summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp/enc_sse2.c
blob: 7b3f142c31b538ca5f8db3f8f0e79cb84e3b40ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 version of speed-critical encoding functions.
//
// Author: Christian Duvivier (cduvivier@google.com)

#include "src/dsp/dsp.h"

#if defined(WEBP_USE_SSE2)
#include <assert.h>
#include <stdlib.h>  // for abs()
#include <emmintrin.h>

#include "src/dsp/common_sse2.h"
#include "src/enc/cost_enc.h"
#include "src/enc/vp8i_enc.h"

//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)

// Does one or two inverse transforms.
static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
                            int do_two) {
  // This implementation makes use of 16-bit fixed point versions of two
  // multiply constants:
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
  //
  // To be able to use signed 16-bit integers, we use the following trick to
  // have constants within range:
  // - Associated constants are obtained by subtracting the 16-bit fixed point
  //   version of one:
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
  //      K1 = 85267  =>  k1 =  20091
  //      K2 = 35468  =>  k2 = -30068
  // - The multiplication of a variable by a constant become the sum of the
  //   variable and the multiplication of that variable by the associated
  //   constant:
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
  const __m128i k1 = _mm_set1_epi16(20091);
  const __m128i k2 = _mm_set1_epi16(-30068);
  __m128i T0, T1, T2, T3;

  // Load and concatenate the transform coefficients (we'll do two inverse
  // transforms in parallel). In the case of only one inverse transform, the
  // second half of the vectors will just contain random value we'll never
  // use nor store.
  __m128i in0, in1, in2, in3;
  {
    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
    // a00 a10 a20 a30   x x x x
    // a01 a11 a21 a31   x x x x
    // a02 a12 a22 a32   x x x x
    // a03 a13 a23 a33   x x x x
    if (do_two) {
      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
      in0 = _mm_unpacklo_epi64(in0, inB0);
      in1 = _mm_unpacklo_epi64(in1, inB1);
      in2 = _mm_unpacklo_epi64(in2, inB2);
      in3 = _mm_unpacklo_epi64(in3, inB3);
      // a00 a10 a20 a30   b00 b10 b20 b30
      // a01 a11 a21 a31   b01 b11 b21 b31
      // a02 a12 a22 a32   b02 b12 b22 b32
      // a03 a13 a23 a33   b03 b13 b23 b33
    }
  }

  // Vertical pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i a = _mm_add_epi16(in0, in2);
    const __m128i b = _mm_sub_epi16(in0, in2);
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    const __m128i c3 = _mm_sub_epi16(in1, in3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    const __m128i d3 = _mm_add_epi16(in1, in3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
  }

  // Horizontal pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i four = _mm_set1_epi16(4);
    const __m128i dc = _mm_add_epi16(T0, four);
    const __m128i a =  _mm_add_epi16(dc, T2);
    const __m128i b =  _mm_sub_epi16(dc, T2);
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    const __m128i c3 = _mm_sub_epi16(T1, T3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    const __m128i d3 = _mm_add_epi16(T1, T3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
                           &T2, &T3);
  }

  // Add inverse transform to 'ref' and store.
  {
    const __m128i zero = _mm_setzero_si128();
    // Load the reference(s).
    __m128i ref0, ref1, ref2, ref3;
    if (do_two) {
      // Load eight bytes/pixels per line.
      ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
      ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
      ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
      ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
    } else {
      // Load four bytes/pixels per line.
      ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
      ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
      ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
      ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
    }
    // Convert to 16b.
    ref0 = _mm_unpacklo_epi8(ref0, zero);
    ref1 = _mm_unpacklo_epi8(ref1, zero);
    ref2 = _mm_unpacklo_epi8(ref2, zero);
    ref3 = _mm_unpacklo_epi8(ref3, zero);
    // Add the inverse transform(s).
    ref0 = _mm_add_epi16(ref0, T0);
    ref1 = _mm_add_epi16(ref1, T1);
    ref2 = _mm_add_epi16(ref2, T2);
    ref3 = _mm_add_epi16(ref3, T3);
    // Unsigned saturate to 8b.
    ref0 = _mm_packus_epi16(ref0, ref0);
    ref1 = _mm_packus_epi16(ref1, ref1);
    ref2 = _mm_packus_epi16(ref2, ref2);
    ref3 = _mm_packus_epi16(ref3, ref3);
    // Store the results.
    if (do_two) {
      // Store eight bytes/pixels per line.
      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    } else {
      // Store four bytes/pixels per line.
      WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
      WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
      WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
      WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
    }
  }
}

