aboutsummaryrefslogtreecommitdiffstats
path: root/src/qml/memory/qv4mm.cpp
blob: 8f6a6503fc63309d74d94633a1a1fae998e8c2c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
// Copyright (C) 2021 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only

#include "qv4engine_p.h"
#include "qv4object_p.h"
#include "qv4mm_p.h"
#include "qv4qobjectwrapper_p.h"
#include "qv4identifiertable_p.h"
#include <QtCore/qalgorithms.h>
#include <QtCore/private/qnumeric_p.h>
#include <QtCore/qloggingcategory.h>
#include <private/qv4alloca_p.h>
#include <qqmlengine.h>
#include "PageReservation.h"
#include "PageAllocation.h"

#include <QElapsedTimer>
#include <QMap>
#include <QScopedValueRollback>

#include <iostream>
#include <cstdlib>
#include <algorithm>
#include "qv4profiling_p.h"
#include "qv4mapobject_p.h"
#include "qv4setobject_p.h"

#include <chrono>

//#define MM_STATS

#if !defined(MM_STATS) && !defined(QT_NO_DEBUG)
#define MM_STATS
#endif

#if MM_DEBUG
#define DEBUG qDebug() << "MM:"
#else
#define DEBUG if (1) ; else qDebug() << "MM:"
#endif

#ifdef V4_USE_VALGRIND
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#endif

#ifdef V4_USE_HEAPTRACK
#include <heaptrack_api.h>
#endif

#if OS(QNX)
#include <sys/storage.h>   // __tls()
#endif

#if USE(PTHREADS) && HAVE(PTHREAD_NP_H)
#include <pthread_np.h>
#endif

Q_LOGGING_CATEGORY(lcGcStats, "qt.qml.gc.statistics")
Q_DECLARE_LOGGING_CATEGORY(lcGcStats)
Q_LOGGING_CATEGORY(lcGcAllocatorStats, "qt.qml.gc.allocatorStats")
Q_DECLARE_LOGGING_CATEGORY(lcGcAllocatorStats)

using namespace WTF;

QT_BEGIN_NAMESPACE

namespace QV4 {

enum {
    MinSlotsGCLimit = QV4::Chunk::AvailableSlots*16,
    GCOverallocation = 200 /* Max overallocation by the GC in % */
};

struct MemorySegment {
    enum {
#ifdef Q_OS_RTEMS
        NumChunks = sizeof(quint64),
#else
        NumChunks = 8*sizeof(quint64),
#endif
        SegmentSize = NumChunks*Chunk::ChunkSize,
    };

    MemorySegment(size_t size)
    {
        size += Chunk::ChunkSize; // make sure we can get enough 64k alignment memory
        if (size < SegmentSize)
            size = SegmentSize;

        pageReservation = PageReservation::reserve(size, OSAllocator::JSGCHeapPages);
        base = reinterpret_cast<Chunk *>((reinterpret_cast<quintptr>(pageReservation.base()) + Chunk::ChunkSize - 1) & ~(Chunk::ChunkSize - 1));
        nChunks = NumChunks;
        availableBytes = size - (reinterpret_cast<quintptr>(base) - reinterpret_cast<quintptr>(pageReservation.base()));
        if (availableBytes < SegmentSize)
            --nChunks;
    }
    MemorySegment(MemorySegment &&other) {
        qSwap(pageReservation, other.pageReservation);
        qSwap(base, other.base);
        qSwap(allocatedMap, other.allocatedMap);
        qSwap(availableBytes, other.availableBytes);
        qSwap(nChunks, other.nChunks);
    }

    ~MemorySegment() {
        if (base)
            pageReservation.deallocate();
    }

    void setBit(size_t index) {
        Q_ASSERT(index < nChunks);
        quint64 bit = static_cast<quint64>(1) << index;
//        qDebug() << "    setBit" << hex << index << (index & (Bits - 1)) << bit;
        allocatedMap |= bit;
    }
    void clearBit(size_t index) {
        Q_ASSERT(index < nChunks);
        quint64 bit = static_cast<quint64>(1) << index;
//        qDebug() << "    setBit" << hex << index << (index & (Bits - 1)) << bit;
        allocatedMap &= ~bit;
    }
    bool testBit(size_t index) const {
        Q_ASSERT(index < nChunks);
        quint64 bit = static_cast<quint64>(1) << index;
        return (allocatedMap & bit);
    }

    Chunk *allocate(size_t size);
    void free(Chunk *chunk, size_t size) {
        DEBUG << "freeing chunk" << chunk;
        size_t index = static_cast<size_t>(chunk - base);
        size_t end = qMin(static_cast<size_t>(NumChunks), index + (size - 1)/Chunk::ChunkSize + 1);
        while (index < end) {
            Q_ASSERT(testBit(index));
            clearBit(index);
            ++index;
        }

        size_t pageSize = WTF::pageSize();
        size = (size + pageSize - 1) & ~(pageSize - 1);
#if !defined(Q_OS_LINUX) && !defined(Q_OS_WIN)
        // Linux and Windows zero out pages that have been decommitted and get committed again.
        // unfortunately that's not true on other OSes (e.g. BSD based ones), so zero out the
        // memory before decommit, so that we can be sure that all chunks we allocate will be
        // zero initialized.
        memset(chunk, 0, size);
#endif
        pageReservation.decommit(chunk, size);
    }

    bool contains(Chunk *c) const {
        return c >= base && c < base + nChunks;
    }

    PageReservation pageReservation;
    Chunk *base = nullptr;
    quint64 allocatedMap = 0;
    size_t availableBytes = 0;
    uint nChunks = 0;
};

Chunk *MemorySegment::allocate(size_t size)
{
    if (!allocatedMap && size >= SegmentSize) {
        // chunk allocated for one huge allocation
        Q_ASSERT(availableBytes >= size);
        pageReservation.commit(base, size);
        allocatedMap = ~static_cast<quint64>(0);
        return base;
    }
    size_t requiredChunks = (size + sizeof(Chunk) - 1)/sizeof(Chunk);
    uint sequence = 0;
    Chunk *candidate = nullptr;
    for (uint i = 0; i < nChunks; ++i) {
        if (!testBit(i)) {
            if (!candidate)
                candidate = base + i;
            ++sequence;
        } else {
            candidate = nullptr;
            sequence = 0;
        }
        if (sequence == requiredChunks) {
            pageReservation.commit(candidate, size);
            for (uint i = 0; i < requiredChunks; ++i)
                setBit(candidate - base + i);
            DEBUG << "allocated chunk " << candidate << Qt::hex << size;

            return candidate;
        }
    }
    return nullptr;
}

struct ChunkAllocator {
    ChunkAllocator() {}

    size_t requiredChunkSize(size_t size) {
        size += Chunk::HeaderSize; // space required for the Chunk header
        size_t pageSize = WTF::pageSize();
        size = (size + pageSize - 1) & ~(pageSize - 1); // align to page sizes
        if (size < Chunk::ChunkSize)
            size = Chunk::ChunkSize;
        return size;
    }

