summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/dsp/filters_sse2.c
blob: 67f77999e6f47ef44559eeec7f07bdc066358e52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 variant of alpha filters
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./dsp.h"

#if defined(WEBP_USE_SSE2)

#include <assert.h>
#include <emmintrin.h>
#include <stdlib.h>
#include <string.h>

//------------------------------------------------------------------------------
// Helpful macro.

# define SANITY_CHECK(in, out)                                                 \
  assert(in != NULL);                                                          \
  assert(out != NULL);                                                         \
  assert(width > 0);                                                           \
  assert(height > 0);                                                          \
  assert(stride >= width);                                                     \
  assert(row >= 0 && num_rows > 0 && row + num_rows <= height);                \
  (void)height;  // Silence unused warning.

static void PredictLineTop(const uint8_t* src, const uint8_t* pred,
                           uint8_t* dst, int length) {
  int i;
  const int max_pos = length & ~31;
  assert(length >= 0);
  for (i = 0; i < max_pos; i += 32) {
    const __m128i A0 = _mm_loadu_si128((const __m128i*)&src[i +  0]);
    const __m128i A1 = _mm_loadu_si128((const __m128i*)&src[i + 16]);
    const __m128i B0 = _mm_loadu_si128((const __m128i*)&pred[i +  0]);
    const __m128i B1 = _mm_loadu_si128((const __m128i*)&pred[i + 16]);
    const __m128i C0 = _mm_sub_epi8(A0, B0);
    const __m128i C1 = _mm_sub_epi8(A1, B1);
    _mm_storeu_si128((__m128i*)&dst[i +  0], C0);
    _mm_storeu_si128((__m128i*)&dst[i + 16], C1);
  }
  for (; i < length; ++i) dst[i] = src[i] - pred[i];
}

// Special case for left-based prediction (when preds==dst-1 or preds==src-1).
static void PredictLineLeft(const uint8_t* src, uint8_t* dst, int length) {
  int i;
  const int max_pos = length & ~31;
  assert(length >= 0);
  for (i = 0; i < max_pos; i += 32) {
    const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + i +  0    ));
    const __m128i B0 = _mm_loadu_si128((const __m128i*)(src + i +  0 - 1));
    const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + i + 16    ));
    const __m128i B1 = _mm_loadu_si128((const __m128i*)(src + i + 16 - 1));
    const __m128i C0 = _mm_sub_epi8(A0, B0);
    const __m128i C1 = _mm_sub_epi8(A1, B1);
    _mm_storeu_si128((__m128i*)(dst + i +  0), C0);
    _mm_storeu_si128((__m128i*)(dst + i + 16), C1);
  }
  for (; i < length; ++i) dst[i] = src[i] - src[i - 1];
}

//------------------------------------------------------------------------------
// Horizontal filter.

static WEBP_INLINE void DoHorizontalFilter(const uint8_t* in,
                                           int width, int height, int stride,
                                           int row, int num_rows,
                                           uint8_t* out) {
  const size_t start_offset = row * stride;
  const int last_row = row + num_rows;
  SANITY_CHECK(in, out);
  in += start_offset;
  out += start_offset;

  if (row == 0) {
    // Leftmost pixel is the same as input for topmost scanline.
    out[0] = in[0];
    PredictLineLeft(in + 1, out + 1, width - 1);
    row = 1;
    in += stride;
    out += stride;
  }

  // Filter line-by-line.
  while (row < last_row) {
    // Leftmost pixel is predicted from above.
    out[0] = in[0] - in[-stride];
    PredictLineLeft(in + 1, out + 1, width - 1);
    ++row;
    in += stride;
    out += stride;
  }
}

//------------------------------------------------------------------------------
// Vertical filter.

static WEBP_INLINE void DoVerticalFilter(const uint8_t* in,
                                         int width, int height, int stride,
                                         int row, int num_rows, uint8_t* out) {
  const size_t start_offset = row * stride;
  const int last_row = row + num_rows;
  SANITY_CHECK(in, out);
  in += start_offset;
  out += start_offset;

  if (row == 0) {
    // Very first top-left pixel is copied.
    out[0] = in[0];
    // Rest of top scan-line is left-predicted.
    PredictLineLeft(in + 1, out + 1, width - 1);
    row = 1;
    in += stride;
    out += stride;
  }