static void FTransformPass1_SSE2(const __m128i* const in01,
                                 const __m128i* const in23,
                                 __m128i* const out01,
                                 __m128i* const out32) {
  const __m128i k937 = _mm_set1_epi32(937);
  const __m128i k1812 = _mm_set1_epi32(1812);

  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
                                            2217, 5352, 2217, 5352);
  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
                                            -5352, 2217, -5352, 2217);

  // *in01 = 00 01 10 11 02 03 12 13
  // *in23 = 20 21 30 31 22 23 32 33
  const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
  const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
  // 00 01 10 11 03 02 13 12
  // 20 21 30 31 23 22 33 32
  const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
  const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
  // 00 01 10 11 20 21 30 31
  // 03 02 13 12 23 22 33 32
  const __m128i a01 = _mm_add_epi16(s01, s32);
  const __m128i a32 = _mm_sub_epi16(s01, s32);
  // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
  // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]

  const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
  const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
  const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
  const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
  const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
  const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
  const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
  const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
  const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
  const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
  const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
  const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
  const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
  *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
  *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
}

static void FTransformPass2_SSE2(const __m128i* const v01,
                                 const __m128i* const v32,
                                 int16_t* out) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i seven = _mm_set1_epi16(7);
  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
                                           5352,  2217, 5352,  2217);
  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
                                           2217, -5352, 2217, -5352);
  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
  const __m128i k51000 = _mm_set1_epi32(51000);

  // Same operations are done on the (0,3) and (1,2) pairs.
  // a3 = v0 - v3
  // a2 = v1 - v2
  const __m128i a32 = _mm_sub_epi16(*v01, *v32);
  const __m128i a22 = _mm_unpackhi_epi64(a32, a32);

  const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
  const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
  const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
  const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
  const __m128i d3 = _mm_add_epi32(c3, k51000);
  const __m128i e1 = _mm_srai_epi32(d1, 16);
  const __m128i e3 = _mm_srai_epi32(d3, 16);
  // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
  // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
  const __m128i f1 = _mm_packs_epi32(e1, e1);
  const __m128i f3 = _mm_packs_epi32(e3, e3);
  // g1 = f1 + (a3 != 0);
  // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
  // desired (0, 1), we add one earlier through k12000_plus_one.
  // -> g1 = f1 + 1 - (a3 == 0)
  const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));

  // a0 = v0 + v3
  // a1 = v1 + v2
  const __m128i a01 = _mm_add_epi16(*v01, *v32);
  const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
  const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
  const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
  const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
  // d0 = (a0 + a1 + 7) >> 4;
  // d2 = (a0 - a1 + 7) >> 4;
  const __m128i d0 = _mm_srai_epi16(c0, 4);
  const __m128i d2 = _mm_srai_epi16(c2, 4);

  const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
  const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
  _mm_storeu_si128((__m128i*)&out[0], d0_g1);
  _mm_storeu_si128((__m128i*)&out[8], d2_f3);
}

static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
                            int16_t* out) {
  const __m128i zero = _mm_setzero_si128();
  // Load src.
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
  // 00 01 02 03 *
  // 10 11 12 13 *
  // 20 21 22 23 *
  // 30 31 32 33 *
  // Shuffle.
  const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
  const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
  // 00 01 10 11 02 03 12 13 * * ...
  // 20 21 30 31 22 22 32 33 * * ...

