summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp/lossless_enc.c
diff options
context:
space:
mode:
authorLiang Qi <liang.qi@qt.io>2017-03-07 13:05:21 +0100
committerLiang Qi <liang.qi@qt.io>2017-03-13 10:47:45 +0000
commitb7ec9e78633d8f2c75a8b02e17e169497bb103e2 (patch)
treee4be04af4dbcf8cd635715efdf4e769281183746 /src/3rdparty/libwebp/src/dsp/lossless_enc.c
parentf2dbc67c2b032a5f27d0224e020fb6dfcd3fd142 (diff)
Bundled libwebp updated to version 0.6.0
This commit imports libwebp 0.6.0, including AUTHORS, COPYING, ChangeLog, NEWS, PATENTS, README and src directories. In src, only includes header and source files. Upstream changes since 0.5.1 have been merged in. Also updated version in qt_attribution.json. Conflicts: src/3rdparty/libwebp.pri src/3rdparty/libwebp/qt_attribution.json src/3rdparty/libwebp/src/webp/config.h Change-Id: I001aa7a3fabf0130b54f9005c23aa822bc1d0ec1 Reviewed-by: Eirik Aavitsland <eirik.aavitsland@qt.io>
Diffstat (limited to 'src/3rdparty/libwebp/src/dsp/lossless_enc.c')
-rw-r--r--src/3rdparty/libwebp/src/dsp/lossless_enc.c953
1 files changed, 239 insertions, 714 deletions
diff --git a/src/3rdparty/libwebp/src/dsp/lossless_enc.c b/src/3rdparty/libwebp/src/dsp/lossless_enc.c
index 256f6f5..4e46fba 100644
--- a/src/3rdparty/libwebp/src/dsp/lossless_enc.c
+++ b/src/3rdparty/libwebp/src/dsp/lossless_enc.c
@@ -17,16 +17,12 @@
#include <math.h>
#include <stdlib.h>
-#include "../dec/vp8li.h"
-#include "../utils/endian_inl.h"
+#include "../dec/vp8li_dec.h"
+#include "../utils/endian_inl_utils.h"
#include "./lossless.h"
+#include "./lossless_common.h"
#include "./yuv.h"
-#define MAX_DIFF_COST (1e30f)
-
-static const int kPredLowEffort = 11;
-static const uint32_t kMaskAlpha = 0xff000000;
-
// lookup table for small values of log2(int)
const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
0.0000000000000000f, 0.0000000000000000f,
@@ -380,26 +376,9 @@ static float FastLog2Slow(uint32_t v) {
}
}
-// Mostly used to reduce code size + readability
-static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
-static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
-
//------------------------------------------------------------------------------
// Methods to calculate Entropy (Shannon).
-static float PredictionCostSpatial(const int counts[256], int weight_0,
- double exp_val) {
- const int significant_symbols = 256 >> 4;
- const double exp_decay_factor = 0.6;
- double bits = weight_0 * counts[0];
- int i;
- for (i = 1; i < significant_symbols; ++i) {
- bits += exp_val * (counts[i] + counts[256 - i]);
- exp_val *= exp_decay_factor;
- }
- return (float)(-0.1 * bits);
-}
-
// Compute the combined Shanon's entropy for distribution {X} and {X+Y}
static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
int i;
@@ -422,18 +401,6 @@ static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
return (float)retval;
}
-static float PredictionCostSpatialHistogram(const int accumulated[4][256],
- const int tile[4][256]) {
- int i;
- double retval = 0;
- for (i = 0; i < 4; ++i) {
- const double kExpValue = 0.94;
- retval += PredictionCostSpatial(tile[i], 1, kExpValue);
- retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
- }
- return (float)retval;
-}
-
void VP8LBitEntropyInit(VP8LBitEntropy* const entropy) {
entropy->entropy = 0.;
entropy->sum = 0;
@@ -486,9 +453,9 @@ static WEBP_INLINE void GetEntropyUnrefinedHelper(
*i_prev = i;
}
-void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats) {
+static void GetEntropyUnrefined(const uint32_t X[], int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats) {
int i;
int i_prev = 0;
uint32_t x_prev = X[0];
@@ -499,18 +466,18 @@ void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
for (i = 1; i < length; ++i) {
const uint32_t x = X[i];
if (x != x_prev) {
- VP8LGetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
+ GetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
}
}
- VP8LGetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
+ GetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
}
-void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
- const uint32_t* const Y, int length,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats) {
+static void GetCombinedEntropyUnrefined(const uint32_t X[], const uint32_t Y[],
+ int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats) {
int i = 1;
int i_prev = 0;
uint32_t xy_prev = X[0] + Y[0];
@@ -521,439 +488,29 @@ void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
for (i = 1; i < length; ++i) {
const uint32_t xy = X[i] + Y[i];
if (xy != xy_prev) {
- VP8LGetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy,
- stats);
+ GetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy, stats);
}
}
- VP8LGetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
+ GetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
}
-static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
- ++histo_argb[0][argb >> 24];
- ++histo_argb[1][(argb >> 16) & 0xff];
- ++histo_argb[2][(argb >> 8) & 0xff];
- ++histo_argb[3][argb & 0xff];
-}
-
//------------------------------------------------------------------------------
-static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
- int x, int y,
- const uint32_t* current_row,
- const uint32_t* upper_row) {
- if (y == 0) {
- return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
- } else if (x == 0) {
- return upper_row[x]; // Top.
