aboutsummaryrefslogtreecommitdiffstats
path: root/src/qml/memory/qv4mm_p.h
blob: ef0cd0c36c5a6a2451424d8ce5c0b2c4b062ec49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
// Copyright (C) 2016 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only

#ifndef QV4GC_H
#define QV4GC_H

//
//  W A R N I N G
//  -------------
//
// This file is not part of the Qt API.  It exists purely as an
// implementation detail.  This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//

#include <private/qv4global_p.h>
#include <private/qv4value_p.h>
#include <private/qv4scopedvalue_p.h>
#include <private/qv4object_p.h>
#include <private/qv4mmdefs_p.h>
#include <QVector>

#define MM_DEBUG 0

QT_BEGIN_NAMESPACE

namespace QV4 {

enum GCState {
    MarkStart = 0,
    MarkGlobalObject,
    MarkJSStack,
    InitMarkPersistentValues,
    MarkPersistentValues,
    InitMarkWeakValues,
    MarkWeakValues,
    MarkDrain,
    MarkReady,
    InitCallDestroyObjects,
    CallDestroyObjects,
    FreeWeakMaps,
    FreeWeakSets,
    HandleQObjectWrappers,
    DoSweep,
    Invalid,
    Count,
};

struct GCData { virtual ~GCData(){};};

struct GCIteratorStorage {
    PersistentValueStorage::Iterator it{nullptr, 0};
};
struct GCStateMachine;

struct GCStateInfo {
    using ExtraData = std::variant<std::monostate, GCIteratorStorage>;
    GCState (*execute)(GCStateMachine *, ExtraData &) = nullptr;  // Function to execute for this state, returns true if ready to transition
    bool breakAfter{false};
};

struct GCStateMachine {
    using ExtraData = GCStateInfo::ExtraData;
    GCState state{GCState::Invalid};
    std::chrono::microseconds timeLimit{};
    QDeadlineTimer deadline;
    std::array<GCStateInfo, GCState::Count> stateInfoMap;
    MemoryManager *mm = nullptr;
    ExtraData stateData; // extra date for specific states

    GCStateMachine();

    inline void step() {
        if (!inProgress()) {
            reset();
        }
        transition();
    }

    inline bool inProgress() {
        return state != GCState::Invalid;
    }

    inline void reset() {
        state = GCState::MarkStart;
    }

    Q_QML_EXPORT void transition();

    inline void handleTimeout(GCState state) {
        Q_UNUSED(state);
    }
};


struct ChunkAllocator;
struct MemorySegment;

struct BlockAllocator {
    BlockAllocator(ChunkAllocator *chunkAllocator, ExecutionEngine *engine)
        : chunkAllocator(chunkAllocator), engine(engine)
    {
        memset(freeBins, 0, sizeof(freeBins));
    }

    enum { NumBins = 8 };

    static inline size_t binForSlots(size_t nSlots) {
        return nSlots >= NumBins ? NumBins - 1 : nSlots;
    }

    HeapItem *allocate(size_t size, bool forceAllocation = false);

    size_t totalSlots() const {
        return Chunk::AvailableSlots*chunks.size();
    }

    size_t allocatedMem() const {
        return chunks.size()*Chunk::DataSize;
    }
    size_t usedMem() const {
        uint used = 0;
        for (auto c : chunks)
            used += c->nUsedSlots()*Chunk::SlotSize;
        return used;
    }

    void sweep();
    void freeAll();
    void resetBlackBits();

    // bump allocations
    HeapItem *nextFree = nullptr;
    size_t nFree = 0;
    size_t usedSlotsAfterLastSweep = 0;
    HeapItem *freeBins[NumBins];
    ChunkAllocator *chunkAllocator;
    ExecutionEngine *engine;
    std::vector<Chunk *> chunks;
    uint *allocationStats = nullptr;
};

struct HugeItemAllocator {
    HugeItemAllocator(ChunkAllocator *chunkAllocator, ExecutionEngine *engine)
        : chunkAllocator(chunkAllocator), engine(engine)
    {}