    Chunk *allocate(size_t size = 0);
    void free(Chunk *chunk, size_t size = 0);

    std::vector<MemorySegment> memorySegments;
};

Chunk *ChunkAllocator::allocate(size_t size)
{
    size = requiredChunkSize(size);
    for (auto &m : memorySegments) {
        if (~m.allocatedMap) {
            Chunk *c = m.allocate(size);
            if (c)
                return c;
        }
    }

    // allocate a new segment
    memorySegments.push_back(MemorySegment(size));
    Chunk *c = memorySegments.back().allocate(size);
    Q_ASSERT(c);
    return c;
}

void ChunkAllocator::free(Chunk *chunk, size_t size)
{
    size = requiredChunkSize(size);
    for (auto &m : memorySegments) {
        if (m.contains(chunk)) {
            m.free(chunk, size);
            return;
        }
    }
    Q_ASSERT(false);
}

#ifdef DUMP_SWEEP
QString binary(quintptr n) {
    QString s = QString::number(n, 2);
    while (s.length() < 64)
        s.prepend(QChar::fromLatin1('0'));
    return s;
}
#define SDUMP qDebug
#else
QString binary(quintptr) { return QString(); }
#define SDUMP if (1) ; else qDebug
#endif

// Stores a classname -> freed count mapping.
typedef QHash<const char*, int> MMStatsHash;
Q_GLOBAL_STATIC(MMStatsHash, freedObjectStatsGlobal)

// This indirection avoids sticking QHash code in each of the call sites, which
// shaves off some instructions in the case that it's unused.
static void increaseFreedCountForClass(const char *className)
{
    (*freedObjectStatsGlobal())[className]++;
}

//bool Chunk::sweep(ClassDestroyStatsCallback classCountPtr)
bool Chunk::sweep(ExecutionEngine *engine)
{
    bool hasUsedSlots = false;
    SDUMP() << "sweeping chunk" << this;
    HeapItem *o = realBase();
    bool lastSlotFree = false;
    for (uint i = 0; i < Chunk::EntriesInBitmap; ++i) {
        quintptr toFree = objectBitmap[i] ^ blackBitmap[i];
        Q_ASSERT((toFree & objectBitmap[i]) == toFree); // check all black objects are marked as being used
        quintptr e = extendsBitmap[i];
        SDUMP() << "   index=" << i;
        SDUMP() << "        toFree      =" << binary(toFree);
        SDUMP() << "        black       =" << binary(blackBitmap[i]);
        SDUMP() << "        object      =" << binary(objectBitmap[i]);
        SDUMP() << "        extends     =" << binary(e);
        if (lastSlotFree)
            e &= (e + 1); // clear all lowest extent bits
        while (toFree) {
            uint index = qCountTrailingZeroBits(toFree);
            quintptr bit = (static_cast<quintptr>(1) << index);

            toFree ^= bit; // mask out freed slot
            //            DEBUG << "       index" << hex << index << toFree;

            // remove all extends slots that have been freed
            // this is a bit of bit trickery.
            quintptr mask = (bit << 1) - 1; // create a mask of 1's to the right of and up to the current bit
            quintptr objmask = e | mask; // or'ing mask with e gives all ones until the end of the current object
            quintptr result = objmask + 1;
            Q_ASSERT(qCountTrailingZeroBits(result) - index != 0); // ensure we freed something
            result |= mask; // ensure we don't clear stuff to the right of the current object
            e &= result;

            HeapItem *itemToFree = o + index;
            Heap::Base *b = *itemToFree;
            const VTable *v = b->internalClass->vtable;
//            if (Q_UNLIKELY(classCountPtr))
//                classCountPtr(v->className);
            if (v->destroy) {
                v->destroy(b);
                b->_checkIsDestroyed();
            }
#ifdef V4_USE_HEAPTRACK
            heaptrack_report_free(itemToFree);
#endif
        }
        Q_V4_PROFILE_DEALLOC(engine, qPopulationCount((objectBitmap[i] | extendsBitmap[i])
                                                      - (blackBitmap[i] | e)) * Chunk::SlotSize,
                             Profiling::SmallItem);
        objectBitmap[i] = blackBitmap[i];
        hasUsedSlots |= (blackBitmap[i] != 0);
        extendsBitmap[i] = e;
        lastSlotFree = !((objectBitmap[i]|extendsBitmap[i]) >> (sizeof(quintptr)*8 - 1));
        SDUMP() << "        new extends =" << binary(e);
        SDUMP() << "        lastSlotFree" << lastSlotFree;
        Q_ASSERT((objectBitmap[i] & extendsBitmap[i]) == 0);
        o += Chunk::Bits;
    }
    //    DEBUG << "swept chunk" << this << "freed" << slotsFreed << "slots.";
    return hasUsedSlots;
}

void Chunk::freeAll(ExecutionEngine *engine)
{
    //    DEBUG << "sweeping chunk" << this << (*freeList);
    HeapItem *o = realBase();
    for (uint i = 0; i < Chunk::EntriesInBitmap; ++i) {
        quintptr toFree = objectBitmap[i];
        quintptr e = extendsBitmap[i];
        //        DEBUG << hex << "   index=" << i << toFree;
        while (toFree) {
            uint index = qCountTrailingZeroBits(toFree);
            quintptr bit = (static_cast<quintptr>(1) << index);

            toFree ^= bit; // mask out freed slot
            //            DEBUG << "       index" << hex << index << toFree;

            // remove all extends slots that have been freed
            // this is a bit of bit trickery.
            quintptr mask = (bit << 1) - 1; // create a mask of 1's to the right of and up to the current bit
            quintptr objmask = e | mask; // or'ing mask with e gives all ones until the end of the current object
            quintptr result = objmask + 1;
            Q_ASSERT(qCountTrailingZeroBits(result) - index != 0); // ensure we freed something
            result |= mask; // ensure we don't clear stuff to the right of the current object
            e &= result;

