncoding()}{setEncoding()} function.

    Some care must be taken when trying to convert the data in chunks,
    for example, when receiving it over a network. In such cases it is
    possible that a multi-byte character will be split over two
    chunks. At best this might result in the loss of a character and
    at worst cause the entire conversion to fail.

    Both QStringEncoder and QStringDecoder make this easy, by tracking
    this in an internal state. So simply calling the encoder or decoder
    again with the next chunk of data will automatically continue encoding
    or decoding the data correctly:

    \snippet code/src_corelib_text_qstringconverter.cpp 2

    The QStringDecoder object maintains state between chunks and therefore
    works correctly even if a multi-byte character is split between
    chunks.

    QStringConverter objects can't be copied because of their internal state, but
    can be moved.

    \sa QTextStream, QStringDecoder, QStringEncoder
*/

/*!
    \enum QStringConverter::Flag

    \value Default Default conversion rules apply.
    \value ConvertInvalidToNull  If this flag is set, each invalid input
                                 character is output as a null character. If it is not set,
                                 invalid input characters are represented as QChar::ReplacementCharacter
                                 if the output encoding can represent that character, otherwise as a question mark.
    \value WriteBom When converting from a QString to an output encoding, write a QChar::ByteOrderMark as the first
                    character if the output encoding supports this. This is the case for UTF-8, UTF-16 and UTF-32
                    encodings.
    \value ConvertInitialBom When converting from an input encoding to a QString the QStringDecoder usually skips an
                              leading QChar::ByteOrderMark. When this flag is set, the byte order mark will not be
                              skipped, but converted to utf-16 and inserted at the start of the created QString.
    \value Stateless Ignore possible converter states between different function calls
           to encode or decode strings. This will also cause the QStringConverter to raise an error if an incomplete
           sequence of data is encountered.
    \omitvalue UsesIcu
*/

/*!
    \enum QStringConverter::Encoding
    \value Utf8 Create a converter to or from UTF-8
    \value Utf16 Create a converter to or from UTF-16. When decoding, the byte order will get automatically
           detected by a leading byte order mark. If none exists or when encoding, the system byte order will
           be assumed.
    \value Utf16BE Create a converter to or from big-endian UTF-16.
    \value Utf16LE Create a converter to or from little-endian UTF-16.
    \value Utf32 Create a converter to or from UTF-32. When decoding, the byte order will get automatically
           detected by a leading byte order mark. If none exists or when encoding, the system byte order will
           be assumed.
    \value Utf32BE Create a converter to or from big-endian UTF-32.
    \value Utf32LE Create a converter to or from little-endian UTF-32.
    \value Latin1 Create a converter to or from ISO-8859-1 (Latin1).
    \value System Create a converter to or from the underlying encoding of the
           operating systems locale. This is always assumed to be UTF-8 for Unix based
           systems. On Windows, this converts to and from the locale code page.
    \omitvalue LastEncoding
*/

/*!
    \struct QStringConverter::Interface
    \internal
*/

const QStringConverter::Interface QStringConverter::encodingInterfaces[QStringConverter::LastEncoding + 1] =
{
    { "UTF-8", QUtf8::convertToUnicode, fromUtf8Len, QUtf8::convertFromUnicode, toUtf8Len },
#ifndef QT_BOOTSTRAPPED
    { "UTF-16", fromUtf16, fromUtf16Len, toUtf16, toUtf16Len },
    { "UTF-16LE", fromUtf16LE, fromUtf16Len, toUtf16LE, toUtf16Len },
    { "UTF-16BE", fromUtf16BE, fromUtf16Len, toUtf16BE, toUtf16Len },
    { "UTF-32", fromUtf32, fromUtf32Len, toUtf32, toUtf32Len },
    { "UTF-32LE", fromUtf32LE, fromUtf32Len, toUtf32LE, toUtf32Len },
    { "UTF-32BE", fromUtf32BE, fromUtf32Len, toUtf32BE, toUtf32Len },
#endif
    { "ISO-8859-1", QLatin1::convertToUnicode, fromLatin1Len, QLatin1::convertFromUnicode, toLatin1Len },
    { "Locale", fromLocal8Bit, fromUtf8Len, toLocal8Bit, toUtf8Len }
};