  // Load ref.
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
  const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
  const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);

  // Convert both to 16 bit.
  const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
  const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
  const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
  const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);

  // Compute the difference.
  const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
  const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
  __m128i v01, v32;

  // First pass
  FTransformPass1_SSE2(&row01, &row23, &v01, &v32);

  // Second pass
  FTransformPass2_SSE2(&v01, &v32, out);
}

static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
                             int16_t* out) {
  const __m128i zero = _mm_setzero_si128();

  // Load src and convert to 16b.
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
  const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
  const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
  const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
  const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
  // Load ref and convert to 16b.
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
  const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
  const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
  const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
  const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
  // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
  const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
  const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
  const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
  const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);

  // Unpack and shuffle
  // 00 01 02 03   0 0 0 0
  // 10 11 12 13   0 0 0 0
  // 20 21 22 23   0 0 0 0
  // 30 31 32 33   0 0 0 0
  const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
  const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
  const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
  const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
  __m128i v01l, v32l;
  __m128i v01h, v32h;

  // First pass
  FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
  FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);

  // Second pass
  FTransformPass2_SSE2(&v01l, &v32l, out + 0);
  FTransformPass2_SSE2(&v01h, &v32h, out + 16);
}

static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
  const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
  const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
  const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
  const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
  const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
  const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
  const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
  const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
  const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
  const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
  const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
  const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
  *out = _mm_madd_epi16(D, kMult);
}

static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
  // Input is 12b signed.
  __m128i row0, row1, row2, row3;
  // Rows are 14b signed.
  FTransformWHTRow_SSE2(in + 0 * 64, &row0);
  FTransformWHTRow_SSE2(in + 1 * 64, &row1);
  FTransformWHTRow_SSE2(in + 2 * 64, &row2);
  FTransformWHTRow_SSE2(in + 3 * 64, &row3);

  {
    // The a* are 15b signed.
    const __m128i a0 = _mm_add_epi32(row0, row2);
    const __m128i a1 = _mm_add_epi32(row1, row3);
    const __m128i a2 = _mm_sub_epi32(row1, row3);
    const __m128i a3 = _mm_sub_epi32(row0, row2);
    const __m128i a0a3 = _mm_packs_epi32(a0, a3);
    const __m128i a1a2 = _mm_packs_epi32(a1, a2);

    // The b* are 16b signed.
    const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
    const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
    const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
    const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);

    _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
    _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
  }
}

//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.

static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
                                  int start_block, int end_block,
                                  VP8Histogram* const histo) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
  int j;
  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
  for (j = start_block; j < end_block; ++j) {
    int16_t out[16];
    int k;

    FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);

    // Convert coefficients to bin (within out[]).
    {
      // Load.
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
      const __m128i d0 = _mm_sub_epi16(zero, out0);
      const __m128i d1 = _mm_sub_epi16(zero, out1);
      const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
      const __m128i abs1 = _mm_max_epi16(out1, d1);
      // v = abs(out) >> 3
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
      // bin = min(v, MAX_COEFF_THRESH)
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
      // Store.
      _mm_storeu_si128((__m128i*)&out[0], bin0);
      _mm_storeu_si128((__m128i*)&out[8], bin1);
    }

    // Convert coefficients to bin.
    for (k = 0; k < 16; ++k) {
      ++distribution[out[k]];
    }
  }
  VP8SetHistogramData(distribution, histo);
}

//------------------------------------------------------------------------------
// Intra predictions

// helper for chroma-DC predictions
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
  int j;
  const __m128i values = _mm_set1_epi8(v);
  for (j = 0; j < 8; ++j) {
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
  }
}

static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
  int j;
  const __m128i values = _mm_set1_epi8(v);
  for (j = 0; j < 16; ++j) {
    _mm_store_si128((__m128i*)(dst + j * BPS), values);
  }
}

static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
  if (size == 4) {
    int j;
    for (j = 0; j < 4; ++j) {
      memset(dst + j * BPS, value, 4);
    }
  } else if (size == 8) {
    Put8x8uv_SSE2(value, dst);
  } else {
    Put16_SSE2(value, dst);
  }
}

static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
  int j;
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
  for (j = 0; j < 8; ++j) {
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
  }
}

static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i top_values = _mm_load_si128((const __m128i*)top);
  int j;
  for (j = 0; j < 16; ++j) {
    _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
  }
}

static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
                                          const uint8_t* top, int size) {
  if (top != NULL) {
    if (size == 8) {
      VE8uv_SSE2(dst, top);
    } else {
      VE16_SSE2(dst, top);
    }
  } else {
    Fill_SSE2(dst, 127, size);
  }
}