    HeapItem *allocate(size_t size);
    void sweep(ClassDestroyStatsCallback classCountPtr);
    void freeAll();
    void resetBlackBits();

    size_t usedMem() const {
        size_t used = 0;
        for (const auto &c : chunks)
            used += c.size;
        return used;
    }

    ChunkAllocator *chunkAllocator;
    ExecutionEngine *engine;
    struct HugeChunk {
        MemorySegment *segment;
        Chunk *chunk;
        size_t size;
    };

    std::vector<HugeChunk> chunks;
};


class Q_QML_EXPORT MemoryManager
{
    Q_DISABLE_COPY(MemoryManager);

public:
    MemoryManager(ExecutionEngine *engine);
    ~MemoryManager();

    template <typename ToBeMarked>
    friend struct  GCCriticalSection;

    // TODO: this is only for 64bit (and x86 with SSE/AVX), so exend it for other architectures to be slightly more efficient (meaning, align on 8-byte boundaries).
    // Note: all occurrences of "16" in alloc/dealloc are also due to the alignment.
    constexpr static inline std::size_t align(std::size_t size)
    { return (size + Chunk::SlotSize - 1) & ~(Chunk::SlotSize - 1); }

    /* NOTE: allocManaged comes in various overloads. If size is not passed explicitly
       sizeof(ManagedType::Data) is used for size. However, there are quite a few cases
       where we allocate more than sizeof(ManagedType::Data); that's generally the case
       when the Object has a ValueArray member.
       If no internal class pointer is provided, ManagedType::defaultInternalClass(engine)
       will be used as the internal class.
    */

    template<typename ManagedType>
    inline typename ManagedType::Data *allocManaged(std::size_t size, Heap::InternalClass *ic)
    {
        Q_STATIC_ASSERT(std::is_trivial_v<typename ManagedType::Data>);
        size = align(size);
        typename ManagedType::Data *d = static_cast<typename ManagedType::Data *>(allocData(size));
        d->internalClass.set(engine, ic);
        Q_ASSERT(d->internalClass && d->internalClass->vtable);
        Q_ASSERT(ic->vtable == ManagedType::staticVTable());
        return d;
    }

    template<typename ManagedType>
    inline typename ManagedType::Data *allocManaged(Heap::InternalClass *ic)
    {
        return allocManaged<ManagedType>(sizeof(typename ManagedType::Data), ic);
    }

    template<typename ManagedType>
    inline typename ManagedType::Data *allocManaged(std::size_t size, InternalClass *ic)
    {
        return allocManaged<ManagedType>(size, ic->d());
    }

    template<typename ManagedType>
    inline typename ManagedType::Data *allocManaged(InternalClass *ic)
    {
        return allocManaged<ManagedType>(sizeof(typename ManagedType::Data), ic);
    }

    template<typename ManagedType>
    inline typename ManagedType::Data *allocManaged(std::size_t size)
    {
        Scope scope(engine);
        Scoped<InternalClass> ic(scope, ManagedType::defaultInternalClass(engine));
        return allocManaged<ManagedType>(size, ic);
    }

    template<typename ManagedType>
    inline typename ManagedType::Data *allocManaged()
    {
        auto constexpr size = sizeof(typename ManagedType::Data);
        Scope scope(engine);
        Scoped<InternalClass> ic(scope, ManagedType::defaultInternalClass(engine));
        return allocManaged<ManagedType>(size, ic);
    }

    template <typename ObjectType>
    typename ObjectType::Data *allocateObject(Heap::InternalClass *ic)
    {
        Heap::Object *o = allocObjectWithMemberData(ObjectType::staticVTable(), ic->size);
        o->internalClass.set(engine, ic);
        Q_ASSERT(o->internalClass.get() && o->vtable());
        Q_ASSERT(o->vtable() == ObjectType::staticVTable());
        return static_cast<typename ObjectType::Data *>(o);
    }

    template <typename ObjectType>
    typename ObjectType::Data *allocateObject(InternalClass *ic)
    {
        return allocateObject<ObjectType>(ic->d());
    }

    template <typename ObjectType>
    typename ObjectType::Data *allocateObject()
    {
        Scope scope(engine);
        Scoped<InternalClass> ic(scope,  ObjectType::defaultInternalClass(engine));
        ic = ic->changeVTable(ObjectType::staticVTable());
        ic = ic->changePrototype(ObjectType::defaultPrototype(engine)->d());
        return allocateObject<ObjectType>(ic);
    }