// match names case insensitive and skipping '-' and '_'
static bool nameMatch(const char *a, const char *b)
{
    do {
        while (*a == '-' || *a == '_')
            ++a;
        while (*b == '-' || *b == '_')
            ++b;
        if (!*a && !*b) // end of both strings
            return true;
    } while (QtMiscUtils::toAsciiLower(*a++) == QtMiscUtils::toAsciiLower(*b++));

    return false;
}


/*!
    \fn constexpr QStringConverter::QStringConverter()
    \internal
*/

/*!
    \fn constexpr QStringConverter::QStringConverter(Encoding, Flags)
    \internal
*/


#if QT_CONFIG(icu)
// only derives from QStringConverter to get access to protected types
struct QStringConverterICU : QStringConverter
{
    static void clear_function(QStringConverterBase::State *state) noexcept
    {
        ucnv_close(static_cast<UConverter *>(state->d[0]));
        state->d[0] = nullptr;
    }

    static void ensureConverter(QStringConverter::State *state)
    {
        // old code might reset the state via clear instead of reset
        // in that case, the converter has been closed, and we have to reopen it
        if (state->d[0] == nullptr)
            state->d[0] = createConverterForName(static_cast<const char *>(state->d[1]), state);
    }

    static QChar *toUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state)
    {
        ensureConverter(state);

        auto icu_conv = static_cast<UConverter *>(state->d[0]);
        UErrorCode err = U_ZERO_ERROR;
        auto source = in.data();
        auto sourceLimit = in.data() + in.size();

        qsizetype length = toLen(in.size());

        UChar *target = reinterpret_cast<UChar *>(out);
        auto targetLimit = target + length;
        // We explicitly clean up anyway, so no need to set flush to true,
        // which would just reset the converter.
        UBool flush = false;

        // If the QStringConverter was moved, the state that we used as a context is stale now.
        UConverterToUCallback action;
        const void *context;
        ucnv_getToUCallBack(icu_conv, &action, &context);
        if (context != state)
             ucnv_setToUCallBack(icu_conv, action, &state, nullptr, nullptr, &err);

        ucnv_toUnicode(icu_conv, &target, targetLimit, &source, sourceLimit, nullptr, flush, &err);
        // We did reserve enough space:
        Q_ASSERT(err != U_BUFFER_OVERFLOW_ERROR);
        if (state->flags.testFlag(QStringConverter::Flag::Stateless)) {
            if (auto leftOver = ucnv_toUCountPending(icu_conv, &err)) {
                ucnv_reset(icu_conv);
                state->invalidChars += leftOver;
            }
        }
        return reinterpret_cast<QChar *>(target);
    }

    static char *fromUtf16(char *out, QStringView in, QStringConverter::State *state)
    {
        ensureConverter(state);
        auto icu_conv = static_cast<UConverter *>(state->d[0]);
        UErrorCode err = U_ZERO_ERROR;
        auto source = reinterpret_cast<const UChar *>(in.data());
        auto sourceLimit = reinterpret_cast<const UChar *>(in.data() + in.size());

        qsizetype length = UCNV_GET_MAX_BYTES_FOR_STRING(in.size(), ucnv_getMaxCharSize(icu_conv));

        char *target = out;
        char *targetLimit = out + length;
        UBool flush = false;

        // If the QStringConverter was moved, the state that we used as a context is stale now.
        UConverterFromUCallback action;
        const void *context;
        ucnv_getFromUCallBack(icu_conv, &action, &context);
        if (context != state)
             ucnv_setFromUCallBack(icu_conv, action, &state, nullptr, nullptr, &err);

        ucnv_fromUnicode(icu_conv, &target, targetLimit, &source, sourceLimit, nullptr, flush, &err);
        // We did reserve enough space:
        Q_ASSERT(err != U_BUFFER_OVERFLOW_ERROR);
        if (state->flags.testFlag(QStringConverter::Flag::Stateless)) {
            if (auto leftOver = ucnv_fromUCountPending(icu_conv, &err)) {
                ucnv_reset(icu_conv);
                state->invalidChars += leftOver;
            }
        }
        return target;
    }