- } else {
- return pred_func(current_row[x - 1], upper_row + x);
- }
-}
-
-static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
- const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
- const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
- const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
- const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
- return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
-}
-
-static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
- uint32_t left, uint32_t right) {
- const int diff_up = MaxDiffBetweenPixels(current, up);
- const int diff_down = MaxDiffBetweenPixels(current, down);
- const int diff_left = MaxDiffBetweenPixels(current, left);
- const int diff_right = MaxDiffBetweenPixels(current, right);
- return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
-}
-
-static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
- const uint32_t green = (argb >> 8) & 0xff;
- uint32_t red_blue = argb & 0x00ff00ffu;
- red_blue += (green << 16) | green;
- red_blue &= 0x00ff00ffu;
- return (argb & 0xff00ff00u) | red_blue;
-}
-
-static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
- uint8_t* const max_diffs, int used_subtract_green) {
- uint32_t current, up, down, left, right;
- int x;
- if (width <= 2) return;
- current = argb[0];
- right = argb[1];
- if (used_subtract_green) {
- current = AddGreenToBlueAndRed(current);
- right = AddGreenToBlueAndRed(right);
- }
- // max_diffs[0] and max_diffs[width - 1] are never used.
- for (x = 1; x < width - 1; ++x) {
- up = argb[-stride + x];
- down = argb[stride + x];
- left = current;
- current = right;
- right = argb[x + 1];
- if (used_subtract_green) {
- up = AddGreenToBlueAndRed(up);
- down = AddGreenToBlueAndRed(down);
- right = AddGreenToBlueAndRed(right);
- }
- max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
- }
-}
-
-// Quantize the difference between the actual component value and its prediction
-// to a multiple of quantization, working modulo 256, taking care not to cross
-// a boundary (inclusive upper limit).
-static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
- uint8_t boundary, int quantization) {
- const int residual = (value - predict) & 0xff;
- const int boundary_residual = (boundary - predict) & 0xff;
- const int lower = residual & ~(quantization - 1);
- const int upper = lower + quantization;
- // Resolve ties towards a value closer to the prediction (i.e. towards lower
- // if value comes after prediction and towards upper otherwise).
- const int bias = ((boundary - value) & 0xff) < boundary_residual;
- if (residual - lower < upper - residual + bias) {
- // lower is closer to residual than upper.
- if (residual > boundary_residual && lower <= boundary_residual) {
- // Halve quantization step to avoid crossing boundary. This midpoint is
- // on the same side of boundary as residual because midpoint >= residual
- // (since lower is closer than upper) and residual is above the boundary.
- return lower + (quantization >> 1);
- }
- return lower;
- } else {
- // upper is closer to residual than lower.
- if (residual <= boundary_residual && upper > boundary_residual) {
- // Halve quantization step to avoid crossing boundary. This midpoint is
- // on the same side of boundary as residual because midpoint <= residual
- // (since upper is closer than lower) and residual is below the boundary.
- return lower + (quantization >> 1);
- }
- return upper & 0xff;
- }
-}
-
-// Quantize every component of the difference between the actual pixel value and
-// its prediction to a multiple of a quantization (a power of 2, not larger than
-// max_quantization which is a power of 2, smaller than max_diff). Take care if
-// value and predict have undergone subtract green, which means that red and
-// blue are represented as offsets from green.
-static uint32_t NearLossless(uint32_t value, uint32_t predict,
- int max_quantization, int max_diff,
- int used_subtract_green) {
- int quantization;
- uint8_t new_green = 0;
- uint8_t green_diff = 0;
- uint8_t a, r, g, b;
- if (max_diff <= 2) {
- return VP8LSubPixels(value, predict);
- }
- quantization = max_quantization;
- while (quantization >= max_diff) {
- quantization >>= 1;
- }
- if ((value >> 24) == 0 || (value >> 24) == 0xff) {
- // Preserve transparency of fully transparent or fully opaque pixels.