            HeapItem *itemToFree = o + index;
            Heap::Base *b = *itemToFree;
            if (b->internalClass->vtable->destroy) {
                b->internalClass->vtable->destroy(b);
                b->_checkIsDestroyed();
            }
#ifdef V4_USE_HEAPTRACK
            heaptrack_report_free(itemToFree);
#endif
        }
        Q_V4_PROFILE_DEALLOC(engine, (qPopulationCount(objectBitmap[i]|extendsBitmap[i])
                             - qPopulationCount(e)) * Chunk::SlotSize, Profiling::SmallItem);
        objectBitmap[i] = 0;
        extendsBitmap[i] = e;
        o += Chunk::Bits;
    }
    //    DEBUG << "swept chunk" << this << "freed" << slotsFreed << "slots.";
}

void Chunk::resetBlackBits()
{
    memset(blackBitmap, 0, sizeof(blackBitmap));
}

void Chunk::sortIntoBins(HeapItem **bins, uint nBins)
{
//    qDebug() << "sortIntoBins:";
    HeapItem *base = realBase();
#if QT_POINTER_SIZE == 8
    const int start = 0;
#else
    const int start = 1;
#endif
#ifndef QT_NO_DEBUG
    uint freeSlots = 0;
    uint allocatedSlots = 0;
#endif
    for (int i = start; i < EntriesInBitmap; ++i) {
        quintptr usedSlots = (objectBitmap[i]|extendsBitmap[i]);
#if QT_POINTER_SIZE == 8
        if (!i)
            usedSlots |= (static_cast<quintptr>(1) << (HeaderSize/SlotSize)) - 1;
#endif
#ifndef QT_NO_DEBUG
        allocatedSlots += qPopulationCount(usedSlots);
//        qDebug() << hex << "   i=" << i << "used=" << usedSlots;
#endif
        while (1) {
            uint index = qCountTrailingZeroBits(usedSlots + 1);
            if (index == Bits)
                break;
            uint freeStart = i*Bits + index;
            usedSlots &= ~((static_cast<quintptr>(1) << index) - 1);
            while (!usedSlots) {
                if (++i < EntriesInBitmap) {
                    usedSlots = (objectBitmap[i]|extendsBitmap[i]);
                } else {
                    Q_ASSERT(i == EntriesInBitmap);
                    // Overflows to 0 when counting trailing zeroes above in next iteration.
                    // Then, all the bits are zeroes and we break.
                    usedSlots = std::numeric_limits<quintptr>::max();
                    break;
                }
#ifndef QT_NO_DEBUG
                allocatedSlots += qPopulationCount(usedSlots);
//                qDebug() << hex << "   i=" << i << "used=" << usedSlots;
#endif
            }
            HeapItem *freeItem = base + freeStart;

            index = qCountTrailingZeroBits(usedSlots);
            usedSlots |= (quintptr(1) << index) - 1;
            uint freeEnd = i*Bits + index;
            uint nSlots = freeEnd - freeStart;
#ifndef QT_NO_DEBUG
//            qDebug() << hex << "   got free slots from" << freeStart << "to" << freeEnd << "n=" << nSlots << "usedSlots=" << usedSlots;
            freeSlots += nSlots;
#endif
            Q_ASSERT(freeEnd > freeStart && freeEnd <= NumSlots);
            freeItem->freeData.availableSlots = nSlots;
            uint bin = qMin(nBins - 1, nSlots);
            freeItem->freeData.next = bins[bin];
            bins[bin] = freeItem;
        }
    }
#ifndef QT_NO_DEBUG
    Q_ASSERT(freeSlots + allocatedSlots == (EntriesInBitmap - start) * 8 * sizeof(quintptr));
#endif
}

HeapItem *BlockAllocator::allocate(size_t size, bool forceAllocation) {
    Q_ASSERT((size % Chunk::SlotSize) == 0);
    size_t slotsRequired = size >> Chunk::SlotSizeShift;

    if (allocationStats)
        ++allocationStats[binForSlots(slotsRequired)];

    HeapItem **last;

    HeapItem *m;

    if (slotsRequired < NumBins - 1) {
        m = freeBins[slotsRequired];
        if (m) {
            freeBins[slotsRequired] = m->freeData.next;
            goto done;
        }
    }

    if (nFree >= slotsRequired) {
        // use bump allocation
        Q_ASSERT(nextFree);
        m = nextFree;
        nextFree += slotsRequired;
        nFree -= slotsRequired;
        goto done;
    }

    //        DEBUG << "No matching bin found for item" << size << bin;
    // search last bin for a large enough item
    last = &freeBins[NumBins - 1];
    while ((m = *last)) {
        if (m->freeData.availableSlots >= slotsRequired) {
            *last = m->freeData.next; // take it out of the list

            size_t remainingSlots = m->freeData.availableSlots - slotsRequired;
            //                DEBUG << "found large free slots of size" << m->freeData.availableSlots << m << "remaining" << remainingSlots;
            if (remainingSlots == 0)
                goto done;

            HeapItem *remainder = m + slotsRequired;
            if (remainingSlots > nFree) {
                if (nFree) {
                    size_t bin = binForSlots(nFree);
                    nextFree->freeData.next = freeBins[bin];
                    nextFree->freeData.availableSlots = nFree;
                    freeBins[bin] = nextFree;
                }
                nextFree = remainder;
                nFree = remainingSlots;
            } else {
                remainder->freeData.availableSlots = remainingSlots;
                size_t binForRemainder = binForSlots(remainingSlots);
                remainder->freeData.next = freeBins[binForRemainder];
                freeBins[binForRemainder] = remainder;
            }
            goto done;
        }
        last = &m->freeData.next;
    }

    if (slotsRequired < NumBins - 1) {
        // check if we can split up another slot
        for (size_t i = slotsRequired + 1; i < NumBins - 1; ++i) {
            m = freeBins[i];
            if (m) {
                freeBins[i] = m->freeData.next; // take it out of the list
//                qDebug() << "got item" << slotsRequired << "from slot" << i;
                size_t remainingSlots = i - slotsRequired;
                Q_ASSERT(remainingSlots < NumBins - 1);
                HeapItem *remainder = m + slotsRequired;
                remainder->freeData.availableSlots = remainingSlots;
                remainder->freeData.next = freeBins[remainingSlots];
                freeBins[remainingSlots] = remainder;
                goto done;
            }
        }
    }

    if (!m) {
        if (!forceAllocation)
            return nullptr;
        if (nFree) {
            // Save any remaining slots of the current chunk
            // for later, smaller allocations.
            size_t bin = binForSlots(nFree);
            nextFree->freeData.next = freeBins[bin];
            nextFree->freeData.availableSlots = nFree;
            freeBins[bin] = nextFree;
        }
        Chunk *newChunk = chunkAllocator->allocate();
        Q_V4_PROFILE_ALLOC(engine, Chunk::DataSize, Profiling::HeapPage);
        chunks.push_back(newChunk);
        nextFree = newChunk->first();
        nFree = Chunk::AvailableSlots;
        m = nextFree;
        nextFree += slotsRequired;
        nFree -= slotsRequired;
    }

done:
    m->setAllocatedSlots(slotsRequired);
    Q_V4_PROFILE_ALLOC(engine, slotsRequired * Chunk::SlotSize, Profiling::SmallItem);
#ifdef V4_USE_HEAPTRACK
    heaptrack_report_alloc(m, slotsRequired * Chunk::SlotSize);
#endif
    //        DEBUG << "   " << hex << m->chunk() << m->chunk()->objectBitmap[0] << m->chunk()->extendsBitmap[0] << (m - m->chunk()->realBase());
    return m;
}

void BlockAllocator::sweep()
{
    nextFree = nullptr;
    nFree = 0;
    memset(freeBins, 0, sizeof(freeBins));