    Q_DISABLE_COPY_MOVE(QStringConverterICU)

    template<qsizetype X>
    static qsizetype fromLen(qsizetype inLength)
    {
        return X * inLength * sizeof(UChar);
    }

    static qsizetype toLen(qsizetype inLength)
    {

        /* Assumption: each input char might map to a different codepoint
           Each codepoint can take up to 4 bytes == 2 QChar
           We can ignore reserving space for a BOM, as only UTF encodings use one
           and those are not handled by the ICU converter.
         */
        return 2 * inLength;
    }

    static constexpr QStringConverter::Interface forLength[] = {
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<1>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<2>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<3>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<4>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<5>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<6>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<7>},
        {"icu, recompile if you see this", QStringConverterICU::toUtf16, QStringConverterICU::toLen, QStringConverterICU::fromUtf16, QStringConverterICU::fromLen<8>}
    };

    static UConverter *createConverterForName(const char *name, const State *state)
    {
        Q_ASSERT(name);
        Q_ASSERT(state);
        UErrorCode status = U_ZERO_ERROR;
        UConverter *conv = ucnv_open(name, &status);
        if (status != U_ZERO_ERROR && status != U_AMBIGUOUS_ALIAS_WARNING) {
            ucnv_close(conv);
            return nullptr;
        }

        if (state->flags.testFlag(Flag::ConvertInvalidToNull)) {
            UErrorCode error = U_ZERO_ERROR;

            auto nullToSubstituter = [](const void *context, UConverterToUnicodeArgs *toUArgs,
                                        const char *, int32_t length,
                                        UConverterCallbackReason reason, UErrorCode *err) {
                if (reason <= UCNV_IRREGULAR) {
                    *err = U_ZERO_ERROR;
                    UChar c = '\0';
                    ucnv_cbToUWriteUChars(toUArgs, &c, 1, 0, err);
                    // Recover outer scope's state (which isn't const) from context:
                    auto state = const_cast<State *>(static_cast<const State *>(context));
                    state->invalidChars += length;
                }
            };
            ucnv_setToUCallBack(conv, nullToSubstituter, state, nullptr, nullptr, &error);

            auto nullFromSubstituter = [](const void *context, UConverterFromUnicodeArgs *fromUArgs,
                                          const UChar *, int32_t length,
                                          UChar32, UConverterCallbackReason reason, UErrorCode *err) {
                if (reason <= UCNV_IRREGULAR) {
                    *err = U_ZERO_ERROR;
                    const UChar replacement[] = { 0 };
                    const UChar *stringBegin = std::begin(replacement);
                    ucnv_cbFromUWriteUChars(fromUArgs, &stringBegin, std::end(replacement), 0, err);
                    // Recover outer scope's state (which isn't const) from context:
                    auto state = const_cast<State *>(static_cast<const State *>(context));
                    state->invalidChars += length;
                }
            };
            ucnv_setFromUCallBack(conv, nullFromSubstituter, state, nullptr, nullptr, &error);
        } else {
            UErrorCode error = U_ZERO_ERROR;

            auto qmarkToSubstituter = [](const void *context, UConverterToUnicodeArgs *toUArgs,
                                         const char *codeUnits,int32_t length,
                                         UConverterCallbackReason reason, UErrorCode *err) {
                if (reason <= UCNV_IRREGULAR) {
                    // Recover outer scope's state (which isn't const) from context:
                    auto state = const_cast<State *>(static_cast<const State *>(context));
                    state->invalidChars += length;
                }
                // use existing ICU callback for logic
                UCNV_TO_U_CALLBACK_SUBSTITUTE(nullptr, toUArgs, codeUnits, length, reason, err);

            };
            ucnv_setToUCallBack(conv, qmarkToSubstituter, state, nullptr, nullptr, &error);

            auto qmarkFromSubstituter = [](const void *context, UConverterFromUnicodeArgs *fromUArgs,
                                           const UChar *codeUnits, int32_t length,
                                           UChar32 codePoint, UConverterCallbackReason reason, UErrorCode *err) {
                if (reason <= UCNV_IRREGULAR) {
                    // Recover outer scope's state (which isn't const) from context:
                    auto state = const_cast<State *>(static_cast<const State *>(context));
                    state->invalidChars += length;
                }
                // use existing ICU callback for logic
                UCNV_FROM_U_CALLBACK_SUBSTITUTE(nullptr, fromUArgs, codeUnits, length,
                                                codePoint, reason, err);
            };
            ucnv_setFromUCallBack(conv, qmarkFromSubstituter, state, nullptr, nullptr, &error);
        }
        return conv;
    }