- a = ((value >> 24) - (predict >> 24)) & 0xff;
- } else {
- a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
- }
- g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
- quantization);
- if (used_subtract_green) {
- // The green offset will be added to red and blue components during decoding
- // to obtain the actual red and blue values.
- new_green = ((predict >> 8) + g) & 0xff;
- // The amount by which green has been adjusted during quantization. It is
- // subtracted from red and blue for compensation, to avoid accumulating two
- // quantization errors in them.
- green_diff = (new_green - (value >> 8)) & 0xff;
- }
- r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
- (predict >> 16) & 0xff, 0xff - new_green,
- quantization);
- b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
- 0xff - new_green, quantization);
- return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
-}
-
-// Returns the difference between the pixel and its prediction. In case of a
-// lossy encoding, updates the source image to avoid propagating the deviation
-// further to pixels which depend on the current pixel for their predictions.
-static WEBP_INLINE uint32_t GetResidual(int width, int height,
- uint32_t* const upper_row,
- uint32_t* const current_row,
- const uint8_t* const max_diffs,
- int mode, VP8LPredictorFunc pred_func,
- int x, int y, int max_quantization,
- int exact, int used_subtract_green) {
- const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
- uint32_t residual;
- if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
- x == 0 || x == width - 1) {
- residual = VP8LSubPixels(current_row[x], predict);
- } else {
- residual = NearLossless(current_row[x], predict, max_quantization,
- max_diffs[x], used_subtract_green);
- // Update the source image.
- current_row[x] = VP8LAddPixels(predict, residual);
- // x is never 0 here so we do not need to update upper_row like below.
- }
- if (!exact && (current_row[x] & kMaskAlpha) == 0) {
- // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
- // for best compression. The prediction of alpha itself can be non-zero and
- // must be kept though. We choose RGB of the residual to be 0.
- residual &= kMaskAlpha;
- // Update the source image.
- current_row[x] = predict & ~kMaskAlpha;
- // The prediction for the rightmost pixel in a row uses the leftmost pixel
- // in that row as its top-right context pixel. Hence if we change the
- // leftmost pixel of current_row, the corresponding change must be applied
- // to upper_row as well where top-right context is being read from.
- if (x == 0 && y != 0) upper_row[width] = current_row[0];
- }
- return residual;
-}
-
-// Returns best predictor and updates the accumulated histogram.
-// If max_quantization > 1, assumes that near lossless processing will be
-// applied, quantizing residuals to multiples of quantization levels up to
-// max_quantization (the actual quantization level depends on smoothness near
-// the given pixel).
-static int GetBestPredictorForTile(int width, int height,
- int tile_x, int tile_y, int bits,
- int accumulated[4][256],
- uint32_t* const argb_scratch,
- const uint32_t* const argb,
- int max_quantization,
- int exact, int used_subtract_green) {
- const int kNumPredModes = 14;
- const int start_x = tile_x << bits;
- const int start_y = tile_y << bits;
- const int tile_size = 1 << bits;
- const int max_y = GetMin(tile_size, height - start_y);
- const int max_x = GetMin(tile_size, width - start_x);
- // Whether there exist columns just outside the tile.
- const int have_left = (start_x > 0);
- const int have_right = (max_x < width - start_x);
- // Position and size of the strip covering the tile and adjacent columns if
- // they exist.
- const int context_start_x = start_x - have_left;
- const int context_width = max_x + have_left + have_right;
- // The width of upper_row and current_row is one pixel larger than image width
- // to allow the top right pixel to point to the leftmost pixel of the next row
- // when at the right edge.
- uint32_t* upper_row = argb_scratch;
- uint32_t* current_row = upper_row + width + 1;
- uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
- float best_diff = MAX_DIFF_COST;
- int best_mode = 0;
- int mode;
- int histo_stack_1[4][256];
- int histo_stack_2[4][256];
- // Need pointers to be able to swap arrays.
- int (*histo_argb)[256] = histo_stack_1;
- int (*best_histo)[256] = histo_stack_2;
- int i, j;
-
- for (mode = 0; mode < kNumPredModes; ++mode) {
- const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
- float cur_diff;
- int relative_y;
- memset(histo_argb, 0, sizeof(histo_stack_1));
- if (start_y > 0) {
- // Read the row above the tile which will become the first upper_row.