static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
  int j;
  for (j = 0; j < 8; ++j) {
    const __m128i values = _mm_set1_epi8(left[j]);
    _mm_storel_epi64((__m128i*)dst, values);
    dst += BPS;
  }
}

static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
  int j;
  for (j = 0; j < 16; ++j) {
    const __m128i values = _mm_set1_epi8(left[j]);
    _mm_store_si128((__m128i*)dst, values);
    dst += BPS;
  }
}

static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
                                            const uint8_t* left, int size) {
  if (left != NULL) {
    if (size == 8) {
      HE8uv_SSE2(dst, left);
    } else {
      HE16_SSE2(dst, left);
    }
  } else {
    Fill_SSE2(dst, 129, size);
  }
}

static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
                                const uint8_t* top, int size) {
  const __m128i zero = _mm_setzero_si128();
  int y;
  if (size == 8) {
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
    for (y = 0; y < 8; ++y, dst += BPS) {
      const int val = left[y] - left[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
      _mm_storel_epi64((__m128i*)dst, out);
    }
  } else {
    const __m128i top_values = _mm_load_si128((const __m128i*)top);
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
    for (y = 0; y < 16; ++y, dst += BPS) {
      const int val = left[y] - left[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
      const __m128i out = _mm_packus_epi16(out_0, out_1);
      _mm_store_si128((__m128i*)dst, out);
    }
  }
}

static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
                                        const uint8_t* top, int size) {
  if (left != NULL) {
    if (top != NULL) {
      TM_SSE2(dst, left, top, size);
    } else {
      HorizontalPred_SSE2(dst, left, size);
    }
  } else {
    // true motion without left samples (hence: with default 129 value)
    // is equivalent to VE prediction where you just copy the top samples.
    // Note that if top samples are not available, the default value is
    // then 129, and not 127 as in the VerticalPred case.
    if (top != NULL) {
      VerticalPred_SSE2(dst, top, size);
    } else {
      Fill_SSE2(dst, 129, size);
    }
  }
}

static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
                                   const uint8_t* top) {
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
  const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
  const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
  const int DC = VP8HorizontalAdd8b(&combined) + 8;
  Put8x8uv_SSE2(DC >> 4, dst);
}

static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
  const __m128i sum = _mm_sad_epu8(top_values, zero);
  const int DC = _mm_cvtsi128_si32(sum) + 4;
  Put8x8uv_SSE2(DC >> 3, dst);
}

static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
  // 'left' is contiguous so we can reuse the top summation.
  DC8uvNoLeft_SSE2(dst, left);
}

static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
  Put8x8uv_SSE2(0x80, dst);
}

static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
                                       const uint8_t* top) {
  if (top != NULL) {
    if (left != NULL) {  // top and left present
      DC8uv_SSE2(dst, left, top);
    } else {  // top, but no left
      DC8uvNoLeft_SSE2(dst, top);
    }
  } else if (left != NULL) {  // left but no top
    DC8uvNoTop_SSE2(dst, left);
  } else {  // no top, no left, nothing.
    DC8uvNoTopLeft_SSE2(dst);
  }
}

static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
                                  const uint8_t* top) {
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
  const __m128i left_row = _mm_load_si128((const __m128i*)left);
  const int DC =
      VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
  Put16_SSE2(DC >> 5, dst);
}

static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
  const int DC = VP8HorizontalAdd8b(&top_row) + 8;
  Put16_SSE2(DC >> 4, dst);
}

static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
  // 'left' is contiguous so we can reuse the top summation.
  DC16NoLeft_SSE2(dst, left);
}

static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
  Put16_SSE2(0x80, dst);
}

static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
                                      const uint8_t* top) {
  if (top != NULL) {
    if (left != NULL) {  // top and left present
      DC16_SSE2(dst, left, top);
    } else {  // top, but no left
      DC16NoLeft_SSE2(dst, top);
    }
  } else if (left != NULL) {  // left but no top
    DC16NoTop_SSE2(dst, left);
  } else {  // no top, no left, nothing.
    DC16NoTopLeft_SSE2(dst);
  }
}