//    qDebug() << "BlockAlloc: sweep";
    usedSlotsAfterLastSweep = 0;

    auto firstEmptyChunk = std::partition(chunks.begin(), chunks.end(), [this](Chunk *c) {
        return c->sweep(engine);
    });

    std::for_each(chunks.begin(), firstEmptyChunk, [this](Chunk *c) {
        c->sortIntoBins(freeBins, NumBins);
        usedSlotsAfterLastSweep += c->nUsedSlots();
    });

    // only free the chunks at the end to avoid that the sweep() calls indirectly
    // access freed memory
    std::for_each(firstEmptyChunk, chunks.end(), [this](Chunk *c) {
        Q_V4_PROFILE_DEALLOC(engine, Chunk::DataSize, Profiling::HeapPage);
        chunkAllocator->free(c);
    });

    chunks.erase(firstEmptyChunk, chunks.end());
}

void BlockAllocator::freeAll()
{
    for (auto c : chunks)
        c->freeAll(engine);
    for (auto c : chunks) {
        Q_V4_PROFILE_DEALLOC(engine, Chunk::DataSize, Profiling::HeapPage);
        chunkAllocator->free(c);
    }
}

void BlockAllocator::resetBlackBits()
{
    for (auto c : chunks)
        c->resetBlackBits();
}

HeapItem *HugeItemAllocator::allocate(size_t size) {
    MemorySegment *m = nullptr;
    Chunk *c = nullptr;
    if (size >= MemorySegment::SegmentSize/2) {
        // too large to handle through the ChunkAllocator, let's get our own memory segement
        size += Chunk::HeaderSize; // space required for the Chunk header
        size_t pageSize = WTF::pageSize();
        size = (size + pageSize - 1) & ~(pageSize - 1); // align to page sizes
        m = new MemorySegment(size);
        c = m->allocate(size);
    } else {
        c = chunkAllocator->allocate(size);
    }
    Q_ASSERT(c);
    chunks.push_back(HugeChunk{m, c, size});
    Chunk::setBit(c->objectBitmap, c->first() - c->realBase());
    Q_V4_PROFILE_ALLOC(engine, size, Profiling::LargeItem);
#ifdef V4_USE_HEAPTRACK
    heaptrack_report_alloc(c, size);
#endif
    return c->first();
}

static void freeHugeChunk(ChunkAllocator *chunkAllocator, const HugeItemAllocator::HugeChunk &c, ClassDestroyStatsCallback classCountPtr)
{
    HeapItem *itemToFree = c.chunk->first();
    Heap::Base *b = *itemToFree;
    const VTable *v = b->internalClass->vtable;
    if (Q_UNLIKELY(classCountPtr))
        classCountPtr(v->className);

    if (v->destroy) {
        v->destroy(b);
        b->_checkIsDestroyed();
    }
    if (c.segment) {
        // own memory segment
        c.segment->free(c.chunk, c.size);
        delete c.segment;
    } else {
        chunkAllocator->free(c.chunk, c.size);
    }
#ifdef V4_USE_HEAPTRACK
    heaptrack_report_free(c.chunk);
#endif
}

void HugeItemAllocator::sweep(ClassDestroyStatsCallback classCountPtr)
{
    auto isBlack = [this, classCountPtr] (const HugeChunk &c) {
        bool b = c.chunk->first()->isBlack();
        Chunk::clearBit(c.chunk->blackBitmap, c.chunk->first() - c.chunk->realBase());
        if (!b) {
            Q_V4_PROFILE_DEALLOC(engine, c.size, Profiling::LargeItem);
            freeHugeChunk(chunkAllocator, c, classCountPtr);
        }
        return !b;
    };

    auto newEnd = std::remove_if(chunks.begin(), chunks.end(), isBlack);
    chunks.erase(newEnd, chunks.end());
}

void HugeItemAllocator::resetBlackBits()
{
    for (auto c : chunks)
        Chunk::clearBit(c.chunk->blackBitmap, c.chunk->first() - c.chunk->realBase());
}

void HugeItemAllocator::freeAll()
{
    for (auto &c : chunks) {
        Q_V4_PROFILE_DEALLOC(engine, c.size, Profiling::LargeItem);
        freeHugeChunk(chunkAllocator, c, nullptr);
    }
}

namespace {
using ExtraData = GCStateInfo::ExtraData;
GCState markStart(GCStateMachine *that, ExtraData &)
{
    //Initialize the mark stack
    that->mm->m_markStack = std::make_unique<MarkStack>(that->mm->engine);
    that->mm->engine->isGCOngoing = true;
    return MarkGlobalObject;
}

GCState markGlobalObject(GCStateMachine *that, ExtraData &)
{
    that->mm->engine->markObjects(that->mm->m_markStack.get());
    return MarkJSStack;
}

GCState markJSStack(GCStateMachine *that, ExtraData &)
{
    that->mm->collectFromJSStack(that->mm->markStack());
    return InitMarkPersistentValues;
}

GCState initMarkPersistentValues(GCStateMachine *that, ExtraData &stateData)
{
    if (!that->mm->m_persistentValues)
        return InitMarkWeakValues; // no persistent values to mark
    stateData = GCIteratorStorage { that->mm->m_persistentValues->begin() };
    return MarkPersistentValues;
}

static constexpr int markLoopIterationCount = 1024;

bool wasDrainNecessary(MarkStack *ms, QDeadlineTimer deadline)
{
    if (ms->remainingBeforeSoftLimit() > markLoopIterationCount)
        return false;
    // drain
    ms->drain(deadline);
    return true;
}

GCState markPersistentValues(GCStateMachine *that, ExtraData &stateData) {
    auto markStack = that->mm->markStack();
    if (wasDrainNecessary(markStack, that->deadline) && that->deadline.hasExpired())
        return MarkPersistentValues;
    PersistentValueStorage::Iterator& it = get<GCIteratorStorage>(stateData).it;
    // avoid repeatedly hitting the timer constantly by batching iterations
    for (int i = 0; i < markLoopIterationCount; ++i) {
        if (!it.p)
            return InitMarkWeakValues;
        if (Managed *m = (*it).as<Managed>())
            m->mark(markStack);
        ++it;
    }
    return MarkPersistentValues;
}

GCState initMarkWeakValues(GCStateMachine *that, ExtraData &stateData)
{
    stateData = GCIteratorStorage { that->mm->m_weakValues->begin() };
    return MarkWeakValues;
}

GCState markWeakValues(GCStateMachine *that, ExtraData &stateData)
{
    auto markStack = that->mm->markStack();
    if (wasDrainNecessary(markStack, that->deadline) && that->deadline.hasExpired())
        return MarkWeakValues;
    PersistentValueStorage::Iterator& it = get<GCIteratorStorage>(stateData).it;
    // avoid repeatedly hitting the timer constantly by batching iterations
    for (int i = 0; i < markLoopIterationCount; ++i) {
        if (!it.p)
            return MarkDrain;
        QObjectWrapper *qobjectWrapper = (*it).as<QObjectWrapper>();
        ++it;
        if (!qobjectWrapper)
            continue;
        QObject *qobject = qobjectWrapper->object();
        if (!qobject)
            continue;
        bool keepAlive = QQmlData::keepAliveDuringGarbageCollection(qobject);

        if (!keepAlive) {
            if (QObject *parent = qobject->parent()) {
                while (parent->parent())
                    parent = parent->parent();
                keepAlive = QQmlData::keepAliveDuringGarbageCollection(parent);
            }
        }

        if (keepAlive)
            qobjectWrapper->mark(that->mm->markStack());
    }
    return MarkWeakValues;
}