- // Include a pixel to the left if it exists; include a pixel to the right
- // in all cases (wrapping to the leftmost pixel of the next row if it does
- // not exist).
- memcpy(current_row + context_start_x,
- argb + (start_y - 1) * width + context_start_x,
- sizeof(*argb) * (max_x + have_left + 1));
- }
- for (relative_y = 0; relative_y < max_y; ++relative_y) {
- const int y = start_y + relative_y;
- int relative_x;
- uint32_t* tmp = upper_row;
- upper_row = current_row;
- current_row = tmp;
- // Read current_row. Include a pixel to the left if it exists; include a
- // pixel to the right in all cases except at the bottom right corner of
- // the image (wrapping to the leftmost pixel of the next row if it does
- // not exist in the current row).
- memcpy(current_row + context_start_x,
- argb + y * width + context_start_x,
- sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
- if (max_quantization > 1 && y >= 1 && y + 1 < height) {
- MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
- max_diffs + context_start_x, used_subtract_green);
- }
-
- for (relative_x = 0; relative_x < max_x; ++relative_x) {
- const int x = start_x + relative_x;
- UpdateHisto(histo_argb,
- GetResidual(width, height, upper_row, current_row,
- max_diffs, mode, pred_func, x, y,
- max_quantization, exact, used_subtract_green));
- }
- }
- cur_diff = PredictionCostSpatialHistogram(
- (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
- if (cur_diff < best_diff) {
- int (*tmp)[256] = histo_argb;
- histo_argb = best_histo;
- best_histo = tmp;
- best_diff = cur_diff;
- best_mode = mode;
- }
- }
-
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 256; j++) {
- accumulated[i][j] += best_histo[i][j];
- }
- }
-
- return best_mode;
-}
-
-// Converts pixels of the image to residuals with respect to predictions.
-// If max_quantization > 1, applies near lossless processing, quantizing
-// residuals to multiples of quantization levels up to max_quantization
-// (the actual quantization level depends on smoothness near the given pixel).
-static void CopyImageWithPrediction(int width, int height,
- int bits, uint32_t* const modes,
- uint32_t* const argb_scratch,
- uint32_t* const argb,
- int low_effort, int max_quantization,
- int exact, int used_subtract_green) {
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- const int mask = (1 << bits) - 1;
- // The width of upper_row and current_row is one pixel larger than image width
- // to allow the top right pixel to point to the leftmost pixel of the next row
- // when at the right edge.
- uint32_t* upper_row = argb_scratch;
- uint32_t* current_row = upper_row + width + 1;
- uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
- uint8_t* lower_max_diffs = current_max_diffs + width;
- int y;
- int mode = 0;
- VP8LPredictorFunc pred_func = NULL;
-
- for (y = 0; y < height; ++y) {
- int x;
- uint32_t* const tmp32 = upper_row;
- upper_row = current_row;
- current_row = tmp32;
- memcpy(current_row, argb + y * width,
- sizeof(*argb) * (width + (y + 1 < height)));
-
- if (low_effort) {
- for (x = 0; x < width; ++x) {
- const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
- current_row, upper_row);
- argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
- }
- } else {
- if (max_quantization > 1) {
- // Compute max_diffs for the lower row now, because that needs the
- // contents of argb for the current row, which we will overwrite with
- // residuals before proceeding with the next row.
- uint8_t* const tmp8 = current_max_diffs;
- current_max_diffs = lower_max_diffs;
- lower_max_diffs = tmp8;
- if (y + 2 < height) {
- MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
- used_subtract_green);
- }
- }
- for (x = 0; x < width; ++x) {
- if ((x & mask) == 0) {
- mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
- pred_func = VP8LPredictors[mode];
- }
- argb[y * width + x] = GetResidual(
- width, height, upper_row, current_row, current_max_diffs, mode,
- pred_func, x, y, max_quantization, exact, used_subtract_green);
- }
- }
- }
-}
-
-// Finds the best predictor for each tile, and converts the image to residuals
-// with respect to predictions. If near_lossless_quality < 100, applies
-// near lossless processing, shaving off more bits of residuals for lower
-// qualities.