    static const QStringConverter::Interface *make_icu_converter(
            QStringConverterBase::State *state,
            const char *name)
    {
        UErrorCode status = U_ZERO_ERROR;
        UConverter *conv = createConverterForName(name, state);
        if (!conv)
            return nullptr;

        const char *icuName = ucnv_getName(conv, &status);
        // ucnv_getStandardName returns a name which is owned by the library
        // we can thus store it in the state without worrying aobut its lifetime
        const char *persistentName = ucnv_getStandardName(icuName, "MIME", &status);
        if (U_FAILURE(status) || !persistentName) {
             status = U_ZERO_ERROR;
             persistentName = ucnv_getStandardName(icuName, "IANA", &status);
        }
        state->d[1] = const_cast<char *>(persistentName);
        state->d[0] = conv;
        state->flags |= QStringConverterBase::Flag::UsesIcu;
        qsizetype maxCharSize = ucnv_getMaxCharSize(conv);
        state->clearFn = QStringConverterICU::clear_function;
        if (maxCharSize > 8 || maxCharSize < 1) {
            qWarning("Encountered unexpected codec \"%s\" which requires >8x space", name);
            return nullptr;
        } else {
            return &forLength[maxCharSize - 1];
        }

    }

};
#endif

/*!
    \internal
*/
QStringConverter::QStringConverter(const char *name, Flags f)
    : iface(nullptr), state(f)
{
    auto e = encodingForName(name);
    if (e)
        iface = encodingInterfaces + int(*e);
#if QT_CONFIG(icu)
    else
        iface = QStringConverterICU::make_icu_converter(&state, name);
#endif
}


const char *QStringConverter::name() const noexcept
{
    if (!iface)
        return nullptr;
    if (state.flags & QStringConverter::Flag::UsesIcu) {
#if QT_CONFIG(icu)
        return static_cast<const char*>(state.d[1]);
#else
        return nullptr;
#endif
    } else {
        return iface->name;
    }
}

/*!
    \fn bool QStringConverter::isValid() const

    Returns true if this is a valid string converter that can be used for encoding or
    decoding text.

    Default constructed string converters or converters constructed with an unsupported
    name are not valid.
*/

/*!
    \fn void QStringConverter::resetState()

    Resets the internal state of the converter, clearing potential errors or partial
    conversions.
*/

/*!
    \fn bool QStringConverter::hasError() const

    Returns true if a conversion could not correctly convert a character. This could for example
    get triggered by an invalid UTF-8 sequence or when a character can't get converted due to
    limitations in the target encoding.
*/

/*!
    \fn const char *QStringConverter::name() const

    Returns the canonical name of the encoding this QStringConverter can encode or decode.
    Returns a nullptr if the converter is not valid.
    The returned name is UTF-8 encoded.

    \sa isValid()
*/

/*!
    Convert \a name to the corresponding \l Encoding member, if there is one.

    If the \a name is not the name of a codec listed in the Encoding enumeration,
    \c{std::nullopt} is returned. Such a name may, none the less, be accepted by
    the QStringConverter constructor when Qt is built with ICU, if ICU provides a
    converter with the given name.

    \a name is expected to be UTF-8 encoded.
*/
std::optional<QStringConverter::Encoding> QStringConverter::encodingForName(const char *name) noexcept
{
    if (!name)
        return std::nullopt;
    for (qsizetype i = 0; i < LastEncoding + 1; ++i) {
        if (nameMatch(encodingInterfaces[i].name, name))
            return QStringConverter::Encoding(i);
    }
    if (nameMatch(name, "latin1"))
        return QStringConverter::Latin1;
    return std::nullopt;
}

#ifndef QT_BOOTSTRAPPED
/*!
   Returns the encoding for the content of \a data if it can be determined.
   \a expectedFirstCharacter can be passed as an additional hint to help determine
   the encoding.