    template <typename ManagedType, typename Arg1>
    typename ManagedType::Data *allocWithStringData(std::size_t unmanagedSize, Arg1 &&arg1)
    {
        typename ManagedType::Data *o = reinterpret_cast<typename ManagedType::Data *>(allocString(unmanagedSize));
        o->internalClass.set(engine, ManagedType::defaultInternalClass(engine));
        Q_ASSERT(o->internalClass && o->internalClass->vtable);
        o->init(std::forward<Arg1>(arg1));
        return o;
    }

    template <typename ObjectType, typename... Args>
    typename ObjectType::Data *allocObject(Heap::InternalClass *ic, Args&&... args)
    {
        typename ObjectType::Data *d = allocateObject<ObjectType>(ic);
        d->init(std::forward<Args>(args)...);
        return d;
    }

    template <typename ObjectType, typename... Args>
    typename ObjectType::Data *allocObject(InternalClass *ic, Args&&... args)
    {
        typename ObjectType::Data *d = allocateObject<ObjectType>(ic);
        d->init(std::forward<Args>(args)...);
        return d;
    }

    template <typename ObjectType, typename... Args>
    typename ObjectType::Data *allocate(Args&&... args)
    {
        Scope scope(engine);
        Scoped<ObjectType> t(scope, allocateObject<ObjectType>());
        t->d_unchecked()->init(std::forward<Args>(args)...);
        return t->d();
    }

    template <typename ManagedType, typename... Args>
    typename ManagedType::Data *alloc(Args&&... args)
    {
        Scope scope(engine);
        Scoped<ManagedType> t(scope, allocManaged<ManagedType>());
        t->d_unchecked()->init(std::forward<Args>(args)...);
        return t->d();
    }

    void runGC();
    bool tryForceGCCompletion();
    void runFullGC();

    void dumpStats() const;

    size_t getUsedMem() const;
    size_t getAllocatedMem() const;
    size_t getLargeItemsMem() const;

    // called when a JS object grows itself. Specifically: Heap::String::append
    // and InternalClassDataPrivate<PropertyAttributes>.
    void changeUnmanagedHeapSizeUsage(qptrdiff delta) { unmanagedHeapSize += delta; }

    // called at the end of a gc cycle
    void updateUnmanagedHeapSizeGCLimit();

    template<typename ManagedType>
    typename ManagedType::Data *allocIC()
    {
        Heap::Base *b = *allocate(&icAllocator, align(sizeof(typename ManagedType::Data)));
        return static_cast<typename ManagedType::Data *>(b);
    }

    void registerWeakMap(Heap::MapObject *map);
    void registerWeakSet(Heap::SetObject *set);

    void onEventLoop();

    //GC related methods
    void setGCTimeLimit(int timeMs);
    MarkStack* markStack() { return m_markStack.get(); }

protected:
    /// expects size to be aligned
    Heap::Base *allocString(std::size_t unmanagedSize);
    Heap::Base *allocData(std::size_t size);
    Heap::Object *allocObjectWithMemberData(const QV4::VTable *vtable, uint nMembers);

private:
    enum {
        MinUnmanagedHeapSizeGCLimit = 128 * 1024
    };

public:
    void collectFromJSStack(MarkStack *markStack) const;
    void sweep(bool lastSweep = false, ClassDestroyStatsCallback classCountPtr = nullptr);
    void cleanupDeletedQObjectWrappersInSweep();
    bool isAboveUnmanagedHeapLimit()
    {
        const bool incrementalGCIsAlreadyRunning = m_markStack != nullptr;
        const bool aboveUnmanagedHeapLimit = incrementalGCIsAlreadyRunning
                ? unmanagedHeapSize > 3 * unmanagedHeapSizeGCLimit / 2
                : unmanagedHeapSize > unmanagedHeapSizeGCLimit;
        return aboveUnmanagedHeapLimit;
    }
private:
    bool shouldRunGC() const;