-void VP8LResidualImage(int width, int height, int bits, int low_effort,
- uint32_t* const argb, uint32_t* const argb_scratch,
- uint32_t* const image, int near_lossless_quality,
- int exact, int used_subtract_green) {
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- const int tiles_per_col = VP8LSubSampleSize(height, bits);
- int tile_y;
- int histo[4][256];
- const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
- if (low_effort) {
- int i;
- for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
- image[i] = ARGB_BLACK | (kPredLowEffort << 8);
- }
- } else {
- memset(histo, 0, sizeof(histo));
- for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
- int tile_x;
- for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
- const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
- bits, histo, argb_scratch, argb, max_quantization, exact,
- used_subtract_green);
- image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
- }
- }
- }
-
- CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
- low_effort, max_quantization, exact,
- used_subtract_green);
-}
-
void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
int i;
for (i = 0; i < num_pixels; ++i) {
- const uint32_t argb = argb_data[i];
- const uint32_t green = (argb >> 8) & 0xff;
+ const int argb = argb_data[i];
+ const int green = (argb >> 8) & 0xff;
const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
- const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
- argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
+ const uint32_t new_b = (((argb >> 0) & 0xff) - green) & 0xff;
+ argb_data[i] = (argb & 0xff00ff00u) | (new_r << 16) | new_b;
}
}
-static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
- m->green_to_red_ = 0;
- m->green_to_blue_ = 0;
- m->red_to_blue_ = 0;
-}
-
-static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
- int8_t color) {
- return (uint32_t)((int)(color_pred) * color) >> 5;
-}
-
-static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
- VP8LMultipliers* const m) {
- m->green_to_red_ = (color_code >> 0) & 0xff;
- m->green_to_blue_ = (color_code >> 8) & 0xff;
- m->red_to_blue_ = (color_code >> 16) & 0xff;
-}
-
-static WEBP_INLINE uint32_t MultipliersToColorCode(
- const VP8LMultipliers* const m) {
- return 0xff000000u |
- ((uint32_t)(m->red_to_blue_) << 16) |
- ((uint32_t)(m->green_to_blue_) << 8) |
- m->green_to_red_;
+static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, int8_t color) {
+ return ((int)color_pred * color) >> 5;
}
void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
@@ -963,8 +520,8 @@ void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
const uint32_t argb = data[i];
const uint32_t green = argb >> 8;
const uint32_t red = argb >> 16;
- uint32_t new_red = red;
- uint32_t new_blue = argb;
+ int new_red = red;
+ int new_blue = argb;
new_red -= ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue -= ColorTransformDelta(m->green_to_blue_, green);
@@ -977,7 +534,7 @@ void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red,
uint32_t argb) {
const uint32_t green = argb >> 8;
- uint32_t new_red = argb >> 16;
+ int new_red = argb >> 16;
new_red -= ColorTransformDelta(green_to_red, green);
return (new_red & 0xff);
}
@@ -993,15 +550,6 @@ static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue,
return (new_blue & 0xff);
}
-static float PredictionCostCrossColor(const int accumulated[256],
- const int counts[256]) {
- // Favor low entropy, locally and globally.
- // Favor small absolute values for PredictionCostSpatial
- static const double kExpValue = 2.4;
- return VP8LCombinedShannonEntropy(counts, accumulated) +
- PredictionCostSpatial(counts, 3, kExpValue);
-}
-
void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_red, int histo[]) {
@@ -1014,59 +562,6 @@ void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
}
}
-static float GetPredictionCostCrossColorRed(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
- const int accumulated_red_histo[256]) {
- int histo[256] = { 0 };
- float cur_diff;
-
- VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
- green_to_red, histo);
-
- cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
- if ((uint8_t)green_to_red == prev_x.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)green_to_red == prev_y.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (green_to_red == 0) {
- cur_diff -= 3;
- }
- return cur_diff;
-}
-
-static void GetBestGreenToRed(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
- const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
- const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
- int green_to_red_best = 0;
- int iter, offset;
- float best_diff = GetPredictionCostCrossColorRed(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_red_best, accumulated_red_histo);
- for (iter = 0; iter < kMaxIters; ++iter) {
- // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
- // one in color computation. Having initial delta here as 1 is sufficient
- // to explore the range of (-2, 2).
- const int delta = 32 >> iter;
- // Try a negative and a positive delta from the best known value.