//------------------------------------------------------------------------------
// 4x4 predictions

#define DST(x, y) dst[(x) + (y) * BPS]
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
#define AVG2(a, b) (((a) + (b) + 1) >> 1)

// We use the following 8b-arithmetic tricks:
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
// and:
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1

static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // vertical
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
  const __m128i b = _mm_subs_epu8(a, lsb);
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
  const uint32_t vals = _mm_cvtsi128_si32(avg);
  int i;
  for (i = 0; i < 4; ++i) {
    WebPUint32ToMem(dst + i * BPS, vals);
  }
}

static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // horizontal
  const int X = top[-1];
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int L = top[-5];
  WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
  WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
  WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
  WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
}

static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
  uint32_t dc = 4;
  int i;
  for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
  Fill_SSE2(dst, dc >> 3, 4);
}

static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Down-Left
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
}

static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Vertical-Right
  const __m128i one = _mm_set1_epi8(1);
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int X = top[-1];
  const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));

  // these two are hard to implement in SSE2, so we keep the C-version:
  DST(0, 2) = AVG3(J, I, X);
  DST(0, 3) = AVG3(K, J, I);
}

static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Vertical-Left
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
  const __m128i abbc = _mm_or_si128(ab, bc);
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
  const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));

  // these two are hard to get and irregular
  DST(3, 2) = (extra_out >> 0) & 0xff;
  DST(3, 3) = (extra_out >> 8) & 0xff;
}

static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Down-right
  const __m128i one = _mm_set1_epi8(1);
  const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
  const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
}

static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int L = top[-5];
  DST(0, 0) =             AVG2(I, J);
  DST(2, 0) = DST(0, 1) = AVG2(J, K);
  DST(2, 1) = DST(0, 2) = AVG2(K, L);
  DST(1, 0) =             AVG3(I, J, K);
  DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
  DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
  DST(3, 2) = DST(2, 2) =
  DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
}

static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
  const int X = top[-1];
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int L = top[-5];
  const int A = top[0];
  const int B = top[1];
  const int C = top[2];

  DST(0, 0) = DST(2, 1) = AVG2(I, X);
  DST(0, 1) = DST(2, 2) = AVG2(J, I);
  DST(0, 2) = DST(2, 3) = AVG2(K, J);
  DST(0, 3)             = AVG2(L, K);

  DST(3, 0)             = AVG3(A, B, C);
  DST(2, 0)             = AVG3(X, A, B);
  DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
  DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
  DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
  DST(1, 3)             = AVG3(L, K, J);
}

static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
  const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
  int y;
  for (y = 0; y < 4; ++y, dst += BPS) {
    const int val = top[-2 - y] - top[-1];
    const __m128i base = _mm_set1_epi16(val);
    const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
    WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
  }
}

#undef DST
#undef AVG3
#undef AVG2

//------------------------------------------------------------------------------
// luma 4x4 prediction

// Left samples are top[-5 .. -2], top_left is top[-1], top are
// located at top[0..3], and top right is top[4..7]
static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
  DC4_SSE2(I4DC4 + dst, top);
  TM4_SSE2(I4TM4 + dst, top);
  VE4_SSE2(I4VE4 + dst, top);
  HE4_SSE2(I4HE4 + dst, top);
  RD4_SSE2(I4RD4 + dst, top);
  VR4_SSE2(I4VR4 + dst, top);
  LD4_SSE2(I4LD4 + dst, top);
  VL4_SSE2(I4VL4 + dst, top);
  HD4_SSE2(I4HD4 + dst, top);
  HU4_SSE2(I4HU4 + dst, top);
}

//------------------------------------------------------------------------------
// Chroma 8x8 prediction (paragraph 12.2)

static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
                                  const uint8_t* top) {
  // U block
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
  // V block
  dst += 8;
  if (top != NULL) top += 8;
  if (left != NULL) left += 16;
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
}

//------------------------------------------------------------------------------
// luma 16x16 prediction (paragraph 12.3)

static void Intra16Preds_SSE2(uint8_t* dst,
                              const uint8_t* left, const uint8_t* top) {
  DC16Mode_SSE2(I16DC16 + dst, left, top);
  VerticalPred_SSE2(I16VE16 + dst, top, 16);
  HorizontalPred_SSE2(I16HE16 + dst, left, 16);
  TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
}