GCState markDrain(GCStateMachine *that, ExtraData &)
{
    if (that->deadline.isForever()) {
        that->mm->markStack()->drain();
        return MarkReady;
    }
    auto drainState = that->mm->m_markStack->drain(that->deadline);
    return drainState == MarkStack::DrainState::Complete
            ? MarkReady
            : MarkDrain;
}

GCState markReady(GCStateMachine *, ExtraData &)
{
    //Possibility to do some clean up, stat printing, etc...
    return InitCallDestroyObjects;
}

/** \!internal
collects new references from the stack, then drains the mark stack again
*/
void redrain(GCStateMachine *that)
{
    that->mm->collectFromJSStack(that->mm->markStack());
    that->mm->m_markStack->drain();
}

GCState initCallDestroyObjects(GCStateMachine *that, ExtraData &stateData)
{
    // as we don't have a deletion barrier, we need to rescan the stack
    redrain(that);
    if (!that->mm->m_weakValues)
        return FreeWeakMaps; // no need to call destroy objects
    stateData = GCIteratorStorage { that->mm->m_weakValues->begin() };
    return CallDestroyObjects;
}
GCState callDestroyObject(GCStateMachine *that, ExtraData &stateData)
{
    PersistentValueStorage::Iterator& it = get<GCIteratorStorage>(stateData).it;
    // destroyObject might call user code, which really shouldn't call back into the gc
    auto oldState = std::exchange(that->mm->gcBlocked, QV4::MemoryManager::Blockness::InCriticalSection);
    auto cleanup = qScopeGuard([&]() {
        that->mm->gcBlocked = oldState;
    });
    // avoid repeatedly hitting the timer constantly by batching iterations
    for (int i = 0; i < markLoopIterationCount; ++i) {
        if (!it.p)
            return FreeWeakMaps;
        Managed *m = (*it).managed();
        ++it;
        if (!m || m->markBit())
            continue;
        // we need to call destroyObject on qobjectwrappers now, so that they can emit the destroyed
        // signal before we start sweeping the heap
        if (QObjectWrapper *qobjectWrapper = m->as<QObjectWrapper>())
            qobjectWrapper->destroyObject(/*lastSweep =*/false);
    }
    return CallDestroyObjects;
}

void freeWeakMaps(MemoryManager *mm)
{
    for (auto [map, lastMap] = std::tuple {mm->weakMaps, &mm->weakMaps }; map; map = map->nextWeakMap)  {
        if (!map->isMarked())
            continue;
        map->removeUnmarkedKeys();
        *lastMap = map;
        lastMap = &map->nextWeakMap;
    }
}

GCState freeWeakMaps(GCStateMachine *that, ExtraData &)
{
    freeWeakMaps(that->mm);
    return FreeWeakSets;
}

void freeWeakSets(MemoryManager *mm)
{
    for (auto [set, lastSet] = std::tuple {mm->weakSets, &mm->weakSets}; set; set = set->nextWeakSet) {

        if (!set->isMarked())
            continue;
        set->removeUnmarkedKeys();
        *lastSet = set;
        lastSet = &set->nextWeakSet;
    }
}

GCState freeWeakSets(GCStateMachine *that, ExtraData &)
{
    freeWeakSets(that->mm);
    return HandleQObjectWrappers;
}

GCState handleQObjectWrappers(GCStateMachine *that, ExtraData &)
{
    that->mm->cleanupDeletedQObjectWrappersInSweep();
    return DoSweep;
}

GCState doSweep(GCStateMachine *that, ExtraData &)
{
    auto mm = that->mm;

    mm->engine->identifierTable->sweep();
    mm->blockAllocator.sweep();
    mm->hugeItemAllocator.sweep(that->mm->gcCollectorStats ? increaseFreedCountForClass : nullptr);
    mm->icAllocator.sweep();

    // reset all black bits
    mm->blockAllocator.resetBlackBits();
    mm->hugeItemAllocator.resetBlackBits();
    mm->icAllocator.resetBlackBits();

    mm->usedSlotsAfterLastFullSweep = mm->blockAllocator.usedSlotsAfterLastSweep + mm->icAllocator.usedSlotsAfterLastSweep;
    mm->gcBlocked = MemoryManager::Unblocked;
    mm->m_markStack.reset();
    mm->engine->isGCOngoing = false;

    mm->updateUnmanagedHeapSizeGCLimit();

    return Invalid;
}

}


MemoryManager::MemoryManager(ExecutionEngine *engine)
    : engine(engine)
    , chunkAllocator(new ChunkAllocator)
    , blockAllocator(chunkAllocator, engine)
    , icAllocator(chunkAllocator, engine)
    , hugeItemAllocator(chunkAllocator, engine)
    , m_persistentValues(new PersistentValueStorage(engine))
    , m_weakValues(new PersistentValueStorage(engine))
    , unmanagedHeapSizeGCLimit(MinUnmanagedHeapSizeGCLimit)
    , aggressiveGC(!qEnvironmentVariableIsEmpty("QV4_MM_AGGRESSIVE_GC"))
    , gcStats(lcGcStats().isDebugEnabled())
    , gcCollectorStats(lcGcAllocatorStats().isDebugEnabled())
{
#ifdef V4_USE_VALGRIND
    VALGRIND_CREATE_MEMPOOL(this, 0, true);
#endif
    memset(statistics.allocations, 0, sizeof(statistics.allocations));
    if (gcStats)
        blockAllocator.allocationStats = statistics.allocations;

    gcStateMachine = std::make_unique<GCStateMachine>();
    gcStateMachine->mm = this;

    gcStateMachine->stateInfoMap[GCState::MarkStart] = {
        markStart,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::MarkGlobalObject] = {
        markGlobalObject,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::MarkJSStack] = {
        markJSStack,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::InitMarkPersistentValues] = {
        initMarkPersistentValues,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::MarkPersistentValues] = {
        markPersistentValues,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::InitMarkWeakValues] = {
        initMarkWeakValues,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::MarkWeakValues] = {
        markWeakValues,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::MarkDrain] = {
        markDrain,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::MarkReady] = {
        markReady,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::InitCallDestroyObjects] = {
        initCallDestroyObjects,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::CallDestroyObjects] = {
        callDestroyObject,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::FreeWeakMaps] = {
        freeWeakMaps,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::FreeWeakSets] = {
        freeWeakSets,
        true, // ensure that handleQObjectWrappers runs in isolation
    };
    gcStateMachine->stateInfoMap[GCState::HandleQObjectWrappers] = {
        handleQObjectWrappers,
        false,
    };
    gcStateMachine->stateInfoMap[GCState::DoSweep] = {
        doSweep,
        false,
    };
}