    HeapItem *allocate(BlockAllocator *allocator, std::size_t size)
    {
        const bool incrementalGCIsAlreadyRunning = m_markStack != nullptr;

        bool didGCRun = false;
        if (aggressiveGC) {
            runFullGC();
            didGCRun = true;
        }

        if (isAboveUnmanagedHeapLimit()) {
            if (!didGCRun)
                incrementalGCIsAlreadyRunning ? (void) tryForceGCCompletion() : runGC();
            didGCRun = true;
        }

        if (size > Chunk::DataSize)
            return hugeItemAllocator.allocate(size);

        if (HeapItem *m = allocator->allocate(size))
            return m;

        if (!didGCRun && shouldRunGC())
            runGC();

        return allocator->allocate(size, true);
    }

public:
    QV4::ExecutionEngine *engine;
    ChunkAllocator *chunkAllocator;
    BlockAllocator blockAllocator;
    BlockAllocator icAllocator;
    HugeItemAllocator hugeItemAllocator;
    PersistentValueStorage *m_persistentValues;
    PersistentValueStorage *m_weakValues;
    QVector<Value *> m_pendingFreedObjectWrapperValue;
    Heap::MapObject *weakMaps = nullptr;
    Heap::SetObject *weakSets = nullptr;

    std::unique_ptr<GCStateMachine> gcStateMachine{nullptr};
    std::unique_ptr<MarkStack> m_markStack{nullptr};

    std::size_t unmanagedHeapSize = 0; // the amount of bytes of heap that is not managed by the memory manager, but which is held onto by managed items.
    std::size_t unmanagedHeapSizeGCLimit;
    std::size_t usedSlotsAfterLastFullSweep = 0;

    enum Blockness : quint8 {Unblocked, NormalBlocked, InCriticalSection };
    Blockness gcBlocked = Unblocked;
    bool aggressiveGC = false;
    bool gcStats = false;
    bool gcCollectorStats = false;

    int allocationCount = 0;
    size_t lastAllocRequestedSlots = 0;

    struct {
        size_t maxReservedMem = 0;
        size_t maxAllocatedMem = 0;
        size_t maxUsedMem = 0;
        uint allocations[BlockAllocator::NumBins];
    } statistics;
};

/*!
    \internal
    GCCriticalSection prevets the gc from running, until it is destructed.
    In its dtor, it runs a check whether we've reached the unmanaegd heap limit,
    and triggers a gc run if necessary.
    Lastly, it can optionally mark an object passed to it before runnig the gc.
 */
template <typename ToBeMarked = void>
struct GCCriticalSection {
    Q_DISABLE_COPY_MOVE(GCCriticalSection)

    Q_NODISCARD_CTOR GCCriticalSection(QV4::ExecutionEngine *engine, ToBeMarked *toBeMarked = nullptr)
        : m_engine(engine)
          , m_oldState(std::exchange(engine->memoryManager->gcBlocked, MemoryManager::InCriticalSection))
          , m_toBeMarked(toBeMarked)
    {
        // disallow nested critical sections
        Q_ASSERT(m_oldState != MemoryManager::InCriticalSection);
    }
    ~GCCriticalSection()
    {
        m_engine->memoryManager->gcBlocked = m_oldState;
        if (m_oldState != MemoryManager::Unblocked)
            if constexpr (!std::is_same_v<ToBeMarked, void>)
                if (m_toBeMarked)
                    m_toBeMarked->markObjects(m_engine->memoryManager->markStack());
        /* because we blocked the gc, we might be using too much memoryon the unmanaged heap
           and did not run the normal fixup logic. So recheck again, and trigger a gc run
           if necessary*/
        if (!m_engine->memoryManager->isAboveUnmanagedHeapLimit())
            return;
        if (!m_engine->isGCOngoing) {
            m_engine->memoryManager->runGC();
        } else {
            [[maybe_unused]] bool gcFinished = m_engine->memoryManager->tryForceGCCompletion();
            Q_ASSERT(gcFinished);
        }
    }

private:
    QV4::ExecutionEngine *m_engine;
    MemoryManager::Blockness m_oldState;
    ToBeMarked *m_toBeMarked;
};

}

QT_END_NAMESPACE

#endif // QV4GC_H