//------------------------------------------------------------------------------
// Metric

static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
                                                   const __m128i b,
                                                   __m128i* const sum) {
  // take abs(a-b) in 8b
  const __m128i a_b = _mm_subs_epu8(a, b);
  const __m128i b_a = _mm_subs_epu8(b, a);
  const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
  // zero-extend to 16b
  const __m128i zero = _mm_setzero_si128();
  const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
  const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
  // multiply with self
  const __m128i sum1 = _mm_madd_epi16(C0, C0);
  const __m128i sum2 = _mm_madd_epi16(C1, C1);
  *sum = _mm_add_epi32(sum1, sum2);
}

static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
                                     int num_pairs) {
  __m128i sum = _mm_setzero_si128();
  int32_t tmp[4];
  int i;

  for (i = 0; i < num_pairs; ++i) {
    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
    const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
    const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
    __m128i sum1, sum2;
    SubtractAndAccumulate_SSE2(a0, b0, &sum1);
    SubtractAndAccumulate_SSE2(a1, b1, &sum2);
    sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
    a += 2 * BPS;
    b += 2 * BPS;
  }
  _mm_storeu_si128((__m128i*)tmp, sum);
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}

static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
  return SSE_16xN_SSE2(a, b, 8);
}

static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
  return SSE_16xN_SSE2(a, b, 4);
}

#define LOAD_8x16b(ptr) \
  _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)

static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
  const __m128i zero = _mm_setzero_si128();
  int num_pairs = 4;
  __m128i sum = zero;
  int32_t tmp[4];
  while (num_pairs-- > 0) {
    const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
    const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
    const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
    const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
    // subtract
    const __m128i c0 = _mm_subs_epi16(a0, b0);
    const __m128i c1 = _mm_subs_epi16(a1, b1);
    // multiply/accumulate with self
    const __m128i d0 = _mm_madd_epi16(c0, c0);
    const __m128i d1 = _mm_madd_epi16(c1, c1);
    // collect
    const __m128i sum01 = _mm_add_epi32(d0, d1);
    sum = _mm_add_epi32(sum, sum01);
    a += 2 * BPS;
    b += 2 * BPS;
  }
  _mm_storeu_si128((__m128i*)tmp, sum);
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}
#undef LOAD_8x16b

static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
  const __m128i zero = _mm_setzero_si128();

  // Load values. Note that we read 8 pixels instead of 4,
  // but the a/b buffers are over-allocated to that effect.
  const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
  const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
  const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
  const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
  const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
  const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
  const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
  const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
  // Combine pair of lines.
  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
  // Convert to 16b.
  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
  // subtract, square and accumulate
  const __m128i d0 = _mm_subs_epi16(a01s, b01s);
  const __m128i d1 = _mm_subs_epi16(a23s, b23s);
  const __m128i e0 = _mm_madd_epi16(d0, d0);
  const __m128i e1 = _mm_madd_epi16(d1, d1);
  const __m128i sum = _mm_add_epi32(e0, e1);

  int32_t tmp[4];
  _mm_storeu_si128((__m128i*)tmp, sum);
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}

//------------------------------------------------------------------------------

static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
  const __m128i mask = _mm_set1_epi16(0x00ff);
  const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
  const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
  const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
  const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
  const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
  const __m128i b1 = _mm_srli_epi16(a1, 8);
  const __m128i b2 = _mm_srli_epi16(a2, 8);
  const __m128i b3 = _mm_srli_epi16(a3, 8);
  const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
  const __m128i c1 = _mm_and_si128(a1, mask);
  const __m128i c2 = _mm_and_si128(a2, mask);
  const __m128i c3 = _mm_and_si128(a3, mask);
  const __m128i d0 = _mm_add_epi32(b0, c0);
  const __m128i d1 = _mm_add_epi32(b1, c1);
  const __m128i d2 = _mm_add_epi32(b2, c2);
  const __m128i d3 = _mm_add_epi32(b3, c3);
  const __m128i e0 = _mm_add_epi32(d0, d1);
  const __m128i e1 = _mm_add_epi32(d2, d3);
  const __m128i f0 = _mm_add_epi32(e0, e1);
  uint16_t tmp[8];
  _mm_storeu_si128((__m128i*)tmp, f0);
  dc[0] = tmp[0] + tmp[1];
  dc[1] = tmp[2] + tmp[3];
  dc[2] = tmp[4] + tmp[5];
  dc[3] = tmp[6] + tmp[7];
}

//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.