Heap::Base *MemoryManager::allocString(std::size_t unmanagedSize)
{
    const size_t stringSize = align(sizeof(Heap::String));
#ifdef MM_STATS
    lastAllocRequestedSlots = stringSize >> Chunk::SlotSizeShift;
    ++allocationCount;
#endif
    unmanagedHeapSize += unmanagedSize;

    HeapItem *m = allocate(&blockAllocator, stringSize);
    memset(m, 0, stringSize);
    return *m;
}

Heap::Base *MemoryManager::allocData(std::size_t size)
{
#ifdef MM_STATS
    lastAllocRequestedSlots = size >> Chunk::SlotSizeShift;
    ++allocationCount;
#endif

    Q_ASSERT(size >= Chunk::SlotSize);
    Q_ASSERT(size % Chunk::SlotSize == 0);

    HeapItem *m = allocate(&blockAllocator, size);
    memset(m, 0, size);
    return *m;
}

Heap::Object *MemoryManager::allocObjectWithMemberData(const QV4::VTable *vtable, uint nMembers)
{
    uint size = (vtable->nInlineProperties + vtable->inlinePropertyOffset)*sizeof(Value);
    Q_ASSERT(!(size % sizeof(HeapItem)));

    Heap::Object *o;
    if (nMembers <= vtable->nInlineProperties) {
        o = static_cast<Heap::Object *>(allocData(size));
    } else {
        // Allocate both in one go through the block allocator
        nMembers -= vtable->nInlineProperties;
        std::size_t memberSize = align(sizeof(Heap::MemberData) + (nMembers - 1)*sizeof(Value));
        size_t totalSize = size + memberSize;
        Heap::MemberData *m;
        if (totalSize > Chunk::DataSize) {
            o = static_cast<Heap::Object *>(allocData(size));
            m = hugeItemAllocator.allocate(memberSize)->as<Heap::MemberData>();
        } else {
            HeapItem *mh = reinterpret_cast<HeapItem *>(allocData(totalSize));
            Heap::Base *b = *mh;
            o = static_cast<Heap::Object *>(b);
            mh += (size >> Chunk::SlotSizeShift);
            m = mh->as<Heap::MemberData>();
            Chunk *c = mh->chunk();
            size_t index = mh - c->realBase();
            Chunk::setBit(c->objectBitmap, index);
            Chunk::clearBit(c->extendsBitmap, index);
        }
        o->memberData.set(engine, m);
        m->internalClass.set(engine, engine->internalClasses(EngineBase::Class_MemberData));
        Q_ASSERT(o->memberData->internalClass);
        m->values.alloc = static_cast<uint>((memberSize - sizeof(Heap::MemberData) + sizeof(Value))/sizeof(Value));
        m->values.size = o->memberData->values.alloc;
        m->init();
//        qDebug() << "    got" << o->memberData << o->memberData->size;
    }
//    qDebug() << "allocating object with memberData" << o << o->memberData.operator->();
    return o;
}

static uint markStackSize = 0;

MarkStack::MarkStack(ExecutionEngine *engine)
    : m_engine(engine)
{
    m_base = (Heap::Base **)engine->gcStack->base();
    m_top = m_base;
    const size_t size = engine->maxGCStackSize() / sizeof(Heap::Base);
    m_hardLimit = m_base + size;
    m_softLimit = m_base + size * 3 / 4;
}

void MarkStack::drain()
{
    // we're not calling drain(QDeadlineTimer::Forever) as that has higher overhead
    while (m_top > m_base) {
        Heap::Base *h = pop();
        ++markStackSize;
        Q_ASSERT(h); // at this point we should only have Heap::Base objects in this area on the stack. If not, weird things might happen.
        h->internalClass->vtable->markObjects(h, this);
    }
}

MarkStack::DrainState MarkStack::drain(QDeadlineTimer deadline)
{
    do {
        for (int i = 0; i <= markLoopIterationCount * 10; ++i) {
            if (m_top == m_base)
                return DrainState::Complete;
            Heap::Base *h = pop();
            ++markStackSize;
            Q_ASSERT(h); // at this point we should only have Heap::Base objects in this area on the stack. If not, weird things might happen.
            h->internalClass->vtable->markObjects(h, this);
        }
    } while (!deadline.hasExpired());
    return DrainState::Ongoing;
}

void MemoryManager::onEventLoop()
{
    if (engine->inShutdown)
        return;
    if (gcBlocked == InCriticalSection) {
        QMetaObject::invokeMethod(engine->publicEngine, [this]{
            onEventLoop();
        }, Qt::QueuedConnection);
        return;
    }
    if (gcStateMachine->inProgress()) {
        gcStateMachine->step();
    }
}


void MemoryManager::setGCTimeLimit(int timeMs)
{
    gcStateMachine->timeLimit = std::chrono::milliseconds(timeMs);
}

void MemoryManager::sweep(bool lastSweep, ClassDestroyStatsCallback classCountPtr)
{

    for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
        Managed *m = (*it).managed();
        if (!m || m->markBit())
            continue;
        // we need to call destroyObject on qobjectwrappers now, so that they can emit the destroyed
        // signal before we start sweeping the heap
        if (QObjectWrapper *qobjectWrapper = (*it).as<QObjectWrapper>()) {
            qobjectWrapper->destroyObject(lastSweep);
        }
    }

    freeWeakMaps(this);
    freeWeakSets(this);

    cleanupDeletedQObjectWrappersInSweep();

    if (!lastSweep) {
        engine->identifierTable->sweep();
        blockAllocator.sweep(/*classCountPtr*/);
        hugeItemAllocator.sweep(classCountPtr);
        icAllocator.sweep(/*classCountPtr*/);
    }

    // reset all black bits
    blockAllocator.resetBlackBits();
    hugeItemAllocator.resetBlackBits();
    icAllocator.resetBlackBits();

    usedSlotsAfterLastFullSweep = blockAllocator.usedSlotsAfterLastSweep + icAllocator.usedSlotsAfterLastSweep;
    updateUnmanagedHeapSizeGCLimit();
    gcBlocked = MemoryManager::Unblocked;
}

/*
   \internal
   Helper function used in sweep to clean up the (to-be-freed) QObjectWrapper
   Used both in MemoryManager::sweep, and the corresponding gc statemachine phase
*/
void MemoryManager::cleanupDeletedQObjectWrappersInSweep()
{
    // onDestruction handlers may have accessed other QObject wrappers and reset their value, so ensure
    // that they are all set to undefined.
    for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
        Managed *m = (*it).managed();
        if (!m || m->markBit())
            continue;
        (*it) = Value::undefinedValue();
    }