   The returned optional is empty, if the encoding is unclear.
 */
std::optional<QStringConverter::Encoding>
QStringConverter::encodingForData(QByteArrayView data, char16_t expectedFirstCharacter) noexcept
{
    // someone set us up the BOM?
    qsizetype arraySize = data.size();
    if (arraySize > 3) {
        char32_t uc = qFromUnaligned<char32_t>(data.data());
        if (uc == qToBigEndian(char32_t(QChar::ByteOrderMark)))
            return QStringConverter::Utf32BE;
        if (uc == qToLittleEndian(char32_t(QChar::ByteOrderMark)))
            return QStringConverter::Utf32LE;
        if (expectedFirstCharacter) {
            // catch also anything starting with the expected character
            if (qToLittleEndian(uc) == expectedFirstCharacter)
                return QStringConverter::Utf32LE;
            else if (qToBigEndian(uc) == expectedFirstCharacter)
                return QStringConverter::Utf32BE;
        }
    }

    if (arraySize > 2) {
        if (memcmp(data.data(), utf8bom, sizeof(utf8bom)) == 0)
            return QStringConverter::Utf8;
    }

    if (arraySize > 1) {
        char16_t uc = qFromUnaligned<char16_t>(data.data());
        if (uc == qToBigEndian(char16_t(QChar::ByteOrderMark)))
            return QStringConverter::Utf16BE;
        if (uc == qToLittleEndian(char16_t(QChar::ByteOrderMark)))
            return QStringConverter::Utf16LE;
        if (expectedFirstCharacter) {
            // catch also anything starting with the expected character
            if (qToLittleEndian(uc) == expectedFirstCharacter)
                return QStringConverter::Utf16LE;
            else if (qToBigEndian(uc) == expectedFirstCharacter)
                return QStringConverter::Utf16BE;
        }
    }
    return std::nullopt;
}

static QByteArray parseHtmlMetaForEncoding(QByteArrayView data)
{
    static constexpr auto metaSearcher = qMakeStaticByteArrayMatcher("meta ");
    static constexpr auto charsetSearcher = qMakeStaticByteArrayMatcher("charset=");

    QByteArray header = data.first(qMin(data.size(), qsizetype(1024))).toByteArray().toLower();
    qsizetype pos = metaSearcher.indexIn(header);
    if (pos != -1) {
        pos = charsetSearcher.indexIn(header, pos);
        if (pos != -1) {
            pos += qstrlen("charset=");
            if (pos < header.size() && (header.at(pos) == '\"' || header.at(pos) == '\''))
                ++pos;

            qsizetype pos2 = pos;
            // The attribute can be closed with either """, "'", ">" or "/",
            // none of which are valid charset characters.
            while (++pos2 < header.size()) {
                char ch = header.at(pos2);
                if (ch == '\"' || ch == '\'' || ch == '>' || ch == '/') {
                    QByteArray name = header.mid(pos, pos2 - pos);
                    qsizetype colon = name.indexOf(':');
                    if (colon > 0)
                        name = name.left(colon);
                    name = name.simplified();
                    if (name == "unicode") // QTBUG-41998, ICU will return UTF-16.
                        name = QByteArrayLiteral("UTF-8");
                    if (!name.isEmpty())
                        return name;
                }
            }
        }
    }
    return QByteArray();
}

/*!
    Tries to determine the encoding of the HTML in \a data by looking at leading byte
    order marks or a charset specifier in the HTML meta tag. If the optional is empty,
    the encoding specified is not supported by QStringConverter. If no encoding is
    detected, the method returns Utf8.

    \sa QStringDecoder::decoderForHtml()
*/
std::optional<QStringConverter::Encoding> QStringConverter::encodingForHtml(QByteArrayView data)
{
    // determine charset
    std::optional<QStringConverter::Encoding> encoding = encodingForData(data);
    if (encoding)
        // trust the initial BOM
        return encoding;

    QByteArray encodingTag = parseHtmlMetaForEncoding(data);
    if (!encodingTag.isEmpty())
        return encodingForName(encodingTag);

    return Utf8;
}

static qsizetype availableCodecCount()
{
#if !QT_CONFIG(icu)
    return QStringConverter::Encoding::LastEncoding;
#else
    /* icu contains also the names of what Qt provides
       except for the special Locale one (so add one for it)
    */
    return 1 + ucnv_countAvailable();
#endif
}

/*!
    Returns a list of names of supported codecs. The names returned
    by this function can be passed to QStringEncoder's and
    QStringDecoder's constructor to create a en- or decoder for
    the given codec.