  // Filter line-by-line.
  while (row < last_row) {
    PredictLineTop(in, in - stride, out, width);
    ++row;
    in += stride;
    out += stride;
  }
}

//------------------------------------------------------------------------------
// Gradient filter.

static WEBP_INLINE int GradientPredictorC(uint8_t a, uint8_t b, uint8_t c) {
  const int g = a + b - c;
  return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255;  // clip to 8bit
}

static void GradientPredictDirect(const uint8_t* const row,
                                  const uint8_t* const top,
                                  uint8_t* const out, int length) {
  const int max_pos = length & ~7;
  int i;
  const __m128i zero = _mm_setzero_si128();
  for (i = 0; i < max_pos; i += 8) {
    const __m128i A0 = _mm_loadl_epi64((const __m128i*)&row[i - 1]);
    const __m128i B0 = _mm_loadl_epi64((const __m128i*)&top[i]);
    const __m128i C0 = _mm_loadl_epi64((const __m128i*)&top[i - 1]);
    const __m128i D = _mm_loadl_epi64((const __m128i*)&row[i]);
    const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
    const __m128i B1 = _mm_unpacklo_epi8(B0, zero);
    const __m128i C1 = _mm_unpacklo_epi8(C0, zero);
    const __m128i E = _mm_add_epi16(A1, B1);
    const __m128i F = _mm_sub_epi16(E, C1);
    const __m128i G = _mm_packus_epi16(F, zero);
    const __m128i H = _mm_sub_epi8(D, G);
    _mm_storel_epi64((__m128i*)(out + i), H);
  }
  for (; i < length; ++i) {
    out[i] = row[i] - GradientPredictorC(row[i - 1], top[i], top[i - 1]);
  }
}

static WEBP_INLINE void DoGradientFilter(const uint8_t* in,
                                         int width, int height, int stride,
                                         int row, int num_rows,
                                         uint8_t* out) {
  const size_t start_offset = row * stride;
  const int last_row = row + num_rows;
  SANITY_CHECK(in, out);
  in += start_offset;
  out += start_offset;

  // left prediction for top scan-line
  if (row == 0) {
    out[0] = in[0];
    PredictLineLeft(in + 1, out + 1, width - 1);
    row = 1;
    in += stride;
    out += stride;
  }

  // Filter line-by-line.
  while (row < last_row) {
    out[0] = in[0] - in[-stride];
    GradientPredictDirect(in + 1, in + 1 - stride, out + 1, width - 1);
    ++row;
    in += stride;
    out += stride;
  }
}

#undef SANITY_CHECK

//------------------------------------------------------------------------------

static void HorizontalFilter(const uint8_t* data, int width, int height,
                             int stride, uint8_t* filtered_data) {
  DoHorizontalFilter(data, width, height, stride, 0, height, filtered_data);
}

static void VerticalFilter(const uint8_t* data, int width, int height,
                           int stride, uint8_t* filtered_data) {
  DoVerticalFilter(data, width, height, stride, 0, height, filtered_data);
}

static void GradientFilter(const uint8_t* data, int width, int height,
                           int stride, uint8_t* filtered_data) {
  DoGradientFilter(data, width, height, stride, 0, height, filtered_data);
}

//------------------------------------------------------------------------------
// Inverse transforms

static void HorizontalUnfilter(const uint8_t* prev, const uint8_t* in,
                               uint8_t* out, int width) {
  int i;
  __m128i last;
  out[0] = in[0] + (prev == NULL ? 0 : prev[0]);
  if (width <= 1) return;
  last = _mm_set_epi32(0, 0, 0, out[0]);
  for (i = 1; i + 8 <= width; i += 8) {
    const __m128i A0 = _mm_loadl_epi64((const __m128i*)(in + i));
    const __m128i A1 = _mm_add_epi8(A0, last);
    const __m128i A2 = _mm_slli_si128(A1, 1);
    const __m128i A3 = _mm_add_epi8(A1, A2);
    const __m128i A4 = _mm_slli_si128(A3, 2);
    const __m128i A5 = _mm_add_epi8(A3, A4);
    const __m128i A6 = _mm_slli_si128(A5, 4);
    const __m128i A7 = _mm_add_epi8(A5, A6);
    _mm_storel_epi64((__m128i*)(out + i), A7);
    last = _mm_srli_epi64(A7, 56);
  }
  for (; i < width; ++i) out[i] = in[i] + out[i - 1];
}

