summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/libwebp/src/enc/picture_tools_enc.c
blob: 895df51156d86dc899290a3f8aa4a6e0c7171a6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// WebPPicture tools: alpha handling, etc.
//
// Author: Skal (pascal.massimino@gmail.com)

#include <assert.h>

#include "./vp8i_enc.h"
#include "../dsp/yuv.h"

static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) {
  return (0xff000000u | (r << 16) | (g << 8) | b);
}

//------------------------------------------------------------------------------
// Helper: clean up fully transparent area to help compressibility.

#define SIZE 8
#define SIZE2 (SIZE / 2)
static int is_transparent_area(const uint8_t* ptr, int stride, int size) {
  int y, x;
  for (y = 0; y < size; ++y) {
    for (x = 0; x < size; ++x) {
      if (ptr[x]) {
        return 0;
      }
    }
    ptr += stride;
  }
  return 1;
}

static int is_transparent_argb_area(const uint32_t* ptr, int stride, int size) {
  int y, x;
  for (y = 0; y < size; ++y) {
    for (x = 0; x < size; ++x) {
      if (ptr[x] & 0xff000000u) {
        return 0;
      }
    }
    ptr += stride;
  }
  return 1;
}

static void flatten(uint8_t* ptr, int v, int stride, int size) {
  int y;
  for (y = 0; y < size; ++y) {
    memset(ptr, v, size);
    ptr += stride;
  }
}

static void flatten_argb(uint32_t* ptr, uint32_t v, int stride, int size) {
  int x, y;
  for (y = 0; y < size; ++y) {
    for (x = 0; x < size; ++x) ptr[x] = v;
    ptr += stride;
  }
}

void WebPCleanupTransparentArea(WebPPicture* pic) {
  int x, y, w, h;
  if (pic == NULL) return;
  w = pic->width / SIZE;
  h = pic->height / SIZE;

  // note: we ignore the left-overs on right/bottom
  if (pic->use_argb) {
    uint32_t argb_value = 0;
    for (y = 0; y < h; ++y) {
      int need_reset = 1;
      for (x = 0; x < w; ++x) {
        const int off = (y * pic->argb_stride + x) * SIZE;
        if (is_transparent_argb_area(pic->argb + off, pic->argb_stride, SIZE)) {
          if (need_reset) {
            argb_value = pic->argb[off];
            need_reset = 0;
          }
          flatten_argb(pic->argb + off, argb_value, pic->argb_stride, SIZE);
        } else {
          need_reset = 1;
        }
      }
    }
  } else {
    const uint8_t* const a_ptr = pic->a;
    int values[3] = { 0 };
    if (a_ptr == NULL) return;    // nothing to do
    for (y = 0; y < h; ++y) {
      int need_reset = 1;
      for (x = 0; x < w; ++x) {
        const int off_a = (y * pic->a_stride + x) * SIZE;
        const int off_y = (y * pic->y_stride + x) * SIZE;
        const int off_uv = (y * pic->uv_stride + x) * SIZE2;
        if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) {
          if (need_reset) {
            values[0] = pic->y[off_y];
            values[1] = pic->u[off_uv];
            values[2] = pic->v[off_uv];
            need_reset = 0;
          }
          flatten(pic->y + off_y, values[0], pic->y_stride, SIZE);
          flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2);
          flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2);
        } else {
          need_reset = 1;
        }
      }
    }
  }
}

#undef SIZE
#undef SIZE2

void WebPCleanupTransparentAreaLossless(WebPPicture* const pic) {
  int x, y, w, h;
  uint32_t* argb;
  assert(pic != NULL && pic->use_argb);
  w = pic->width;
  h = pic->height;
  argb = pic->argb;

  for (y = 0; y < h; ++y) {
    for (x = 0; x < w; ++x) {
      if ((argb[x] & 0xff000000) == 0) {
        argb[x] = 0x00000000;
      }
    }
    argb += pic->argb_stride;
  }
}

//------------------------------------------------------------------------------
// Blend color and remove transparency info

#define BLEND(V0, V1, ALPHA) \
    ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16)
#define BLEND_10BIT(V0, V1, ALPHA) \
    ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18)

void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) {
  const int red = (background_rgb >> 16) & 0xff;
  const int green = (background_rgb >> 8) & 0xff;
  const int blue = (background_rgb >> 0) & 0xff;
  int x, y;
  if (pic == NULL) return;
  if (!pic->use_argb) {
    const int uv_width = (pic->width >> 1);  // omit last pixel during u/v loop
    const int Y0 = VP8RGBToY(red, green, blue, YUV_HALF);
    // VP8RGBToU/V expects the u/v values summed over four pixels
    const int U0 = VP8RGBToU(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF);
    const int V0 = VP8RGBToV(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF);
    const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT;
    if (!has_alpha || pic->a == NULL) return;    // nothing to do
    for (y = 0; y < pic->height; ++y) {
      // Luma blending
      uint8_t* const y_ptr = pic->y + y * pic->y_stride;
      uint8_t* const a_ptr = pic->a + y * pic->a_stride;
      for (x = 0; x < pic->width; ++x) {
        const int alpha = a_ptr[x];
        if (alpha < 0xff) {
          y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]);
        }
      }
      // Chroma blending every even line
      if ((y & 1) == 0) {
        uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride;
        uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride;
        uint8_t* const a_ptr2 =
            (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride;
        for (x = 0; x < uv_width; ++x) {
          // Average four alpha values into a single blending weight.
          // TODO(skal): might lead to visible contouring. Can we do better?
          const int alpha =
              a_ptr[2 * x + 0] + a_ptr[2 * x + 1] +
              a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1];
          u[x] = BLEND_10BIT(U0, u[x], alpha);
          v[x] = BLEND_10BIT(V0, v[x], alpha);
        }
        if (pic->width & 1) {   // rightmost pixel
          const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]);
          u[x] = BLEND_10BIT(U0, u[x], alpha);
          v[x] = BLEND_10BIT(V0, v[x], alpha);
        }
      }
      memset(a_ptr, 0xff, pic->width);
    }
  } else {
    uint32_t* argb = pic->argb;
    const uint32_t background = MakeARGB32(red, green, blue);
    for (y = 0; y < pic->height; ++y) {
      for (x = 0; x < pic->width; ++x) {
        const int alpha = (argb[x] >> 24) & 0xff;
        if (alpha != 0xff) {
          if (alpha > 0) {
            int r = (argb[x] >> 16) & 0xff;
            int g = (argb[x] >>  8) & 0xff;
            int b = (argb[x] >>  0) & 0xff;
            r = BLEND(red, r, alpha);
            g = BLEND(green, g, alpha);
            b = BLEND(blue, b, alpha);
            argb[x] = MakeARGB32(r, g, b);
          } else {
            argb[x] = background;
          }
        }
      }
      argb += pic->argb_stride;
    }
  }
}

#undef BLEND
#undef BLEND_10BIT

//------------------------------------------------------------------------------