- for (offset = -delta; offset <= delta; offset += 2 * delta) {
- const int green_to_red_cur = offset + green_to_red_best;
- const float cur_diff = GetPredictionCostCrossColorRed(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_red_cur, accumulated_red_histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- green_to_red_best = green_to_red_cur;
- }
- }
- }
- best_tx->green_to_red_ = green_to_red_best;
-}
-
void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue,
@@ -1080,187 +575,6 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
}
}
-static float GetPredictionCostCrossColorBlue(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y,
- int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
- int histo[256] = { 0 };
- float cur_diff;
-
- VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
- green_to_blue, red_to_blue, histo);
-
- cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
- if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (green_to_blue == 0) {
- cur_diff -= 3;
- }
- if (red_to_blue == 0) {
- cur_diff -= 3;
- }
- return cur_diff;
-}
-
-#define kGreenRedToBlueNumAxis 8
-#define kGreenRedToBlueMaxIters 7
-static void GetBestGreenRedToBlue(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
- const int accumulated_blue_histo[256],
- VP8LMultipliers* const best_tx) {
- const int8_t offset[kGreenRedToBlueNumAxis][2] =
- {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
- const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
- const int iters =
- (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
- int green_to_blue_best = 0;
- int red_to_blue_best = 0;
- int iter;
- // Initial value at origin:
- float best_diff = GetPredictionCostCrossColorBlue(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
- for (iter = 0; iter < iters; ++iter) {
- const int delta = delta_lut[iter];
- int axis;
- for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
- const int green_to_blue_cur =
- offset[axis][0] * delta + green_to_blue_best;
- const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
- const float cur_diff = GetPredictionCostCrossColorBlue(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- green_to_blue_best = green_to_blue_cur;
- red_to_blue_best = red_to_blue_cur;
- }
- if (quality < 25 && iter == 4) {
- // Only axis aligned diffs for lower quality.
- break; // next iter.
- }
- }
- if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
- // Further iterations would not help.
- break; // out of iter-loop.
- }
- }
- best_tx->green_to_blue_ = green_to_blue_best;
- best_tx->red_to_blue_ = red_to_blue_best;
-}
-#undef kGreenRedToBlueMaxIters
-#undef kGreenRedToBlueNumAxis
-
-static VP8LMultipliers GetBestColorTransformForTile(
- int tile_x, int tile_y, int bits,
- VP8LMultipliers prev_x,
- VP8LMultipliers prev_y,
- int quality, int xsize, int ysize,
- const int accumulated_red_histo[256],
- const int accumulated_blue_histo[256],
- const uint32_t* const argb) {
- const int max_tile_size = 1 << bits;
- const int tile_y_offset = tile_y * max_tile_size;
- const int tile_x_offset = tile_x * max_tile_size;
- const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
- const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
- const int tile_width = all_x_max - tile_x_offset;
- const int tile_height = all_y_max - tile_y_offset;
- const uint32_t* const tile_argb = argb + tile_y_offset * xsize
- + tile_x_offset;
- VP8LMultipliers best_tx;
- MultipliersClear(&best_tx);
-
- GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
- prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
- GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
- prev_x, prev_y, quality, accumulated_blue_histo,
- &best_tx);
- return best_tx;
-}
-
-static void CopyTileWithColorTransform(int xsize, int ysize,
- int tile_x, int tile_y,
- int max_tile_size,
- VP8LMultipliers color_transform,
- uint32_t* argb) {
- const int xscan = GetMin(max_tile_size, xsize - tile_x);
- int yscan = GetMin(max_tile_size, ysize - tile_y);
- argb += tile_y * xsize + tile_x;
- while (yscan-- > 0) {
- VP8LTransformColor(&color_transform, argb, xscan);
- argb += xsize;
- }
-}
-
-void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
- uint32_t* const argb, uint32_t* image) {
- const int max_tile_size = 1 << bits;
- const int tile_xsize = VP8LSubSampleSize(width, bits);
- const int tile_ysize = VP8LSubSampleSize(height, bits);
- int accumulated_red_histo[256] = { 0 };
- int accumulated_blue_histo[256] = { 0 };
- int tile_x, tile_y;
- VP8LMultipliers prev_x, prev_y;
- MultipliersClear(&prev_y);
- MultipliersClear(&prev_x);
- for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
- for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
- int y;
- const int tile_x_offset = tile_x * max_tile_size;
- const int tile_y_offset = tile_y * max_tile_size;
- const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
- const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
- const int offset = tile_y * tile_xsize + tile_x;
- if (tile_y != 0) {
- ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
- }
- prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
- prev_x, prev_y,
- quality, width, height,
- accumulated_red_histo,
- accumulated_blue_histo,
- argb);
- image[offset] = MultipliersToColorCode(&prev_x);
- CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
- max_tile_size, prev_x, argb);
-
- // Gather accumulated histogram data.