    // Now it is time to free QV4::QObjectWrapper Value, we must check the Value's tag to make sure its object has been destroyed
    const int pendingCount = m_pendingFreedObjectWrapperValue.size();
    if (pendingCount) {
        QVector<Value *> remainingWeakQObjectWrappers;
        remainingWeakQObjectWrappers.reserve(pendingCount);
        for (int i = 0; i < pendingCount; ++i) {
            Value *v = m_pendingFreedObjectWrapperValue.at(i);
            if (v->isUndefined() || v->isEmpty())
                PersistentValueStorage::free(v);
            else
                remainingWeakQObjectWrappers.append(v);
        }
        m_pendingFreedObjectWrapperValue = remainingWeakQObjectWrappers;
    }

    if (MultiplyWrappedQObjectMap *multiplyWrappedQObjects = engine->m_multiplyWrappedQObjects) {
        for (MultiplyWrappedQObjectMap::Iterator it = multiplyWrappedQObjects->begin(); it != multiplyWrappedQObjects->end();) {
            if (it.value().isNullOrUndefined())
                it = multiplyWrappedQObjects->erase(it);
            else
                ++it;
        }
    }
}

bool MemoryManager::shouldRunGC() const
{
    size_t total = blockAllocator.totalSlots() + icAllocator.totalSlots();
    if (total > MinSlotsGCLimit && usedSlotsAfterLastFullSweep * GCOverallocation < total * 100)
        return true;
    return false;
}

static size_t dumpBins(BlockAllocator *b, const char *title)
{
    const QLoggingCategory &stats = lcGcAllocatorStats();
    size_t totalSlotMem = 0;
    if (title)
        qDebug(stats) << "Slot map for" << title << "allocator:";
    for (uint i = 0; i < BlockAllocator::NumBins; ++i) {
        uint nEntries = 0;
        HeapItem *h = b->freeBins[i];
        while (h) {
            ++nEntries;
            totalSlotMem += h->freeData.availableSlots;
            h = h->freeData.next;
        }
        if (title)
            qDebug(stats) << "    number of entries in slot" << i << ":" << nEntries;
    }
    SDUMP() << "    large slot map";
    HeapItem *h = b->freeBins[BlockAllocator::NumBins - 1];
    while (h) {
        SDUMP() << "        " << Qt::hex << (quintptr(h)/32) << h->freeData.availableSlots;
        h = h->freeData.next;
    }

    if (title)
        qDebug(stats) << "  total mem in bins" << totalSlotMem*Chunk::SlotSize;
    return totalSlotMem*Chunk::SlotSize;
}

/*!
    \internal
    Precondition: Incremental garbage collection must be currently active
    Finishes incremental garbage collection, unless in a critical section
    Code entering a critical section is expected to check if we need to
    force a gc completion, and to trigger the gc again if necessary
    when exiting the critcial section.
    Returns \c true if the gc cycle completed, false otherwise.
 */
bool MemoryManager::tryForceGCCompletion()
{
    if (gcBlocked == InCriticalSection)
        return false;
    const bool incrementalGCIsAlreadyRunning = m_markStack != nullptr;
    Q_ASSERT(incrementalGCIsAlreadyRunning);
    auto oldTimeLimit = std::exchange(gcStateMachine->timeLimit, std::chrono::microseconds::max());
    while (gcStateMachine->inProgress()) {
        gcStateMachine->step();
    }
    gcStateMachine->timeLimit = oldTimeLimit;
    return true;
}

void MemoryManager::runFullGC()
{
    runGC();
    const bool incrementalGCStillRunning = m_markStack != nullptr;
    if (incrementalGCStillRunning)
        tryForceGCCompletion();
}

void MemoryManager::runGC()
{
    if (gcBlocked != Unblocked) {
        return;
    }

    gcBlocked = MemoryManager::NormalBlocked;

    if (gcStats) {
        statistics.maxReservedMem = qMax(statistics.maxReservedMem, getAllocatedMem());
        statistics.maxAllocatedMem = qMax(statistics.maxAllocatedMem, getUsedMem() + getLargeItemsMem());
    }

    if (!gcCollectorStats) {
        gcStateMachine->step();
    } else {
        bool triggeredByUnmanagedHeap = (unmanagedHeapSize > unmanagedHeapSizeGCLimit);
        size_t oldUnmanagedSize = unmanagedHeapSize;

        const size_t totalMem = getAllocatedMem();
        const size_t usedBefore = getUsedMem();
        const size_t largeItemsBefore = getLargeItemsMem();

        const QLoggingCategory &stats = lcGcAllocatorStats();
        qDebug(stats) << "========== GC ==========";
#ifdef MM_STATS
        qDebug(stats) << "    Triggered by alloc request of" << lastAllocRequestedSlots << "slots.";
        qDebug(stats) << "    Allocations since last GC" << allocationCount;
        allocationCount = 0;
#endif
        size_t oldChunks = blockAllocator.chunks.size();
        qDebug(stats) << "Allocated" << totalMem << "bytes in" << oldChunks << "chunks";
        qDebug(stats) << "Fragmented memory before GC" << (totalMem - usedBefore);
        dumpBins(&blockAllocator, "Block");
        dumpBins(&icAllocator, "InternalClass");

        QElapsedTimer t;
        t.start();
        gcStateMachine->step();
        qint64 markTime = t.nsecsElapsed()/1000;
        t.restart();
        const size_t usedAfter = getUsedMem();
        const size_t largeItemsAfter = getLargeItemsMem();

        if (triggeredByUnmanagedHeap) {
            qDebug(stats) << "triggered by unmanaged heap:";
            qDebug(stats) << "   old unmanaged heap size:" << oldUnmanagedSize;
            qDebug(stats) << "   new unmanaged heap:" << unmanagedHeapSize;
            qDebug(stats) << "   unmanaged heap limit:" << unmanagedHeapSizeGCLimit;
        }
        size_t memInBins = dumpBins(&blockAllocator, "Block")
                + dumpBins(&icAllocator, "InternalClasss");
        qDebug(stats) << "Marked object in" << markTime << "us.";
        qDebug(stats) << "   " << markStackSize << "objects marked";