// Hadamard transform
// Returns the weighted sum of the absolute value of transformed coefficients.
// w[] contains a row-major 4 by 4 symmetric matrix.
static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
                           const uint16_t* const w) {
  int32_t sum[4];
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
  const __m128i zero = _mm_setzero_si128();

  // Load and combine inputs.
  {
    const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
    const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
    const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
    const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
    const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
    const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);

    // Combine inA and inB (we'll do two transforms in parallel).
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
    tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
    tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
    tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
    tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33
  }

  // Vertical pass first to avoid a transpose (vertical and horizontal passes
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
  {
    // Calculate a and b (two 4x4 at once).
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    const __m128i b0 = _mm_add_epi16(a0, a1);
    const __m128i b1 = _mm_add_epi16(a3, a2);
    const __m128i b2 = _mm_sub_epi16(a3, a2);
    const __m128i b3 = _mm_sub_epi16(a0, a1);
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
  }

  // Horizontal pass and difference of weighted sums.
  {
    // Load all inputs.
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);

    // Calculate a and b (two 4x4 at once).
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    const __m128i b0 = _mm_add_epi16(a0, a1);
    const __m128i b1 = _mm_add_epi16(a3, a2);
    const __m128i b2 = _mm_sub_epi16(a3, a2);
    const __m128i b3 = _mm_sub_epi16(a0, a1);

    // Separate the transforms of inA and inB.
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);

    {
      const __m128i d0 = _mm_sub_epi16(zero, A_b0);
      const __m128i d1 = _mm_sub_epi16(zero, A_b2);
      const __m128i d2 = _mm_sub_epi16(zero, B_b0);
      const __m128i d3 = _mm_sub_epi16(zero, B_b2);
      A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
      A_b2 = _mm_max_epi16(A_b2, d1);
      B_b0 = _mm_max_epi16(B_b0, d2);
      B_b2 = _mm_max_epi16(B_b2, d3);
    }

    // weighted sums
    A_b0 = _mm_madd_epi16(A_b0, w_0);
    A_b2 = _mm_madd_epi16(A_b2, w_8);
    B_b0 = _mm_madd_epi16(B_b0, w_0);
    B_b2 = _mm_madd_epi16(B_b2, w_8);
    A_b0 = _mm_add_epi32(A_b0, A_b2);
    B_b0 = _mm_add_epi32(B_b0, B_b2);

    // difference of weighted sums
    A_b0 = _mm_sub_epi32(A_b0, B_b0);
    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
  }
  return sum[0] + sum[1] + sum[2] + sum[3];
}

static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
                         const uint16_t* const w) {
  const int diff_sum = TTransform_SSE2(a, b, w);
  return abs(diff_sum) >> 5;
}

static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
                           const uint16_t* const w) {
  int D = 0;
  int x, y;
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    for (x = 0; x < 16; x += 4) {
      D += Disto4x4_SSE2(a + x + y, b + x + y, w);
    }
  }
  return D;
}

//------------------------------------------------------------------------------
// Quantization
//

static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
                                            const uint16_t* const sharpen,
                                            const VP8Matrix* const mtx) {
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
  const __m128i zero = _mm_setzero_si128();
  __m128i coeff0, coeff8;
  __m128i out0, out8;
  __m128i packed_out;

  // Load all inputs.
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);

  // extract sign(in)  (0x0000 if positive, 0xffff if negative)
  const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
  const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);

  // coeff = abs(in) = (in ^ sign) - sign
  coeff0 = _mm_xor_si128(in0, sign0);
  coeff8 = _mm_xor_si128(in8, sign8);
  coeff0 = _mm_sub_epi16(coeff0, sign0);
  coeff8 = _mm_sub_epi16(coeff8, sign8);