- for (y = tile_y_offset; y < all_y_max; ++y) {
- int ix = y * width + tile_x_offset;
- const int ix_end = ix + all_x_max - tile_x_offset;
- for (; ix < ix_end; ++ix) {
- const uint32_t pix = argb[ix];
- if (ix >= 2 &&
- pix == argb[ix - 2] &&
- pix == argb[ix - 1]) {
- continue; // repeated pixels are handled by backward references
- }
- if (ix >= width + 2 &&
- argb[ix - 2] == argb[ix - width - 2] &&
- argb[ix - 1] == argb[ix - width - 1] &&
- pix == argb[ix - width]) {
- continue; // repeated pixels are handled by backward references
- }
- ++accumulated_red_histo[(pix >> 16) & 0xff];
- ++accumulated_blue_histo[(pix >> 0) & 0xff];
- }
- }
- }
- }
-}
-
//------------------------------------------------------------------------------
static int VectorMismatch(const uint32_t* const array1,
@@ -1274,8 +588,8 @@ static int VectorMismatch(const uint32_t* const array1,
}
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
-void VP8LBundleColorMap(const uint8_t* const row, int width,
- int xbits, uint32_t* const dst) {
+void VP8LBundleColorMap_C(const uint8_t* const row, int width, int xbits,
+ uint32_t* dst) {
int x;
if (xbits > 0) {
const int bit_depth = 1 << (3 - xbits);
@@ -1350,8 +664,172 @@ static void HistogramAdd(const VP8LHistogram* const a,
}
//------------------------------------------------------------------------------
+// Image transforms.
-VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
+static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
+ return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
+}
+
+static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
+ return Average2(Average2(a0, a2), a1);
+}
+
+static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
+ uint32_t a2, uint32_t a3) {
+ return Average2(Average2(a0, a1), Average2(a2, a3));
+}
+
+static WEBP_INLINE uint32_t Clip255(uint32_t a) {
+ if (a < 256) {
+ return a;
+ }
+ // return 0, when a is a negative integer.
+ // return 255, when a is positive.
+ return ~a >> 24;
+}
+
+static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
+ return Clip255(a + b - c);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
+ const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
+ (c1 >> 16) & 0xff,
+ (c2 >> 16) & 0xff);
+ const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
+ (c1 >> 8) & 0xff,
+ (c2 >> 8) & 0xff);
+ const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
+ return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
+}
+
+static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
+ return Clip255(a + (a - b) / 2);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const uint32_t ave = Average2(c0, c1);
+ const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
+ const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
+ const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
+ const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
+ return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
+}
+
+// gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined.
+#if defined(__arm__) && \
+ (LOCAL_GCC_VERSION == 0x409 || LOCAL_GCC_VERSION == 0x408)
+# define LOCAL_INLINE __attribute__ ((noinline))
+#else
+# define LOCAL_INLINE WEBP_INLINE
+#endif
+
+static LOCAL_INLINE int Sub3(int a, int b, int c) {
+ const int pb = b - c;
+ const int pa = a - c;
+ return abs(pb) - abs(pa);
+}
+
+#undef LOCAL_INLINE
+
+static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
+ const int pa_minus_pb =
+ Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
+ Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
+ Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
+ Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
+ return (pa_minus_pb <= 0) ? a : b;
+}
+
+//------------------------------------------------------------------------------
+// Predictors
+
+static uint32_t Predictor2(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[0];
+}
+static uint32_t Predictor3(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[1];
+}
+static uint32_t Predictor4(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[-1];
+}
+static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average3(left, top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(left, top[0]);
+ return pred;
+}
+static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(top[-1], top[0]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(top[0], top[1]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Select(top[0], left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