    \note The order of codecs is an internal implementation detail
    and not guaranteed to be stable.
 */
QStringList QStringConverter::availableCodecs()
{
    auto availableCodec = [](qsizetype index) -> QString
    {
    #if !QT_CONFIG(icu)
        return QString::fromLatin1(encodingInterfaces[index].name);
    #else
        if (index == 0) // "Locale", not provided by icu
            return QString::fromLatin1(
                        encodingInterfaces[QStringConverter::Encoding::System].name);
        // this mirrors the setup we do to set a converters name
        UErrorCode status = U_ZERO_ERROR;
        auto icuName = ucnv_getAvailableName(int32_t(index - 1));
        const char *standardName = ucnv_getStandardName(icuName, "MIME", &status);
        if (U_FAILURE(status) || !standardName) {
            status = U_ZERO_ERROR;
            standardName = ucnv_getStandardName(icuName, "IANA", &status);
        }
        if (!standardName)
            standardName = icuName;
        return QString::fromLatin1(standardName);
    #endif
    };

    qsizetype codecCount = availableCodecCount();
    QStringList result;
    result.reserve(codecCount);
    for (qsizetype i = 0; i < codecCount; ++i)
        result.push_back(availableCodec(i));
    return result;
}

/*!
    Tries to determine the encoding of the HTML in \a data by looking at leading byte
    order marks or a charset specifier in the HTML meta tag and returns a QStringDecoder
    matching the encoding. If the returned decoder is not valid,
    the encoding specified is not supported by QStringConverter. If no encoding is
    detected, the method returns a decoder for Utf8.

    \sa isValid()
*/
QStringDecoder QStringDecoder::decoderForHtml(QByteArrayView data)
{
    // determine charset
    std::optional<QStringConverter::Encoding> encoding = encodingForData(data);
    if (encoding)
        // trust the initial BOM
        return QStringDecoder(encoding.value());

    QByteArray encodingTag = parseHtmlMetaForEncoding(data);
    if (!encodingTag.isEmpty())
        return QStringDecoder(encodingTag);

    return QStringDecoder(Utf8);
}
#endif // !QT_BOOTSTRAPPED

/*!
    Returns the canonical name for encoding \a e.
*/
const char *QStringConverter::nameForEncoding(QStringConverter::Encoding e)
{
    return encodingInterfaces[int(e)].name;
}

/*!
    \class QStringEncoder
    \inmodule QtCore
    \brief The QStringEncoder class provides a state-based encoder for text.
    \reentrant
    \ingroup i18n

    A text encoder converts text from Qt's internal representation into an encoded
    text format using a specific encoding.

    Converting a string from Unicode to the local encoding can be achieved
    using the following code:

    \snippet code/src_corelib_text_qstringconverter.cpp 1

    The encoder remembers any state that is required between calls, so converting
    data received in chunks, for example, when receiving it over a network, is just as
    easy, by calling the encoder whenever new data is available:

    \snippet code/src_corelib_text_qstringconverter.cpp 3

    The QStringEncoder object maintains state between chunks and therefore
    works correctly even if a UTF-16 surrogate character is split between
    chunks.

    QStringEncoder objects can't be copied because of their internal state, but
    can be moved.

    \sa QStringConverter, QStringDecoder
*/

/*!
    \fn constexpr QStringEncoder::QStringEncoder(const Interface *i)
    \internal
*/

/*!
    \fn constexpr QStringEncoder::QStringEncoder()

    Default constructs an encoder. The default encoder is not valid,
    and can't be used for converting text.
*/

/*!
    \fn constexpr QStringEncoder::QStringEncoder(Encoding encoding, Flags flags = Flag::Default)

    Creates an encoder object using \a encoding and \a flags.
*/

/*!
    \fn constexpr QStringEncoder::QStringEncoder(const char *name, Flags flags = Flag::Default)

    Creates an encoder object using \a name and \a flags.
    If \a name is not the name of a known encoding an invalid converter will get created.