  // coeff = abs(in) + sharpen
  if (sharpen != NULL) {
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
  }

  // out = (coeff * iQ + B) >> QFIX
  {
    // doing calculations with 32b precision (QFIX=17)
    // out = (coeff * iQ)
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    // out = (coeff * iQ + B)
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
    out_00 = _mm_add_epi32(out_00, bias_00);
    out_04 = _mm_add_epi32(out_04, bias_04);
    out_08 = _mm_add_epi32(out_08, bias_08);
    out_12 = _mm_add_epi32(out_12, bias_12);
    // out = QUANTDIV(coeff, iQ, B, QFIX)
    out_00 = _mm_srai_epi32(out_00, QFIX);
    out_04 = _mm_srai_epi32(out_04, QFIX);
    out_08 = _mm_srai_epi32(out_08, QFIX);
    out_12 = _mm_srai_epi32(out_12, QFIX);

    // pack result as 16b
    out0 = _mm_packs_epi32(out_00, out_04);
    out8 = _mm_packs_epi32(out_08, out_12);

    // if (coeff > 2047) coeff = 2047
    out0 = _mm_min_epi16(out0, max_coeff_2047);
    out8 = _mm_min_epi16(out8, max_coeff_2047);
  }

  // get sign back (if (sign[j]) out_n = -out_n)
  out0 = _mm_xor_si128(out0, sign0);
  out8 = _mm_xor_si128(out8, sign8);
  out0 = _mm_sub_epi16(out0, sign0);
  out8 = _mm_sub_epi16(out8, sign8);

  // in = out * Q
  in0 = _mm_mullo_epi16(out0, q0);
  in8 = _mm_mullo_epi16(out8, q8);

  _mm_storeu_si128((__m128i*)&in[0], in0);
  _mm_storeu_si128((__m128i*)&in[8], in8);

  // zigzag the output before storing it.
  //
  // The zigzag pattern can almost be reproduced with a small sequence of
  // shuffles. After it, we only need to swap the 7th (ending up in third
  // position instead of twelfth) and 8th values.
  {
    __m128i outZ0, outZ8;
    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    _mm_storeu_si128((__m128i*)&out[0], outZ0);
    _mm_storeu_si128((__m128i*)&out[8], outZ8);
    packed_out = _mm_packs_epi16(outZ0, outZ8);
  }
  {
    const int16_t outZ_12 = out[12];
    const int16_t outZ_3 = out[3];
    out[3] = outZ_12;
    out[12] = outZ_3;
  }

  // detect if all 'out' values are zeroes or not
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
}

static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
                              const VP8Matrix* const mtx) {
  return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
}

static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
                                 const VP8Matrix* const mtx) {
  return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
}

static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
                                const VP8Matrix* const mtx) {
  int nz;
  const uint16_t* const sharpen = &mtx->sharpen_[0];
  nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
  nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
  return nz;
}

//------------------------------------------------------------------------------
// Entry point

extern void VP8EncDspInitSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
  VP8CollectHistogram = CollectHistogram_SSE2;
  VP8EncPredLuma16 = Intra16Preds_SSE2;
  VP8EncPredChroma8 = IntraChromaPreds_SSE2;
  VP8EncPredLuma4 = Intra4Preds_SSE2;
  VP8EncQuantizeBlock = QuantizeBlock_SSE2;
  VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
  VP8ITransform = ITransform_SSE2;
  VP8FTransform = FTransform_SSE2;
  VP8FTransform2 = FTransform2_SSE2;
  VP8FTransformWHT = FTransformWHT_SSE2;
  VP8SSE16x16 = SSE16x16_SSE2;
  VP8SSE16x8 = SSE16x8_SSE2;
  VP8SSE8x8 = SSE8x8_SSE2;
  VP8SSE4x4 = SSE4x4_SSE2;
  VP8TDisto4x4 = Disto4x4_SSE2;
  VP8TDisto16x16 = Disto16x16_SSE2;
  VP8Mean16x4 = Mean16x4_SSE2;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)

#endif  // WEBP_USE_SSE2