static void VerticalUnfilter(const uint8_t* prev, const uint8_t* in,
                             uint8_t* out, int width) {
  if (prev == NULL) {
    HorizontalUnfilter(NULL, in, out, width);
  } else {
    int i;
    const int max_pos = width & ~31;
    assert(width >= 0);
    for (i = 0; i < max_pos; i += 32) {
      const __m128i A0 = _mm_loadu_si128((const __m128i*)&in[i +  0]);
      const __m128i A1 = _mm_loadu_si128((const __m128i*)&in[i + 16]);
      const __m128i B0 = _mm_loadu_si128((const __m128i*)&prev[i +  0]);
      const __m128i B1 = _mm_loadu_si128((const __m128i*)&prev[i + 16]);
      const __m128i C0 = _mm_add_epi8(A0, B0);
      const __m128i C1 = _mm_add_epi8(A1, B1);
      _mm_storeu_si128((__m128i*)&out[i +  0], C0);
      _mm_storeu_si128((__m128i*)&out[i + 16], C1);
    }
    for (; i < width; ++i) out[i] = in[i] + prev[i];
  }
}

static void GradientPredictInverse(const uint8_t* const in,
                                   const uint8_t* const top,
                                   uint8_t* const row, int length) {
  if (length > 0) {
    int i;
    const int max_pos = length & ~7;
    const __m128i zero = _mm_setzero_si128();
    __m128i A = _mm_set_epi32(0, 0, 0, row[-1]);   // left sample
    for (i = 0; i < max_pos; i += 8) {
      const __m128i tmp0 = _mm_loadl_epi64((const __m128i*)&top[i]);
      const __m128i tmp1 = _mm_loadl_epi64((const __m128i*)&top[i - 1]);
      const __m128i B = _mm_unpacklo_epi8(tmp0, zero);
      const __m128i C = _mm_unpacklo_epi8(tmp1, zero);
      const __m128i D = _mm_loadl_epi64((const __m128i*)&in[i]);  // base input
      const __m128i E = _mm_sub_epi16(B, C);  // unclipped gradient basis B - C
      __m128i out = zero;                     // accumulator for output
      __m128i mask_hi = _mm_set_epi32(0, 0, 0, 0xff);
      int k = 8;
      while (1) {
        const __m128i tmp3 = _mm_add_epi16(A, E);           // delta = A + B - C
        const __m128i tmp4 = _mm_packus_epi16(tmp3, zero);  // saturate delta
        const __m128i tmp5 = _mm_add_epi8(tmp4, D);         // add to in[]
        A = _mm_and_si128(tmp5, mask_hi);                   // 1-complement clip
        out = _mm_or_si128(out, A);                         // accumulate output
        if (--k == 0) break;
        A = _mm_slli_si128(A, 1);                        // rotate left sample
        mask_hi = _mm_slli_si128(mask_hi, 1);            // rotate mask
        A = _mm_unpacklo_epi8(A, zero);                  // convert 8b->16b
      }
      A = _mm_srli_si128(A, 7);       // prepare left sample for next iteration
      _mm_storel_epi64((__m128i*)&row[i], out);
    }
    for (; i < length; ++i) {
      row[i] = in[i] + GradientPredictorC(row[i - 1], top[i], top[i - 1]);
    }
  }
}

static void GradientUnfilter(const uint8_t* prev, const uint8_t* in,
                             uint8_t* out, int width) {
  if (prev == NULL) {
    HorizontalUnfilter(NULL, in, out, width);
  } else {
    out[0] = in[0] + prev[0];  // predict from above
    GradientPredictInverse(in + 1, prev + 1, out + 1, width - 1);
  }
}

//------------------------------------------------------------------------------
// Entry point

extern void VP8FiltersInitSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitSSE2(void) {
  WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter;
  WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter;
  WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter;

  WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter;
  WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter;
  WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(VP8FiltersInitSSE2)

#endif  // WEBP_USE_SSE2