        // sort our object types by number of freed instances
        MMStatsHash freedObjectStats;
        std::swap(freedObjectStats, *freedObjectStatsGlobal());
        typedef std::pair<const char*, int> ObjectStatInfo;
        std::vector<ObjectStatInfo> freedObjectsSorted;
        freedObjectsSorted.reserve(freedObjectStats.size());
        for (auto it = freedObjectStats.constBegin(); it != freedObjectStats.constEnd(); ++it) {
            freedObjectsSorted.push_back(std::make_pair(it.key(), it.value()));
        }
        std::sort(freedObjectsSorted.begin(), freedObjectsSorted.end(), [](const ObjectStatInfo &a, const ObjectStatInfo &b) {
            return a.second > b.second && strcmp(a.first, b.first) < 0;
        });

        qDebug(stats) << "Used memory before GC:" << usedBefore;
        qDebug(stats) << "Used memory after GC:" << usedAfter;
        qDebug(stats) << "Freed up bytes      :" << (usedBefore - usedAfter);
        qDebug(stats) << "Freed up chunks     :" << (oldChunks - blockAllocator.chunks.size());
        size_t lost = blockAllocator.allocatedMem() + icAllocator.allocatedMem()
                - memInBins - usedAfter;
        if (lost)
            qDebug(stats) << "!!!!!!!!!!!!!!!!!!!!! LOST MEM:" << lost << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!";
        if (largeItemsBefore || largeItemsAfter) {
            qDebug(stats) << "Large item memory before GC:" << largeItemsBefore;
            qDebug(stats) << "Large item memory after GC:" << largeItemsAfter;
            qDebug(stats) << "Large item memory freed up:" << (largeItemsBefore - largeItemsAfter);
        }

        for (auto it = freedObjectsSorted.cbegin(); it != freedObjectsSorted.cend(); ++it) {
            qDebug(stats).noquote() << QString::fromLatin1("Freed JS type: %1 (%2 instances)").arg(QString::fromLatin1(it->first), QString::number(it->second));
        }

        qDebug(stats) << "======== End GC ========";
    }

    if (gcStats)
        statistics.maxUsedMem = qMax(statistics.maxUsedMem, getUsedMem() + getLargeItemsMem());
}

size_t MemoryManager::getUsedMem() const
{
    return blockAllocator.usedMem() + icAllocator.usedMem();
}

size_t MemoryManager::getAllocatedMem() const
{
    return blockAllocator.allocatedMem() + icAllocator.allocatedMem() + hugeItemAllocator.usedMem();
}

size_t MemoryManager::getLargeItemsMem() const
{
    return hugeItemAllocator.usedMem();
}

void MemoryManager::updateUnmanagedHeapSizeGCLimit()
{
    if (3*unmanagedHeapSizeGCLimit <= 4 * unmanagedHeapSize) {
        // more than 75% full, raise limit
        unmanagedHeapSizeGCLimit = std::max(unmanagedHeapSizeGCLimit,
                                            unmanagedHeapSize) * 2;
    } else if (unmanagedHeapSize * 4 <= unmanagedHeapSizeGCLimit) {
        // less than 25% full, lower limit
        unmanagedHeapSizeGCLimit = qMax(std::size_t(MinUnmanagedHeapSizeGCLimit),
                                        unmanagedHeapSizeGCLimit/2);
    }

    if (aggressiveGC && !engine->inShutdown) {
        // ensure we don't 'loose' any memory
        // but not during shutdown, because than we skip parts of sweep
        // and use freeAll instead
        Q_ASSERT(blockAllocator.allocatedMem()
                 == blockAllocator.usedMem() + dumpBins(&blockAllocator, nullptr));
        Q_ASSERT(icAllocator.allocatedMem()
                 == icAllocator.usedMem() + dumpBins(&icAllocator, nullptr));
    }
}

void MemoryManager::registerWeakMap(Heap::MapObject *map)
{
    map->nextWeakMap = weakMaps;
    weakMaps = map;
}

void MemoryManager::registerWeakSet(Heap::SetObject *set)
{
    set->nextWeakSet = weakSets;
    weakSets = set;
}

MemoryManager::~MemoryManager()
{
    delete m_persistentValues;
    dumpStats();

    // do one last non-incremental sweep to clean up C++ objects
    // first, abort any on-going incremental gc operation
    setGCTimeLimit(-1);
    if (engine->isGCOngoing) {
        engine->isGCOngoing = false;
        m_markStack.reset();
        gcStateMachine->state = GCState::Invalid;
        blockAllocator.resetBlackBits();
        hugeItemAllocator.resetBlackBits();
        icAllocator.resetBlackBits();
    }
    // then sweep
    sweep(/*lastSweep*/true);

    blockAllocator.freeAll();
    hugeItemAllocator.freeAll();
    icAllocator.freeAll();

    delete m_weakValues;
#ifdef V4_USE_VALGRIND
    VALGRIND_DESTROY_MEMPOOL(this);
#endif
    delete chunkAllocator;
}


void MemoryManager::dumpStats() const
{
    if (!gcStats)
        return;

    const QLoggingCategory &stats = lcGcStats();
    qDebug(stats) << "Qml GC memory allocation statistics:";
    qDebug(stats) << "Total memory allocated:" << statistics.maxReservedMem;
    qDebug(stats) << "Max memory used before a GC run:" << statistics.maxAllocatedMem;
    qDebug(stats) << "Max memory used after a GC run:" << statistics.maxUsedMem;
    qDebug(stats) << "Requests for different item sizes:";
    for (int i = 1; i < BlockAllocator::NumBins - 1; ++i)
        qDebug(stats) << "     <" << (i << Chunk::SlotSizeShift) << " bytes: " << statistics.allocations[i];
    qDebug(stats) << "     >=" << ((BlockAllocator::NumBins - 1) << Chunk::SlotSizeShift) << " bytes: " << statistics.allocations[BlockAllocator::NumBins - 1];
}

void MemoryManager::collectFromJSStack(MarkStack *markStack) const
{
    Value *v = engine->jsStackBase;
    Value *top = engine->jsStackTop;
    while (v < top) {
        Managed *m = v->managed();
        if (m) {
            Q_ASSERT(m->inUse());
            // Skip pointers to already freed objects, they are bogus as well
            m->mark(markStack);
        }
        ++v;
    }
}

GCStateMachine::GCStateMachine()
{
    // base assumption: target 60fps, use at most 1/3 of time for gc
    timeLimit = std::chrono::milliseconds { (1000 / 60) / 3 };
}

void GCStateMachine::transition() {
    if (timeLimit.count() > 0) {
        deadline = QDeadlineTimer(timeLimit);
        bool deadlineExpired = false;
        while (!(deadlineExpired = deadline.hasExpired()) && state != GCState::Invalid) {
            if (state > GCState::InitCallDestroyObjects) {
                /* initCallDestroyObjects is the last action which drains the mark
                   stack by default. But as our write-barrier might end up putting
                   objects on the markStack which still reference other objects.
                   Especially when we call user code triggered by Component.onDestruction,
                   but also when we run into a timeout.
                   We don't redrain before InitCallDestroyObjects, as that would
                   potentially lead to useless busy-work (e.g., if the last referencs
                   to objects are removed while the mark phase is running)
                */
                redrain(this);
            }
            GCStateInfo& stateInfo = stateInfoMap[int(state)];
            state = stateInfo.execute(this, stateData);
            if (stateInfo.breakAfter)
                break;
        }
        if (deadlineExpired)
            handleTimeout(state);
        if (state != GCState::Invalid)
            QMetaObject::invokeMethod(mm->engine->publicEngine, [this]{
                mm->onEventLoop();
            }, Qt::QueuedConnection);
    } else {
        deadline = QDeadlineTimer::Forever;
        while (state != GCState::Invalid) {
            GCStateInfo& stateInfo = stateInfoMap[int(state)];
            state = stateInfo.execute(this, stateData);
        }
    }
}

} // namespace QV4

QT_END_NAMESPACE