+ return pred;
+}
+static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
+ return pred;
+}
+
+//------------------------------------------------------------------------------
+
+static void PredictorSub0_C(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], ARGB_BLACK);
+ (void)upper;
+}
+
+static void PredictorSub1_C(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], in[i - 1]);
+ (void)upper;
+}
+
+GENERATE_PREDICTOR_SUB(Predictor2, PredictorSub2_C)
+GENERATE_PREDICTOR_SUB(Predictor3, PredictorSub3_C)
+GENERATE_PREDICTOR_SUB(Predictor4, PredictorSub4_C)
+GENERATE_PREDICTOR_SUB(Predictor5, PredictorSub5_C)
+GENERATE_PREDICTOR_SUB(Predictor6, PredictorSub6_C)
+GENERATE_PREDICTOR_SUB(Predictor7, PredictorSub7_C)
+GENERATE_PREDICTOR_SUB(Predictor8, PredictorSub8_C)
+GENERATE_PREDICTOR_SUB(Predictor9, PredictorSub9_C)
+GENERATE_PREDICTOR_SUB(Predictor10, PredictorSub10_C)
+GENERATE_PREDICTOR_SUB(Predictor11, PredictorSub11_C)
+GENERATE_PREDICTOR_SUB(Predictor12, PredictorSub12_C)
+GENERATE_PREDICTOR_SUB(Predictor13, PredictorSub13_C)
+
+//------------------------------------------------------------------------------
+
+VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
VP8LTransformColorFunc VP8LTransformColor;
@@ -1365,17 +843,23 @@ VP8LCostFunc VP8LExtraCost;
VP8LCostCombinedFunc VP8LExtraCostCombined;
VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy;
-GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
+VP8LGetEntropyUnrefinedFunc VP8LGetEntropyUnrefined;
+VP8LGetCombinedEntropyUnrefinedFunc VP8LGetCombinedEntropyUnrefined;
VP8LHistogramAddFunc VP8LHistogramAdd;
VP8LVectorMismatchFunc VP8LVectorMismatch;
+VP8LBundleColorMapFunc VP8LBundleColorMap;
+
+VP8LPredictorAddSubFunc VP8LPredictorsSub[16];
+VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16];
extern void VP8LEncDspInitSSE2(void);
extern void VP8LEncDspInitSSE41(void);
extern void VP8LEncDspInitNEON(void);
extern void VP8LEncDspInitMIPS32(void);
extern void VP8LEncDspInitMIPSdspR2(void);
+extern void VP8LEncDspInitMSA(void);
static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used =
(VP8CPUInfo)&lossless_enc_last_cpuinfo_used;
@@ -1399,11 +883,47 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
VP8LExtraCostCombined = ExtraCostCombined;
VP8LCombinedShannonEntropy = CombinedShannonEntropy;
- VP8LGetEntropyUnrefinedHelper = GetEntropyUnrefinedHelper;
+ VP8LGetEntropyUnrefined = GetEntropyUnrefined;
+ VP8LGetCombinedEntropyUnrefined = GetCombinedEntropyUnrefined;
VP8LHistogramAdd = HistogramAdd;
VP8LVectorMismatch = VectorMismatch;
+ VP8LBundleColorMap = VP8LBundleColorMap_C;
+
+ VP8LPredictorsSub[0] = PredictorSub0_C;
+ VP8LPredictorsSub[1] = PredictorSub1_C;
+ VP8LPredictorsSub[2] = PredictorSub2_C;
+ VP8LPredictorsSub[3] = PredictorSub3_C;
+ VP8LPredictorsSub[4] = PredictorSub4_C;
+ VP8LPredictorsSub[5] = PredictorSub5_C;
+ VP8LPredictorsSub[6] = PredictorSub6_C;
+ VP8LPredictorsSub[7] = PredictorSub7_C;
+ VP8LPredictorsSub[8] = PredictorSub8_C;
+ VP8LPredictorsSub[9] = PredictorSub9_C;
+ VP8LPredictorsSub[10] = PredictorSub10_C;
+ VP8LPredictorsSub[11] = PredictorSub11_C;
+ VP8LPredictorsSub[12] = PredictorSub12_C;
+ VP8LPredictorsSub[13] = PredictorSub13_C;
+ VP8LPredictorsSub[14] = PredictorSub0_C; // <- padding security sentinels
+ VP8LPredictorsSub[15] = PredictorSub0_C;
+
+ VP8LPredictorsSub_C[0] = PredictorSub0_C;
+ VP8LPredictorsSub_C[1] = PredictorSub1_C;
+ VP8LPredictorsSub_C[2] = PredictorSub2_C;
+ VP8LPredictorsSub_C[3] = PredictorSub3_C;
+ VP8LPredictorsSub_C[4] = PredictorSub4_C;
+ VP8LPredictorsSub_C[5] = PredictorSub5_C;
+ VP8LPredictorsSub_C[6] = PredictorSub6_C;
+ VP8LPredictorsSub_C[7] = PredictorSub7_C;
+ VP8LPredictorsSub_C[8] = PredictorSub8_C;
+ VP8LPredictorsSub_C[9] = PredictorSub9_C;
+ VP8LPredictorsSub_C[10] = PredictorSub10_C;
+ VP8LPredictorsSub_C[11] = PredictorSub11_C;
+ VP8LPredictorsSub_C[12] = PredictorSub12_C;
+ VP8LPredictorsSub_C[13] = PredictorSub13_C;
+ VP8LPredictorsSub_C[14] = PredictorSub0_C; // <- padding security sentinels
+ VP8LPredictorsSub_C[15] = PredictorSub0_C;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo != NULL) {
@@ -1432,6 +952,11 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
VP8LEncDspInitMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ VP8LEncDspInitMSA();
+ }
+#endif
}
lossless_enc_last_cpuinfo_used = VP8GetCPUInfo;
}