    \sa isValid()
*/

/*!
    \fn QStringEncoder::DecodedData<const QString &> QStringEncoder::encode(const QString &in)
    \fn QStringEncoder::DecodedData<QStringView> QStringEncoder::encode(QStringView in)
    \fn QStringEncoder::DecodedData<const QString &> QStringEncoder::operator()(const QString &in)
    \fn QStringEncoder::DecodedData<QStringView> QStringEncoder::operator()(QStringView in)

    Converts \a in and returns a struct that is implicitly convertible to QByteArray.

    \snippet code/src_corelib_text_qstringconverter.cpp 5
*/

/*!
    \fn qsizetype QStringEncoder::requiredSpace(qsizetype inputLength) const

    Returns the maximum amount of characters required to be able to process
    \a inputLength decoded data.

    \sa appendToBuffer()
*/

/*!
    \fn char *QStringEncoder::appendToBuffer(char *out, QStringView in)

    Encodes \a in and writes the encoded result into the buffer
    starting at \a out. Returns a pointer to the end of the data written.

    \note \a out must be large enough to be able to hold all the decoded data. Use
    requiredSpace() to determine the maximum size requirement to be able to encode
    \a in.

    \sa requiredSpace()
*/

/*!
    \class QStringDecoder
    \inmodule QtCore
    \brief The QStringDecoder class provides a state-based decoder for text.
    \reentrant
    \ingroup i18n

    A text decoder converts text an encoded text format that uses a specific encoding
    into Qt's internal representation.

    Converting encoded data into a QString can be achieved
    using the following code:

    \snippet code/src_corelib_text_qstringconverter.cpp 0

    The decoder remembers any state that is required between calls, so converting
    data received in chunks, for example, when receiving it over a network, is just as
    easy, by calling the decoder whenever new data is available:

    \snippet code/src_corelib_text_qstringconverter.cpp 2

    The QStringDecoder object maintains state between chunks and therefore
    works correctly even if chunks are split in the middle of a multi-byte character
    sequence.

    QStringDecoder objects can't be copied because of their internal state, but
    can be moved.

    \sa QStringConverter, QStringEncoder
*/

/*!
    \fn constexpr QStringDecoder::QStringDecoder(const Interface *i)
    \internal
*/

/*!
    \fn constexpr QStringDecoder::QStringDecoder()

    Default constructs an decoder. The default decoder is not valid,
    and can't be used for converting text.
*/

/*!
    \fn constexpr QStringDecoder::QStringDecoder(Encoding encoding, Flags flags = Flag::Default)

    Creates an decoder object using \a encoding and \a flags.
*/

/*!
    \fn constexpr QStringDecoder::QStringDecoder(const char *name, Flags flags = Flag::Default)

    Creates an decoder object using \a name and \a flags.
    If \a name is not the name of a known encoding an invalid converter will get created.

    \sa isValid()
*/

/*!
    \fn QStringDecoder::EncodedData<const QByteArray &> QStringDecoder::operator()(const QByteArray &ba)
    \fn QStringDecoder::EncodedData<const QByteArray &> QStringDecoder::decode(const QByteArray &ba)
    \fn QStringDecoder::EncodedData<QByteArrayView> QStringDecoder::operator()(QByteArrayView ba)
    \fn QStringDecoder::EncodedData<QByteArrayView> QStringDecoder::decode(QByteArrayView ba)

    Converts \a ba and returns a struct that is implicitly convertible to QString.


    \snippet code/src_corelib_text_qstringconverter.cpp 4
*/

/*!
    \fn qsizetype QStringDecoder::requiredSpace(qsizetype inputLength) const

    Returns the maximum amount of UTF-16 code units required to be able to process
    \a inputLength encoded data.

    \sa appendToBuffer
*/

/*!
    \fn QChar *QStringDecoder::appendToBuffer(QChar *out, QByteArrayView in)

    Decodes the sequence of bytes viewed by \a in and writes the decoded result into
    the buffer starting at \a out. Returns a pointer to the end of data written.

    \a out needs to be large enough to be able to hold all the decoded data. Use
    \l{requiredSpace} to determine the maximum size requirements to decode an encoded
    data buffer of \c in.size() bytes.

    \sa requiredSpace
*/

/*!
    \fn char16_t *QStringDecoder::appendToBuffer(char16_t *out, QByteArrayView in)
    \since 6.6
    \overload
*/

QT_END_NAMESPACE